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Abstract. We give a characterization of wi-strongly countable-dimensional metriz-
able spaces in terms of K-approximations. A characterization of locally finite-dimensional
metrizable spaces is also obtained.

1 Introduction The purpose of this paper is to characterize a class of wp-strongly
countable-dimensional metrizable spaces in terms of K-approximations. A concept of a
K-approximation is due to Dydak-Mishra-Shukla.

Definition 1.1. (Dydak-Mishra-Shukla [1; Definition of K-approximations 1.1]) Let X be a
normal space, let K be a metric simplicial complex (i.e., a simplicial complex equipped with
the metric topology) and let f : X — K be a continuous mapping. A continuous mapping
g: X — K is a K-approximation of f provided for each simplex A of K and each x € X
f(x) € A implies g(z) € A. ¢ is an n-dimensional (respectively, finite-dimensional) K-
approximation of f if it is a K-approzimation and g(X) ¢ K™ (respectively, g(X) c K™
for some m).

Dydak-Mishra-Shukla gave a characterization of n-dimensional spaces in terms of K-
approximations. If every finite open cover of a normal space X has a finite open refinement
of order < n + 1, then X has covering dimension < n, dim X < n.

Theorem 1.2. (Dydak-Mishra-Shukla [1; Theorem 2.2]) Let n be an integer. For a para-
compact space X the following conditions are equivalent:

(a) dim X < n.

(b) For every metric simplicial complex K and every continuous mapping f : X — K
there is an n-dimensional K -approzimation g of f.

(¢) For every metric simplicial complex K and every continuous mapping f : X — K
there is an n-dimensional K -approzimation g of f such that g|f = (K™) = f|f~1(K ™).

Also, Dydak-Mishra-Shukla characterized finitistic-dimensional spaces. A normal space
X is finitistic if every open cover of X has an open refinement of finite order.

Theorem 1.3. (Dydak-Mishra-Shukla [1; Theorem 2.1]) For a paracompact space X the
following conditions are equivalent:

(a) X is finitistic.

(b) For every metric simplicial complex K and every continuous mapping f : X — K
there is a finite-dimensional K -approximation g of f.

(¢) For every integer m > —1, every metric simplicial complex K and every continu-
ous mapping [ : X — K there is a finite-dimensional K-approzimation g of f such that
gl (K ™) = 177 (K ),
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In [5], Y. Hattori extended Theorem 1.2 to strong large transfinite dimensional spaces.
A normal space X is said to have strong large transfinite dimension if X has both large
transfinite dimension and strong small transfinite dimension (see Definition 2.3). For a
space X we denote D(X) = {D | D is a closed discrete subset of X}.

Theorem 1.4. (Y. Hattori [5; Theorem]) For a metrizable space X the following condi-
tions are equivalent:

(a) X has a strong large transfinite dimension.

(b) There is a function ¢ : D(X) — w such that for every metric simplicial complex K
and every continuous mapping f : X — K there is a K-approximation g of f such that
g(D) ¢ K&¥WP)) for each D € D(X).

(¢) For every integer m > —1, there is a function v : D(X) — w such that for every
metric simplicial complex K and every continuous mapping f : X — K there is a finite-
dimensional K -approzimation g of f such that g(D) ¢ K®P) for each D € D(X) and

glf ~HE ™) = fIfHE™).

A normal space X is strongly countable-dimensional if X can be represented as a
countable union of closed finite-dimensional subspaces.

Theorem 1.5. (Y. Hattori [5; Corollary]) For a paracompact space X the following con-
ditions are equivalent:

(a) X is a strongly countable-dimensional space.

(b) There is a function ¢ : X — w such that for every metric simplicial compler K
and every continuous mapping f : X — K there is a K-approximation g of f such that
g(x) € K@) for each xz € X.

(¢c) For every integer m > —1, there is a function ¥ : X — w such that for every metric

simplicial complex K and every continuous mapping f : X — K there is a K-approzimation
g of [ such that g(z) € KW@ for each x € X and g|f~ (K™) = f|f~(K™).

2 Characterizations  In this section, we give a characterization of w;-strongly countable-
dimensional metrizable spaces in terms of K-approximations. A characterization of locally
finite-dimensional metrizable spaces is also obtained.

A notion of a locally finite-dimensional space is well known (cf. [2]).

Definition 2.1. A metrizable space X is locally finite-dimensional if for every point
x € X there exists an open subspace U of X such that x € U and dim U < oo.

The first infinite ordinal number is denoted by w and wy is the first uncountable ordinal
number. Z. Shmuely introduced and studied wy-strongly countable-dimensional spaces ([8]).

Definition 2.2. A metrizable space X is called an wi-strongly countable-dimensional
space if X = J{P: | 0 <& <&}, & < wi, where P is an open subset of X — J{P, | 0 <
n < &} and dim Pg < oo.

For a metrizable space X and a non-negative integer n, we put
P, (X)= U{U | U is an open subspace of X and dimU < n}.
We notice that for each ordinal number «, we can put o = A(a) + n(«), where A(«) is

a limit ordinal number or 0 and n(«) is a non-negative integer. Strong small transfinite
dimension is studied by Y. Hattori (cf. [3]).
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Definition 2.3. Let X be a metrizable space and « either an ordinal number > 0 or the
integer —1. Then strong small transfinite dimension sind of X is defined as follows:

(1) sind X = —1 if and only if X = 0.

(2) sind X < «vif X is expressed in the form X = [J{P: | £ < a}, where Pz = P ¢)(X —
ULP, [ 1 < A&)})-

Furthermore, if sind X is defined, we say that X has strong small trans finite dimension.

Clearly, a metrizable space X is locally finite-dimensional if and only if sind X < w (cf.
[2; Proposition 5.5.3]). And X is w;-strongly countable-dimensional if and only if there is
a & < wi such that sind X < &.

Let X be a metrizable space, let & be an ordinal number and let F = {X3 | 0 < 5 < a}
be a family of subsets of X. We say that F is a closed a-sequence in X if

(f-1) Xp is closed in X for 5 < a,

(f-2) Xo = X,

(f—3) Xﬁ D) Xﬁ/ for g < 5, <a,

(f-4) Xg={Xp | 8/ < B} if B is a limit.

The power set of X shall be denoted by P(X).

Let N : X — P(X) be a function and let F = {Xj3 | 0 < 8 < a} be a closed a-sequence
in X. We say that N is an F-neighborhood function provided that N(z) is an open
neighborhood of = in Xpy(,) for each x € X, where 3(z) = max{3 | x € X3, 0 < 3 < a}.

Remark 2.4. ([6; Remark 2.5]) Let {X3 | 0 < 8 < a} be a closed a-sequence in X. Then
we shall show that for every point z of X, there is a maximum element 5(z) of {8 | z € Xz}
Indeed, if x € X (o), then B(z) = max{3 | € X3, Aa) < 8 < a}. Now, we suppose that
r & X)\(a), there is a minimum element Gy > 0 of {3 | x ¢ X}. Assume that 3y is limit.
By the condition (f-4), x € (\{Xs | 8 < o} = Xp,. This contradicts the definition of Sy.
Therefore (y is not limit and hence (z) = Gy — 1.

Theorem 2.8 is a main theorem. Thus we characterize the class of wi-strongly countable-
dimensional metrizable spaces in terms of K-approximations. To prove this theorem, we
need Theorem 2.5.

Theorem 2.5. Let a be an ordinal number with o < w1 and let n be a non-negative integer.
The following conditions are equivalent for a metrizable space X :

(a) sind X < wa +n.

(b) There are a closed a-sequence F = {Xg | 0 < 8 < a} in X, an F-neighborhood
function N : X — P(X) and a function ¢ : X — w salisfing the following conditions:
Xo =0ifn=0, o(Xo) =n—1, and for every metric simplicial complez K and every
continuous mapping f : X — K there is a K-approximation g of f such that g(N(z)) C
K©®) for each z € X.

(¢) There are a closed a-sequence F = {Xg | 0 < 8 < a} in X and an F-neighborhood
function N : X — P(X), and for every integer m > —1 there is a function ¥ : X — w
satisfing the following conditions: Xo = 0 if n =0, (X)) = n — 1, and for every metric
simplicial complex K and every continuous mapping f : X — K there is a K-approzimation
g of f such that g(N(z)) € K@) for each v € X and g|f~ (K™) = f|f~1(K™).

To prove this theorem, we need the following lemmas. Essentially, the following lemma
is the same as [4; Lemma 1.5]. By a minor modification in the proof of [4; Lemma 1.5], we
obtain the following lemma.



440 M. MATSUMOTO

Lemma 2.6. ([4; Lemma 1.5], [7; Lemma 1]) Let n be a non-negative integer and let
{Fm |m =0, 1,...} be a closed cover of a metrizable space X such that dim F,, < (n—1)4m,
F,, C Frt1 form =0, 1,.... Then for every open cover U of X, there are a sequence Vi,
Vs, ... of discrete families of open subsets of X and an open cover W of X which satisfy
the following conditions:

(1) U{Vx | k € N} is a cover of X.

(2) U{Vx | k € N} refines U.

(3) If W € W satisfies W N Fy,, # 0, then W meets at most one member of Vi for k <
(n4+0)+(n+1)+...4(n+m) and meets no member of Vy, for k > (n+0)+(n+1)+...4+(n+m).

Lemma 2.7. ([1; Corollary 1.7]) Let f : X — K be a map from a normal space X to
a metric simplicial complex K so that f(A) C K™ for some subset A of X. There is a
K-approzimation g of f so that g|U is an n-dimensional K -approzimation of f|U for some
open neighborhood U of A in X and g|A = f|A.

Proof of Theorem 2.5. (a) = (b) : Let sindX < wa 4+ n. We use the constraction in [6;
Theorem 2.4]. We put

Y, =X-U{P: | (<} for y<wa+n
and

Xg=Y,3 for B<a.

Clearly, F = {X3 | 0 < 8 < a} is a closed a-sequence in X satisfing X, = 0 if n = 0.

Notice that P g1, is an open subset of Xg such that Pogim C Pgq(ms1) for m =
0,1,.... Also P,q4n—1) is a closed subset of X. Hence for each 8 < « there is a family
{Wep+m | m =0, 1,...} of open subsets of X3 such that

(1) WWB-O—m - Pw5+m’
(2) Wptrm C Wegtimt1)
(3) U;.S:O Wwﬁ+m = Uz:() Pwﬁ+m'

Since {f | 0 < B < a} is countable, there is a mapping h from w onto {5 | 0 < 5 < a}.
For each m = 0,1, ..., we put

VO = Pwa+(n—l)7
Vi= Pwa+(n—1) U th(1)+(n—1)+la
Vo = Pw(x+(n—1) U th(1)+(n—1)+2 U th(2)+(n—1)+27

Vin = Pwa+(7z—1) U th(l)-i—(n—l)-‘rm U th(Q)-‘r(n—l)-i-nL u..uJ th(’rrL)+(n—1)+7n7

Then Vp, Vi, ... are subsets of X satisfing the following conditions:
(4) Vin C Vi1

(5) dimV,, < (n —1) +m.

(6) X =Up=o Vin-

Let z € X. Put ng = min{m | x € V,,,}.

Clearly, if ng = 0 then © € Vo = P o4 (n—1) C Xao- Now we shall show that if ng > 0,
then * € W, gu)+(m—1)4n, C Xp(z)- By the definition of ng, * € Vi, = Poagmn-1) U
Wen(1)+(n=1)+n0 YUWun(@)+(n—1)4n0 Y--UWeh(no)+(n—1)4no- Since x & Pyaq(n_1) by no > 0,
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there is a natural number ¢ such that © € Wyn(i)4(n—1)4n,- Hence x € W)+ (n—1)4n, C
Pwh(i)+(n—1)+no - Xh(i) — Xh(i)+1~ Also since ﬂ(x) = rnax{ﬂ | x € X@} <a,r € Xﬁ(z) —
X3(z)+1- Hence h(i) = B(x) and hence x € W g(2)4(n—1)4n0 C Xp(2)-
We put
P, ifng=20
N(z) = wa+(n—1) 0 0
( ) { Wwﬁ(m)-&-(n—l)-{-nm if ng > 0.
Since N(z) is an open neighborhood of z in Xg(,), N : X — P(X) is an F-neighborhood
function.
Put p(z) = (n+0)+(n+1)+ ...+ (n+mno) — 1. Then p(X,) =n—1.

The latter half of the proof is similar to the proof of [5; Theorem]. Let K be a metric
simplicial complex and let f : X — K be a continuous mapping. By Lemma 2.6, there are
a sequence Uy, Us, ... of discrete families of open subsets of X and an open cover W of X
which satisfy the following conditions:

(7) Ug—; U is a cover of X.
(8) U, Uy refines {f~1(St(v, K)) | v e KO},
)

(9) If W € W satisfies W N'V,,, # 0, then W meets at most one member of U, for k <
(n40)+(n+1)+...4(n+m) and meets no member of Uy, for k > (n+0)+(n+1)+...4+(n+m).

Then U = |Jg—, U is a locally finite open cover of X by (7) and (9). For each U € U
there is v(U) € K© such that U C f~(St(v(U), K)) by (8). For each v € K© we put
Q,=U{U cU |v(U)=2},and Q = {Q, | v € KD}, Then Q is a locally finite open cover
of X such that Q, C f~(St(v, K)) for each v € K©. Let {s, | v € K} be a partition
of unity subordinated to Q. We define g : X — K as g(x) = >, cg© ko(z)v. Then g is a
K-approximation of f.

Now, let z € X. Notice that N(z) C Vyy C Vpy. By (9), ord, Q < ord, U < ¢(x) + 1
for each y € N(x). Hence g(y) € K®#®)) for each y € N(z) and hence g(N(z)) C K#®),

(b) = (a) : We use the proof of [6; Theorem 2.4]. We shall show that for every 8 < «

(10) X — | J{Pe | ¢ <wp} C Xp.

The validity of (10) is clear for 5 = 0. To prove (10) by transfinite induction we assume
(10) for v < B. Let « ¢ X 3. Notice that 5(z) < S.

If € U{F; | £ <wB(x)}, then z € U{F; | £ <wp} by B(z) < p.

We shall also show that if € X — | J{P: | £ <wfB(x)}, then x € [J{P: | £ < wf}. Since
N(z) is an open neighborhood of = in Xg(,), by the induction hypothesis, N(x) N (X —
(U{Pe | € <wf(z)}) is an open neighborhood of z in X — ([ J{Pe | £ < wfB(z)}. There is an
open neighborhood V(z) of x in X — [J{F¢ | £ <wpf(x)} such that

V(z) € N@)n (X = J{Pe | € <wpla)}).

Let U be a finite open cover of W Given U € U, choose an open subset U of X such
that UNV(z) =U. Pt U = {U | U € U} U {X — V(z)}. We index a covering U as
U= {U, | ve S} We use the proof of [1; Theorem 2.1]. Choose a partition of unity
{an | v € S} of X with a;1(0,1] C U, for all v € S and notice that f(y) = 3, cgx(y)v
defines amap f : X — K, where K is the full complex with S as its set of vertices. Then, by
(b), there is a K-approximation g of f such that g(N(y)) ¢ K#®) for each y € X. Notice
that g~ 1(St(v, K)) C U, for all v € S and V = {g~(St(v, K)) | v € S} is an open cover of
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X. In particular, g(V(z)) C g(N(x)) € K®@), Then V = {VNV(z) | U € V} is a finite
open cover of V(x) such that V is a refinement of ¢/ and sup{ord,V |y € V(z)} < ¢(x) +1.
Hence

(11) dimV(z) <dimV(z) <

~—

().
We use the proof of [6; Theorem 2.4].

2 € V(2) C Pyay(X — | J{Pe | £ <wB(@)}) = Po(a)o(e)

CJPe 1€ <w(B@) + 1)} c | J{Pe | € <wpl.

Thus, (10) holds.
In particular,

fU{Pg | ¢ <wa} C X,.

We use the proof of [6; Theorem 2.4]. We shall show that
(13) X_U{Pf | € <wa} C U{Pf | wa < € <wa+n}.

If n =0 then X, =0, and hence X — |J{P¢ | £ <wa} =0 by (12).

Assume that n > 0. Let z € X — [ J{P: | £ < wa}. Since x € X, by (12), 8(x) = .
Hence N(z) is an open neighborhood of  in X,,. By (12), N(z) N (X —U{P: | £ < wa}) is
an open neighborhood of z in X — [J{P | £ < wa}. There is an open neighborhood V()
of z in X — J{P: | £ < wa} such that

V(@) € N(@) 0 (X = [ J{Pe | € <wa)).

By the proof of (11), dim V' (z) < dim V' (z) < ¢(x). Furthermore ¢(z) =n —1 by z € X,.
Hence,

x € V( ) CcP (x) X U{Pg | &< sz}) wa+ga(3c)

CU{Pg\wa<§<wa+ga }CU{P§|wa<§<wa+n}

Thus, (13) holds.
Therefore X = [J{P: | 0 <{ < wa + n} and hence sind X < wa + n.

(b) = (c) : The proof is similar to the proof of [5; Theorem|. For completeness, we
give the proof. Let m > —1. In addition, let ¢ : X — w be as in (b). We put ¢(z) =
max{m, p(x)} for each z € X. Let K be a metric simplicial complex and let f: X — K
be a continuous mapping. By Lemma 2.7, there are an open subset U of X and a K-
approximation g; of f such that f~1(K ) c U, gi|f~*(K™) = f|f~"(K™)) and ¢, |U is
an m-dimensional K-approximation of f|U. Then, by (b), there is a K-approximation go of
g1 such that g2(N(x)) € K®®) for each z € X. Let x : X — [0, 1] be a continuous mapping
such that x(f~(K(™)) = 1 and k(X —U) = 0. We define g(x) = x(z)g1(x)+(1—k(z))ga ()
for each 2 € X. Then g is a K-approximation of f and g(N(z)) ¢ K@) for each z € X.

c) = (b) is obvious. O
(c) = (b)

We obtain the Main Theorem 2.8 and Theorem 2.9.
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Theorem 2.8. The following conditions are equivalent for a metrizable space X :

(a) X is an wy-strongly countable-dimensional space.

(b) There are an ordinal number a < wy, a closed a-sequence F = {Xg | 0 < B < a}
in X, an F-neighborhood function N : X — P(X) and a function ¢ : X — w satisfing the
following condition: For every metric simplicial complex K and every continuous mapping
f: X — K there is a K-approzimation g of f such that g(N(z)) € K%“®) for each x € X.

(¢) There are an ordinal number a < w1, @ closed a-sequence F = {X3 | 0 < 5 < a} in
X and an F-neighborhood function N : X — P(X), and for every integer m > —1 there is
a function ¥ : X — w satisfing the following condition: For every metric simplicial complex
K and every continuous mapping f : X — K there is a K-approximation g of f such that
g(N(z)) € KW@ for each x € X and g|f~ (K™) = f|f~H(K™).

Proof. (b) = (a) : Refer to the proof of [6; Theorem 2.9]. By the proof of (13) of
Theorem 2.5, X — [ J{P: | £ <wa} C | J{P: | wa < & < wa +w}. Hence sind X < wa + w,
and hence X is an wi-strongly countable-dimensional space.

The implications (a) = (b), (b) = (c) and (c¢) = (b) are obvious by proofs of Theorem
2.5 and [5; Theorem). O

Notice that if N : X — P(X) is an {X }-neighborhood function then N(x) is an open
neighborhood of z in X for each z € X.

Theorem 2.9. The following conditions are equivalent for a metrizable space X :

(a) X is a locally finite-dimensional space.

(b) There are an {X }-neighborhood function N : X — P(X) and a function ¢ : X — w
satisfing the following condition: For every metric simplicial complex K and every contin-
uous mapping f : X — K there is a K-approzimation g of f such that g(N(z)) ¢ K#®)
for each z € X.

(¢) There is an {X}-neighborhood function N : X — P(X), and for every integer
m > —1 there is a function ¢ : X — w satisfing the following condition: For every metric
simplicial complex K and every continuous mapping f : X — K there is a K-approzimation
g of f such that g(N(z)) € K@) for each x € X and g|f~(K™) = f|f~1(K™).
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