A CHARACTERIZATION OF ω_1 -STRONGLY COUNTABLE-DIMENSIONAL SPACES IN TERMS OF *K*-APPROXIMATIONS

Masahiro Matsumoto

Received October 9, 2012; revised January 7, 2013

Abstract. We give a characterization of ω_1 -strongly countable-dimensional metrizable spaces in terms of K-approximations. A characterization of locally finite-dimensional metrizable spaces is also obtained.

1 Introduction The purpose of this paper is to characterize a class of ω_1 -strongly countable-dimensional metrizable spaces in terms of K-approximations. A concept of a K-approximation is due to Dydak-Mishra-Shukla.

Definition 1.1. (Dydak-Mishra-Shukla [1; Definition of K-approximations 1.1]) Let X be a normal space, let K be a metric simplicial complex (i.e., a simplicial complex equipped with the metric topology) and let $f: X \to K$ be a continuous mapping. A continuous mapping $g: X \to K$ is a K-approximation of f provided for each simplex Δ of K and each $x \in X$, $f(x) \in \Delta$ implies $g(x) \in \Delta$. g is an n-dimensional (respectively, finite-dimensional) K-approximation of f if it is a K-approximation and $g(X) \subset K^{(n)}$ (respectively, $g(X) \subset K^{(m)}$ for some m).

Dydak-Mishra-Shukla gave a characterization of *n*-dimensional spaces in terms of *K*-approximations. If every finite open cover of a normal space X has a finite open refinement of order $\leq n + 1$, then X has covering dimension $\leq n$, dim $X \leq n$.

Theorem 1.2. (Dydak-Mishra-Shukla [1; Theorem 2.2]) Let n be an integer. For a paracompact space X the following conditions are equivalent:

(a) $\dim X \leq n$.

(b) For every metric simplicial complex K and every continuous mapping $f: X \to K$ there is an n-dimensional K-approximation g of f.

(c) For every metric simplicial complex K and every continuous mapping $f: X \to K$ there is an n-dimensional K-approximation g of f such that $g|f^{-1}(K^{(n)}) = f|f^{-1}(K^{(n)})$.

Also, Dydak-Mishra-Shukla characterized finitistic-dimensional spaces. A normal space X is *finitistic* if every open cover of X has an open refinement of finite order.

Theorem 1.3. (Dydak-Mishra-Shukla [1; Theorem 2.1]) For a paracompact space X the following conditions are equivalent:

(a) X is finitistic.

(b) For every metric simplicial complex K and every continuous mapping $f: X \to K$ there is a finite-dimensional K-approximation g of f.

(c) For every integer $m \ge -1$, every metric simplicial complex K and every continuous mapping $f: X \to K$ there is a finite-dimensional K-approximation g of f such that $g|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$.

¹AMS Subject Classification: Primary 54F45; Secondary 54E35.

 $^{^2 \}rm Key$ words and phrases: K-approximation, ω_1 -strongly countable-dimension, locally finite-dimension, strong small transfinite dimension

In [5], Y. Hattori extended Theorem 1.2 to strong large transfinite dimensional spaces. A normal space X is said to have strong large transfinite dimension if X has both large transfinite dimension and strong small transfinite dimension (see Definition 2.3). For a space X we denote $\mathcal{D}(X) = \{D \mid D \text{ is a closed discrete subset of } X\}$.

Theorem 1.4. (Y. Hattori [5; Theorem]) For a metrizable space X the following conditions are equivalent:

(a) X has a strong large transfinite dimension.

(b) There is a function $\varphi : \mathcal{D}(X) \to \omega$ such that for every metric simplicial complex Kand every continuous mapping $f : X \to K$ there is a K-approximation g of f such that $g(D) \subset K^{(\varphi(D))}$ for each $D \in \mathcal{D}(X)$.

(c) For every integer $m \geq -1$, there is a function $\psi : \mathcal{D}(X) \to \omega$ such that for every metric simplicial complex K and every continuous mapping $f : X \to K$ there is a finitedimensional K-approximation g of f such that $g(D) \subset K^{(\psi(D))}$ for each $D \in \mathcal{D}(X)$ and $g|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$.

A normal space X is *strongly countable-dimensional* if X can be represented as a countable union of closed finite-dimensional subspaces.

Theorem 1.5. (Y. Hattori [5; Corollary]) For a paracompact space X the following conditions are equivalent:

(a) X is a strongly countable-dimensional space.

(b) There is a function $\varphi : X \to \omega$ such that for every metric simplicial complex K and every continuous mapping $f : X \to K$ there is a K-approximation g of f such that $g(x) \in K^{(\varphi(x))}$ for each $x \in X$.

(c) For every integer $m \ge -1$, there is a function $\psi: X \to \omega$ such that for every metric simplicial complex K and every continuous mapping $f: X \to K$ there is a K-approximation g of f such that $g(x) \in K^{(\psi(x))}$ for each $x \in X$ and $g|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$.

2 Characterizations In this section, we give a characterization of ω_1 -strongly countabledimensional metrizable spaces in terms of *K*-approximations. A characterization of locally finite-dimensional metrizable spaces is also obtained.

A notion of a locally finite-dimensional space is well known (cf. [2]).

Definition 2.1. A metrizable space X is *locally finite-dimensional* if for every point $x \in X$ there exists an open subspace U of X such that $x \in U$ and dim $U < \infty$.

The first infinite ordinal number is denoted by ω and ω_1 is the first uncountable ordinal number. Z. Shmuely introduced and studied ω_1 -strongly countable-dimensional spaces ([8]).

Definition 2.2. A metrizable space X is called an ω_1 -strongly countable-dimensional space if $X = \bigcup \{P_{\xi} \mid 0 \leq \xi < \xi_0\}, \xi_0 < \omega_1$, where P_{ξ} is an open subset of $X - \bigcup \{P_{\eta} \mid 0 \leq \eta < \xi\}$ and dim $P_{\xi} < \infty$.

For a metrizable space X and a non-negative integer n, we put

 $P_n(X) = \bigcup \{ U \mid U \text{ is an open subspace of } X \text{ and } \dim U \le n \}.$

We notice that for each ordinal number α , we can put $\alpha = \lambda(\alpha) + n(\alpha)$, where $\lambda(\alpha)$ is a limit ordinal number or 0 and $n(\alpha)$ is a non-negative integer. Strong small transfinite dimension is studied by Y. Hattori (cf. [3]).

Definition 2.3. Let X be a metrizable space and α either an ordinal number ≥ 0 or the integer -1. Then strong small transfinite dimension sind of X is defined as follows:

(1) sind X = -1 if and only if $X = \emptyset$.

(2) sind $X \leq \alpha$ if X is expressed in the form $X = \bigcup \{P_{\xi} \mid \xi < \alpha\}$, where $P_{\xi} = P_{n(\xi)}(X - \bigcup \{P_{\eta} \mid \eta < \lambda(\xi)\})$.

Furthermore, if sind X is defined, we say that X has strong small transfinite dimension.

Clearly, a metrizable space X is locally finite-dimensional if and only if sind $X \leq \omega$ (cf. [2; Proposition 5.5.3]). And X is ω_1 -strongly countable-dimensional if and only if there is a $\xi_0 < \omega_1$ such that sind $X \leq \xi_0$.

Let X be a metrizable space, let α be an ordinal number and let $\mathcal{F} = \{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ be a family of subsets of X. We say that \mathcal{F} is a *closed* α -sequence in X if

(f-1) X_{β} is closed in X for $\beta \leq \alpha$,

(f-2) $X_0 = X$,

(f-3) $X_{\beta} \supset X_{\beta'}$ for $\beta \leq \beta' \leq \alpha$,

(f-4) $X_{\beta} = \bigcap \{ X_{\beta'} \mid \beta' < \beta \}$ if β is a limit.

The power set of X shall be denoted by $\mathcal{P}(X)$.

Let $N: X \to \mathcal{P}(X)$ be a function and let $\mathcal{F} = \{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ be a closed α -sequence in X. We say that N is an \mathcal{F} -neighborhood function provided that N(x) is an open neighborhood of x in $X_{\beta(x)}$ for each $x \in X$, where $\beta(x) = \max\{\beta \mid x \in X_{\beta}, 0 \leq \beta \leq \alpha\}$.

Remark 2.4. ([6; Remark 2.5]) Let $\{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ be a closed α -sequence in X. Then we shall show that for every point x of X, there is a maximum element $\beta(x)$ of $\{\beta \mid x \in X_{\beta}\}$. Indeed, if $x \in X_{\lambda(\alpha)}$, then $\beta(x) = \max\{\beta \mid x \in X_{\beta}, \lambda(\alpha) \leq \beta \leq \alpha\}$. Now, we suppose that $x \notin X_{\lambda(\alpha)}$, there is a minimum element $\beta_0 > 0$ of $\{\beta \mid x \notin X_{\beta}\}$. Assume that β_0 is limit. By the condition (f-4), $x \in \bigcap\{X_{\beta} \mid \beta < \beta_0\} = X_{\beta_0}$. This contradicts the definition of β_0 . Therefore β_0 is not limit and hence $\beta(x) = \beta_0 - 1$.

Theorem 2.8 is a main theorem. Thus we characterize the class of ω_1 -strongly countabledimensional metrizable spaces in terms of K-approximations. To prove this theorem, we need Theorem 2.5.

Theorem 2.5. Let α be an ordinal number with $\alpha < \omega_1$ and let n be a non-negative integer. The following conditions are equivalent for a metrizable space X:

(a) sind $X \leq \omega \alpha + n$.

(b) There are a closed α -sequence $\mathcal{F} = \{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ in X, an \mathcal{F} -neighborhood function $N : X \to \mathcal{P}(X)$ and a function $\varphi : X \to \omega$ satisfing the following conditions: $X_{\alpha} = \emptyset$ if n = 0, $\varphi(X_{\alpha}) = n - 1$, and for every metric simplicial complex K and every continuous mapping $f : X \to K$ there is a K-approximation g of f such that $g(N(x)) \subset K^{(\varphi(x))}$ for each $x \in X$.

(c) There are a closed α -sequence $\mathcal{F} = \{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ in X and an \mathcal{F} -neighborhood function $N : X \to \mathcal{P}(X)$, and for every integer $m \geq -1$ there is a function $\psi : X \to \omega$ satisfing the following conditions: $X_{\alpha} = \emptyset$ if n = 0, $\varphi(X_{\alpha}) = n - 1$, and for every metric simplicial complex K and every continuous mapping $f : X \to K$ there is a K-approximation g of f such that $g(N(x)) \subset K^{(\psi(x))}$ for each $x \in X$ and $g|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$.

To prove this theorem, we need the following lemmas. Essentially, the following lemma is the same as [4; Lemma 1.5]. By a minor modification in the proof of [4; Lemma 1.5], we obtain the following lemma.

Lemma 2.6. ([4; Lemma 1.5], [7; Lemma 1]) Let n be a non-negative integer and let $\{F_m \mid m = 0, 1, ...\}$ be a closed cover of a metrizable space X such that dim $F_m \leq (n-1)+m$, $F_m \subset F_{m+1}$ for m = 0, 1, ... Then for every open cover \mathcal{U} of X, there are a sequence \mathcal{V}_1 , \mathcal{V}_2 , ... of discrete families of open subsets of X and an open cover \mathcal{W} of X which satisfy the following conditions:

(1) $\bigcup \{ \mathcal{V}_k \mid k \in \mathbb{N} \}$ is a cover of X.

(2) $\bigcup \{ \mathcal{V}_k \mid k \in \mathbb{N} \}$ refines \mathcal{U} .

(3) If $W \in W$ satisfies $W \cap F_m \neq \emptyset$, then W meets at most one member of \mathcal{V}_k for $k \leq (n+0)+(n+1)+\ldots+(n+m)$ and meets no member of \mathcal{V}_k for $k > (n+0)+(n+1)+\ldots+(n+m)$.

Lemma 2.7. ([1; Corollary 1.7]) Let $f : X \to K$ be a map from a normal space X to a metric simplicial complex K so that $f(A) \subset K^{(n)}$ for some subset A of X. There is a K-approximation g of f so that g|U is an n-dimensional K-approximation of f|U for some open neighborhood U of A in X and g|A = f|A.

Proof of Theorem 2.5. (a) \Rightarrow (b) : Let sind $X \leq \omega \alpha + n$. We use the construction in [6; Theorem 2.4]. We put

 $Y_{\gamma} = X - \bigcup \{ P_{\xi} \mid \xi < \gamma \} \quad \text{for} \quad \gamma \leq \omega \alpha + n$ and

 $X_{\beta} = Y_{\omega\beta} \quad \text{for} \quad \beta \le \alpha.$

Clearly, $\mathcal{F} = \{X_{\beta} \mid 0 \leq \beta \leq \alpha\}$ is a closed α -sequence in X satisfing $X_{\alpha} = \emptyset$ if n = 0. Notice that $P_{\omega\beta+m}$ is an open subset of X_{β} such that $P_{\omega\beta+m} \subset P_{\omega\beta+(m+1)}$ for $m = 0, 1, \dots$ Also $P_{\omega\alpha+(n-1)}$ is a closed subset of X. Hence for each $\beta \leq \alpha$ there is a family $\{W_{\omega\beta+m} \mid m = 0, 1, \dots\}$ of open subsets of X_{β} such that

- (1) $\overline{W_{\omega\beta+m}} \subset P_{\omega\beta+m}$,
- (2) $\overline{W_{\omega\beta+m}} \subset W_{\omega\beta+(m+1)},$
- (3) $\bigcup_{m=0}^{\infty} W_{\omega\beta+m} = \bigcup_{m=0}^{\infty} P_{\omega\beta+m}.$

Since $\{\beta \mid 0 \le \beta < \alpha\}$ is countable, there is a mapping h from ω onto $\{\beta \mid 0 \le \beta < \alpha\}$. For each m = 0, 1, ..., we put

$$\begin{split} V_0 &= P_{\omega \alpha + (n-1)}, \\ V_1 &= P_{\omega \alpha + (n-1)} \cup W_{\omega h(1) + (n-1) + 1}, \\ V_2 &= P_{\omega \alpha + (n-1)} \cup W_{\omega h(1) + (n-1) + 2} \cup W_{\omega h(2) + (n-1) + 2}, \\ \dots \\ V_m &= P_{\omega \alpha + (n-1)} \cup W_{\omega h(1) + (n-1) + m} \cup W_{\omega h(2) + (n-1) + m} \cup \dots \cup W_{\omega h(m) + (n-1) + m} \\ \dots \end{split}$$

Then V_0, V_1, \dots are subsets of X satisfing the following conditions:

(4)
$$V_m \subset V_{m+1}$$
.
(5) $\dim \overline{V_m} \le (n-1) + m$.

$$(6) \mathbf{V} = [1]^{\infty} \mathbf{V}$$

(6)
$$X = \bigcup_{m=0}^{\infty} V_m$$
.

Let $x \in X$. Put $n_0 = \min\{m \mid x \in V_m\}$.

Clearly, if $n_0 = 0$ then $x \in V_0 = P_{\omega\alpha+(n-1)} \subset X_\alpha$. Now we shall show that if $n_0 > 0$, then $x \in W_{\omega\beta(x)+(n-1)+n_0} \subset X_{\beta(x)}$. By the definition of $n_0, x \in V_{n_0} = P_{\omega\alpha+(n-1)} \cup W_{\omega h(1)+(n-1)+n_0} \cup W_{\omega h(2)+(n-1)+n_0} \cup \dots \cup W_{\omega h(n_0)+(n-1)+n_0}$. Since $x \notin P_{\omega\alpha+(n-1)}$ by $n_0 > 0$, there is a natural number i such that $x \in W_{\omega h(i)+(n-1)+n_0}$. Hence $x \in W_{\omega h(i)+(n-1)+n_0} \subset P_{\omega h(i)+(n-1)+n_0} \subset X_{h(i)} - X_{h(i)+1}$. Also since $\beta(x) = \max\{\beta \mid x \in X_\beta\} < \alpha, x \in X_{\beta(x)} - X_{\beta(x)+1}$. Hence $h(i) = \beta(x)$ and hence $x \in W_{\omega\beta(x)+(n-1)+n_0} \subset X_{\beta(x)}$.

We put

$$N(x) = \begin{cases} P_{\omega\alpha+(n-1)}, & \text{if } n_0 = 0, \\ W_{\omega\beta(x)+(n-1)+n_0}, & \text{if } n_0 > 0 \end{cases}$$

Since N(x) is an open neighborhood of x in $X_{\beta(x)}$, $N: X \to \mathcal{P}(X)$ is an \mathcal{F} -neighborhood function.

Put $\varphi(x) = (n+0) + (n+1) + \dots + (n+n_0) - 1$. Then $\varphi(X_{\alpha}) = n - 1$.

The latter half of the proof is similar to the proof of [5; Theorem]. Let K be a metric simplicial complex and let $f: X \to K$ be a continuous mapping. By Lemma 2.6, there are a sequence $\mathcal{U}_1, \mathcal{U}_2, \ldots$ of discrete families of open subsets of X and an open cover \mathcal{W} of X which satisfy the following conditions:

- (7) $\bigcup_{k=1}^{\infty} \mathcal{U}_k$ is a cover of X.
- (8) $\bigcup_{k=1}^{\infty} \mathcal{U}_k$ refines $\{f^{-1}(St(v,K)) \mid v \in K^{(0)}\}$.

(9) If $W \in W$ satisfies $W \cap \overline{V_m} \neq \emptyset$, then W meets at most one member of \mathcal{U}_k for $k \leq (n+0)+(n+1)+\ldots+(n+m)$ and meets no member of \mathcal{U}_k for $k > (n+0)+(n+1)+\ldots+(n+m)$.

Then $\mathcal{U} = \bigcup_{k=1}^{\infty} \mathcal{U}_k$ is a locally finite open cover of X by (7) and (9). For each $U \in \mathcal{U}$ there is $v(U) \in K^{(0)}$ such that $U \subset f^{-1}(St(v(U), K))$ by (8). For each $v \in K^{(0)}$ we put $Q_v = \bigcup \{U \in \mathcal{U} \mid v(U) = v\}$, and $\mathcal{Q} = \{Q_v \mid v \in K^{(0)}\}$. Then \mathcal{Q} is a locally finite open cover of X such that $Q_v \subset f^{-1}(St(v, K))$ for each $v \in K^{(0)}$. Let $\{\kappa_v \mid v \in K^{(0)}\}$ be a partition of unity subordinated to \mathcal{Q} . We define $g: X \to K$ as $g(x) = \sum_{v \in K^{(0)}} \kappa_v(x)v$. Then g is a K-approximation of f.

Now, let $x \in X$. Notice that $N(x) \subset V_{n_0} \subset \overline{V_{n_0}}$. By (9), $\operatorname{ord}_y \mathcal{Q} \leq \operatorname{ord}_y \mathcal{U} \leq \varphi(x) + 1$ for each $y \in N(x)$. Hence $g(y) \in K^{(\varphi(x))}$ for each $y \in N(x)$ and hence $g(N(x)) \subset K^{(\varphi(x))}$.

(b) \Rightarrow (a): We use the proof of [6; Theorem 2.4]. We shall show that for every $\beta \leq \alpha$

(10)
$$X - \bigcup \{P_{\xi} \mid \xi < \omega\beta\} \subset X_{\beta}.$$

The validity of (10) is clear for $\beta = 0$. To prove (10) by transfinite induction we assume (10) for $\gamma < \beta$. Let $x \notin X_{\beta}$. Notice that $\beta(x) < \beta$.

If $x \in \bigcup \{ P_{\xi} \mid \xi < \omega \beta(x) \}$, then $x \in \bigcup \{ P_{\xi} \mid \xi < \omega \beta \}$ by $\beta(x) < \beta$.

We shall also show that if $x \in X - \bigcup \{P_{\xi} \mid \xi < \omega\beta(x)\}$, then $x \in \bigcup \{P_{\xi} \mid \xi < \omega\beta\}$. Since N(x) is an open neighborhood of x in $X_{\beta(x)}$, by the induction hypothesis, $N(x) \cap (X - \bigcup \{P_{\xi} \mid \xi < \omega\beta(x)\})$ is an open neighborhood of x in $X - \bigcup \{P_{\xi} \mid \xi < \omega\beta(x)\}$. There is an open neighborhood V(x) of x in $X - \bigcup \{P_{\xi} \mid \xi < \omega\beta(x)\}$ such that

$$\overline{V(x)} \subset N(x) \cap (X - \bigcup \{P_{\xi} \mid \xi < \omega\beta(x)\}).$$

Let \mathcal{U} be a finite open cover of $\overline{V(x)}$. Given $U \in \mathcal{U}$, choose an open subset \tilde{U} of X such that $\tilde{U} \cap \overline{V(x)} = U$. Put $\tilde{\mathcal{U}} = \{\tilde{U} \mid U \in \mathcal{U}\} \cup \{X - \overline{V(x)}\}$. We index a covering $\tilde{\mathcal{U}}$ as $\tilde{\mathcal{U}} = \{U_v \mid v \in S\}$. We use the proof of [1; Theorem 2.1]. Choose a partition of unity $\{\alpha_v \mid v \in S\}$ of X with $\alpha_v^{-1}(0, 1] \subset U_v$ for all $v \in S$ and notice that $f(y) = \sum_{v \in S} \alpha_v(y)v$ defines a map $f : X \to K$, where K is the full complex with S as its set of vertices. Then, by (b), there is a K-approximation g of f such that $g(N(y)) \subset K^{(\varphi(y))}$ for each $y \in X$. Notice that $g^{-1}(St(v, K)) \subset U_v$ for all $v \in S$ and $\tilde{\mathcal{V}} = \{g^{-1}(St(v, K)) \mid v \in S\}$ is an open cover of

X. In particular, $g(\overline{V(x)}) \subset g(N(x)) \subset K^{(\varphi(x))}$. Then $\mathcal{V} = \{\tilde{V} \cap \overline{V(x)} \mid \tilde{U} \in \tilde{\mathcal{V}}\}$ is a finite open cover of $\overline{V(x)}$ such that \mathcal{V} is a refinement of \mathcal{U} and $\sup\{\operatorname{ord}_y \mathcal{V} \mid y \in \overline{V(x)}\} \leq \varphi(x) + 1$. Hence

(11)
$$\dim V(x) \le \dim \overline{V(x)} \le \varphi(x)$$

We use the proof of [6; Theorem 2.4].

$$x \in V(x) \subset P_{\varphi(x)}(X - \bigcup \{P_{\xi} \mid \xi < \omega\beta(x)\}) = P_{\omega\beta(x) + \varphi(x)}$$
$$\subset \bigcup \{P_{\xi} \mid \xi < \omega(\beta(x) + 1)\} \subset \bigcup \{P_{\xi} \mid \xi < \omega\beta\}.$$

Thus, (10) holds.

In particular,

(12)
$$X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\} \subset X_{\alpha}.$$

We use the proof of [6; Theorem 2.4]. We shall show that

(13)
$$X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\} \subset \bigcup \{P_{\xi} \mid \omega \alpha \le \xi < \omega \alpha + n\}.$$

If n = 0 then $X_{\alpha} = \emptyset$, and hence $X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\} = \emptyset$ by (12).

Assume that n > 0. Let $x \in X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\}$. Since $x \in X_{\alpha}$ by (12), $\beta(x) = \alpha$. Hence N(x) is an open neighborhood of x in X_{α} . By (12), $N(x) \cap (X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\})$ is an open neighborhood of x in $X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\}$. There is an open neighborhood V(x) of x in $X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\}$ such that

$$\overline{V(x)} \subset N(x) \cap (X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\}).$$

By the proof of (11), dim $V(x) \leq \dim \overline{V(x)} \leq \varphi(x)$. Furthermore $\varphi(x) = n - 1$ by $x \in X_{\alpha}$. Hence,

$$x \in V(x) \subset P_{\varphi(x)}(X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\}) = P_{\omega \alpha + \varphi(x)}$$

$$\subset \bigcup \{ P_{\xi} \mid \omega \alpha \leq \xi \leq \omega \alpha + \varphi(x) \} \subset \bigcup \{ P_{\xi} \mid \omega \alpha \leq \xi < \omega \alpha + n \}.$$

Thus, (13) holds.

Therefore $X = \bigcup \{ P_{\xi} \mid 0 \le \xi < \omega \alpha + n \}$ and hence sind $X \le \omega \alpha + n$.

(b) \Rightarrow (c) : The proof is similar to the proof of [5; Theorem]. For completeness, we give the proof. Let $m \geq -1$. In addition, let $\varphi : X \to \omega$ be as in (b). We put $\psi(x) = \max\{m,\varphi(x)\}$ for each $x \in X$. Let K be a metric simplicial complex and let $f : X \to K$ be a continuous mapping. By Lemma 2.7, there are an open subset U of X and a K-approximation g_1 of f such that $f^{-1}(K^{(m)}) \subset U$, $g_1|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$ and $g_1|U$ is an m-dimensional K-approximation of f|U. Then, by (b), there is a K-approximation g_2 of g_1 such that $g_2(N(x)) \subset K^{(\varphi(x))}$ for each $x \in X$. Let $\kappa : X \to [0,1]$ be a continuous mapping such that $\kappa(f^{-1}(K^{(m)})) = 1$ and $\kappa(X-U) = 0$. We define $g(x) = \kappa(x)g_1(x) + (1-\kappa(x))g_2(x)$ for each $x \in X$. Then g is a K-approximation of f and $g(N(x)) \subset K^{(\psi(x))}$ for each $x \in X$.

(c)
$$\Rightarrow$$
 (b) is obvious.

We obtain the Main Theorem 2.8 and Theorem 2.9.

Theorem 2.8. The following conditions are equivalent for a metrizable space X:

(a) X is an ω_1 -strongly countable-dimensional space.

(b) There are an ordinal number $\alpha < \omega_1$, a closed α -sequence $\mathcal{F} = \{X_\beta \mid 0 \leq \beta \leq \alpha\}$ in X, an \mathcal{F} -neighborhood function $N: X \to \mathcal{P}(X)$ and a function $\varphi: X \to \omega$ satisfing the following condition: For every metric simplicial complex K and every continuous mapping $f: X \to K$ there is a K-approximation g of f such that $g(N(x)) \subset K^{(\varphi(x))}$ for each $x \in X$.

(c) There are an ordinal number $\alpha < \omega_1$, a closed α -sequence $\mathcal{F} = \{X_\beta \mid 0 \leq \beta \leq \alpha\}$ in X and an \mathcal{F} -neighborhood function $N: X \to \mathcal{P}(X)$, and for every integer $m \geq -1$ there is a function $\psi: X \to \omega$ satisfing the following condition: For every metric simplicial complex K and every continuous mapping $f: X \to K$ there is a K-approximation g of f such that $g(N(x)) \subset K^{(\psi(x))}$ for each $x \in X$ and $g|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$.

Proof. (b) \Rightarrow (a) : Refer to the proof of [6; Theorem 2.9]. By the proof of (13) of Theorem 2.5, $X - \bigcup \{P_{\xi} \mid \xi < \omega \alpha\} \subset \bigcup \{P_{\xi} \mid \omega \alpha \leq \xi < \omega \alpha + \omega\}$. Hence sind $X \leq \omega \alpha + \omega$, and hence X is an ω_1 -strongly countable-dimensional space.

The implications (a) \Rightarrow (b), (b) \Rightarrow (c) and (c) \Rightarrow (b) are obvious by proofs of Theorem 2.5 and [5; Theorem].

Notice that if $N : X \to \mathcal{P}(X)$ is an $\{X\}$ -neighborhood function then N(x) is an open neighborhood of x in X for each $x \in X$.

Theorem 2.9. The following conditions are equivalent for a metrizable space X:

(a) X is a locally finite-dimensional space.

(b) There are an $\{X\}$ -neighborhood function $N : X \to \mathcal{P}(X)$ and a function $\varphi : X \to \omega$ satisfing the following condition: For every metric simplicial complex K and every continuous mapping $f : X \to K$ there is a K-approximation g of f such that $g(N(x)) \subset K^{(\varphi(x))}$ for each $x \in X$.

(c) There is an $\{X\}$ -neighborhood function $N : X \to \mathcal{P}(X)$, and for every integer $m \geq -1$ there is a function $\psi : X \to \omega$ satisfing the following condition: For every metric simplicial complex K and every continuous mapping $f : X \to K$ there is a K-approximation g of f such that $g(N(x)) \subset K^{(\psi(x))}$ for each $x \in X$ and $g|f^{-1}(K^{(m)}) = f|f^{-1}(K^{(m)})$.

References

- J. Dydak, S. N. Mishra and R. A. Shukla, On finitistic spaces, Topology Appl. 97 (1999), no. 3, 217-229.
- [2] R. Engelking, Theory of Dimensions, Finite and Infinite, Heldermann Verlag (1995).
- [3] Y. Hattori, On spaces related to strongly countable-dimensional spaces, Math. Japonica 28 (1983), no. 5, 583-593.
- Y. Hattori, On special metrics characterizing topological properties, Fund. Math. 126 (1986), no. 2, 133-145.
- [5] Y. Hattori, K-approximations and strongly countable-dimensional spaces, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 7, 115-117.
- [6] M. Matsumoto, A characterization of ω₁-strongly countable-dimensional matrizable spaces, Sci. Math. Jpn. 66 (2007), no. 3, 335-343.
- [7] J. Nagata, *Topics in dimension theory*, General Topology and its Relations to Modern Analysis and Algebra (Proc. Fifth Prague Topology Symposium 1981), Heldermann Verlag, Berlin (1982), 497-507.
- [8] Z. Shmuely, On strongly countable-dimensional sets, Duke Math. J. 38 (1971), 169-173.

Communicated by Yasunao Hattori

Masahiro Matsumoto Mathematics and Statistics, Division of Premedical Sciences, Premedical Sciences, Dokkyo Medical University, Kitakobayashi 880, Mibu, Tochigi, 321-0293, Japan e-mail: m-masa@dokkyomed.ac.jp

444