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Abstract. We give a characterization of ω1-strongly countable-dimensional metriz-
able spaces in terms of K-approximations. A characterization of locally finite-dimensional
metrizable spaces is also obtained.

1 Introduction The purpose of this paper is to characterize a class of ω1-strongly
countable-dimensional metrizable spaces in terms of K-approximations. A concept of a
K-approximation is due to Dydak-Mishra-Shukla.

Definition 1.1. (Dydak-Mishra-Shukla [1; Definition of K-approximations 1.1]) Let X be a
normal space, let K be a metric simplicial complex (i.e., a simplicial complex equipped with
the metric topology) and let f : X → K be a continuous mapping. A continuous mapping
g : X → K is a K-approximation of f provided for each simplex ∆ of K and each x ∈ X,
f(x) ∈ ∆ implies g(x) ∈ ∆. g is an n-dimensional (respectively, finite-dimensional) K-
approximation of f if it is a K-approximation and g(X) ⊂ K(n) (respectively, g(X) ⊂ K(m)

for some m).

Dydak-Mishra-Shukla gave a characterization of n-dimensional spaces in terms of K-
approximations. If every finite open cover of a normal space X has a finite open refinement
of order ≤ n + 1, then X has covering dimension ≤ n, dim X ≤ n.

Theorem 1.2. (Dydak-Mishra-Shukla [1; Theorem 2.2]) Let n be an integer. For a para-
compact space X the following conditions are equivalent:

(a) dim X ≤ n.
(b) For every metric simplicial complex K and every continuous mapping f : X → K

there is an n-dimensional K-approximation g of f .
(c) For every metric simplicial complex K and every continuous mapping f : X → K

there is an n-dimensional K-approximation g of f such that g|f−1(K(n)) = f |f−1(K(n)).

Also, Dydak-Mishra-Shukla characterized finitistic-dimensional spaces. A normal space
X is finitistic if every open cover of X has an open refinement of finite order.

Theorem 1.3. (Dydak-Mishra-Shukla [1; Theorem 2.1]) For a paracompact space X the
following conditions are equivalent:

(a) X is finitistic.
(b) For every metric simplicial complex K and every continuous mapping f : X → K

there is a finite-dimensional K-approximation g of f .
(c) For every integer m ≥ −1, every metric simplicial complex K and every continu-

ous mapping f : X → K there is a finite-dimensional K-approximation g of f such that
g|f−1(K(m)) = f |f−1(K(m)).
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In [5], Y. Hattori extended Theorem 1.2 to strong large transfinite dimensional spaces.
A normal space X is said to have strong large transfinite dimension if X has both large
transfinite dimension and strong small transfinite dimension (see Definition 2.3). For a
space X we denote D(X) = {D | D is a closed discrete subset of X}.

Theorem 1.4. (Y. Hattori [5; Theorem]) For a metrizable space X the following condi-
tions are equivalent:

(a) X has a strong large transfinite dimension.
(b) There is a function ϕ : D(X) → ω such that for every metric simplicial complex K

and every continuous mapping f : X → K there is a K-approximation g of f such that
g(D) ⊂ K(ϕ(D)) for each D ∈ D(X).

(c) For every integer m ≥ −1, there is a function ψ : D(X) → ω such that for every
metric simplicial complex K and every continuous mapping f : X → K there is a finite-
dimensional K-approximation g of f such that g(D) ⊂ K(ψ(D)) for each D ∈ D(X) and
g|f−1(K(m)) = f |f−1(K(m)).

A normal space X is strongly countable-dimensional if X can be represented as a
countable union of closed finite-dimensional subspaces.

Theorem 1.5. (Y. Hattori [5; Corollary]) For a paracompact space X the following con-
ditions are equivalent:

(a) X is a strongly countable-dimensional space.
(b) There is a function ϕ : X → ω such that for every metric simplicial complex K

and every continuous mapping f : X → K there is a K-approximation g of f such that
g(x) ∈ K(ϕ(x)) for each x ∈ X.

(c) For every integer m ≥ −1, there is a function ψ : X → ω such that for every metric
simplicial complex K and every continuous mapping f : X → K there is a K-approximation
g of f such that g(x) ∈ K(ψ(x)) for each x ∈ X and g|f−1(K(m)) = f |f−1(K(m)).

2 Characterizations In this section, we give a characterization of ω1-strongly countable-
dimensional metrizable spaces in terms of K-approximations. A characterization of locally
finite-dimensional metrizable spaces is also obtained.

A notion of a locally finite-dimensional space is well known (cf. [2]).

Definition 2.1. A metrizable space X is locally finite-dimensional if for every point
x ∈ X there exists an open subspace U of X such that x ∈ U and dimU < ∞.

The first infinite ordinal number is denoted by ω and ω1 is the first uncountable ordinal
number. Z. Shmuely introduced and studied ω1-strongly countable-dimensional spaces ([8]).

Definition 2.2. A metrizable space X is called an ω1-strongly countable-dimensional
space if X =

∪
{Pξ | 0 ≤ ξ < ξ0}, ξ0 < ω1, where Pξ is an open subset of X −

∪
{Pη | 0 ≤

η < ξ} and dimPξ < ∞.

For a metrizable space X and a non-negative integer n, we put

Pn(X) =
∪

{U | U is an open subspace of X and dimU ≤ n}.

We notice that for each ordinal number α, we can put α = λ(α) + n(α), where λ(α) is
a limit ordinal number or 0 and n(α) is a non-negative integer. Strong small transfinite
dimension is studied by Y. Hattori (cf. [3]).
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Definition 2.3. Let X be a metrizable space and α either an ordinal number ≥ 0 or the
integer −1. Then strong small transfinite dimension sind of X is defined as follows:

(1) sindX = −1 if and only if X = ∅.
(2) sindX ≤ α if X is expressed in the form X =

∪
{Pξ | ξ < α}, where Pξ = Pn(ξ)(X −∪

{Pη | η < λ(ξ)}).
Furthermore, if sindX is defined, we say that X has strong small transfinite dimension.

Clearly, a metrizable space X is locally finite-dimensional if and only if sindX ≤ ω (cf.
[2; Proposition 5.5.3]). And X is ω1-strongly countable-dimensional if and only if there is
a ξ0 < ω1 such that sindX ≤ ξ0.

Let X be a metrizable space, let α be an ordinal number and let F = {Xβ | 0 ≤ β ≤ α}
be a family of subsets of X. We say that F is a closed α-sequence in X if

(f-1) Xβ is closed in X for β ≤ α,
(f-2) X0 = X,
(f-3) Xβ ⊃ Xβ′ for β ≤ β′ ≤ α,
(f-4) Xβ =

∩
{Xβ′ | β′ < β} if β is a limit.

The power set of X shall be denoted by P(X).
Let N : X → P(X) be a function and let F = {Xβ | 0 ≤ β ≤ α} be a closed α-sequence

in X. We say that N is an F-neighborhood function provided that N(x) is an open
neighborhood of x in Xβ(x) for each x ∈ X, where β(x) = max{β | x ∈ Xβ , 0 ≤ β ≤ α}.

Remark 2.4. ([6; Remark 2.5]) Let {Xβ | 0 ≤ β ≤ α} be a closed α-sequence in X. Then
we shall show that for every point x of X, there is a maximum element β(x) of {β | x ∈ Xβ}.
Indeed, if x ∈ Xλ(α), then β(x) = max{β | x ∈ Xβ , λ(α) ≤ β ≤ α}. Now, we suppose that
x /∈ Xλ(α), there is a minimum element β0 > 0 of {β | x /∈ Xβ}. Assume that β0 is limit.
By the condition (f-4), x ∈

∩
{Xβ | β < β0} = Xβ0 . This contradicts the definition of β0.

Therefore β0 is not limit and hence β(x) = β0 − 1.

Theorem 2.8 is a main theorem. Thus we characterize the class of ω1-strongly countable-
dimensional metrizable spaces in terms of K-approximations. To prove this theorem, we
need Theorem 2.5.

Theorem 2.5. Let α be an ordinal number with α < ω1 and let n be a non-negative integer.
The following conditions are equivalent for a metrizable space X:

(a) sindX ≤ ωα + n.

(b) There are a closed α-sequence F = {Xβ | 0 ≤ β ≤ α} in X, an F-neighborhood
function N : X → P(X) and a function ϕ : X → ω satisfing the following conditions:
Xα = ∅ if n = 0, ϕ(Xα) = n − 1, and for every metric simplicial complex K and every
continuous mapping f : X → K there is a K-approximation g of f such that g(N(x)) ⊂
K(ϕ(x)) for each x ∈ X.

(c) There are a closed α-sequence F = {Xβ | 0 ≤ β ≤ α} in X and an F-neighborhood
function N : X → P(X), and for every integer m ≥ −1 there is a function ψ : X → ω
satisfing the following conditions: Xα = ∅ if n = 0, ϕ(Xα) = n − 1, and for every metric
simplicial complex K and every continuous mapping f : X → K there is a K-approximation
g of f such that g(N(x)) ⊂ K(ψ(x)) for each x ∈ X and g|f−1(K(m)) = f |f−1(K(m)).

To prove this theorem, we need the following lemmas. Essentially, the following lemma
is the same as [4; Lemma 1.5]. By a minor modification in the proof of [4; Lemma 1.5], we
obtain the following lemma.
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Lemma 2.6. ([4; Lemma 1.5], [7; Lemma 1]) Let n be a non-negative integer and let
{Fm | m = 0, 1, ...} be a closed cover of a metrizable space X such that dimFm ≤ (n−1)+m,
Fm ⊂ Fm+1 for m = 0, 1, .... Then for every open cover U of X, there are a sequence V1,
V2, ... of discrete families of open subsets of X and an open cover W of X which satisfy
the following conditions:

(1)
∪
{Vk | k ∈ N} is a cover of X.

(2)
∪
{Vk | k ∈ N} refines U .

(3) If W ∈ W satisfies W ∩ Fm 6= ∅, then W meets at most one member of Vk for k ≤
(n+0)+(n+1)+...+(n+m) and meets no member of Vk for k > (n+0)+(n+1)+...+(n+m).

Lemma 2.7. ([1; Corollary 1.7]) Let f : X → K be a map from a normal space X to
a metric simplicial complex K so that f(A) ⊂ K(n) for some subset A of X. There is a
K-approximation g of f so that g|U is an n-dimensional K-approximation of f |U for some
open neighborhood U of A in X and g|A = f |A.

Proof of Theorem 2.5. (a) ⇒ (b) : Let sindX ≤ ωα + n. We use the constraction in [6;
Theorem 2.4]. We put

Yγ = X −
∪
{Pξ | ξ < γ} for γ ≤ ωα + n

and

Xβ = Yωβ for β ≤ α.

Clearly, F = {Xβ | 0 ≤ β ≤ α} is a closed α-sequence in X satisfing Xα = ∅ if n = 0.
Notice that Pωβ+m is an open subset of Xβ such that Pωβ+m ⊂ Pωβ+(m+1) for m =

0, 1, .... Also Pωα+(n−1) is a closed subset of X. Hence for each β ≤ α there is a family
{Wωβ+m | m = 0, 1, ...} of open subsets of Xβ such that

(1) Wωβ+m ⊂ Pωβ+m,

(2) Wωβ+m ⊂ Wωβ+(m+1),

(3)
∪∞

m=0 Wωβ+m =
∪∞

m=0 Pωβ+m.

Since {β | 0 ≤ β < α} is countable, there is a mapping h from ω onto {β | 0 ≤ β < α}.
For each m = 0, 1, ..., we put

V0 = Pωα+(n−1),

V1 = Pωα+(n−1) ∪ Wωh(1)+(n−1)+1,

V2 = Pωα+(n−1) ∪ Wωh(1)+(n−1)+2 ∪ Wωh(2)+(n−1)+2,
...

Vm = Pωα+(n−1) ∪ Wωh(1)+(n−1)+m ∪ Wωh(2)+(n−1)+m ∪ ... ∪ Wωh(m)+(n−1)+m,
...

Then V0, V1, ... are subsets of X satisfing the following conditions:

(4) Vm ⊂ Vm+1.

(5) dim Vm ≤ (n − 1) + m.

(6) X =
∪∞

m=0 Vm.

Let x ∈ X. Put n0 = min{m | x ∈ Vm}.
Clearly, if n0 = 0 then x ∈ V0 = Pωα+(n−1) ⊂ Xα. Now we shall show that if n0 > 0,

then x ∈ Wωβ(x)+(n−1)+n0 ⊂ Xβ(x). By the definition of n0, x ∈ Vn0 = Pωα+(n−1) ∪
Wωh(1)+(n−1)+n0∪Wωh(2)+(n−1)+n0∪...∪Wωh(n0)+(n−1)+n0 . Since x /∈ Pωα+(n−1) by n0 > 0,
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there is a natural number i such that x ∈ Wωh(i)+(n−1)+n0 . Hence x ∈ Wωh(i)+(n−1)+n0 ⊂
Pωh(i)+(n−1)+n0 ⊂ Xh(i) − Xh(i)+1. Also since β(x) = max{β | x ∈ Xβ} < α, x ∈ Xβ(x) −
Xβ(x)+1. Hence h(i) = β(x) and hence x ∈ Wωβ(x)+(n−1)+n0 ⊂ Xβ(x).

We put

N(x) =
{

Pωα+(n−1), if n0 = 0,
Wωβ(x)+(n−1)+n0 , if n0 > 0.

Since N(x) is an open neighborhood of x in Xβ(x), N : X → P(X) is an F-neighborhood
function.

Put ϕ(x) = (n + 0) + (n + 1) + ... + (n + n0) − 1. Then ϕ(Xα) = n − 1.

The latter half of the proof is similar to the proof of [5; Theorem]. Let K be a metric
simplicial complex and let f : X → K be a continuous mapping. By Lemma 2.6, there are
a sequence U1, U2, ... of discrete families of open subsets of X and an open cover W of X
which satisfy the following conditions:

(7)
∪∞

k=1 Uk is a cover of X.

(8)
∪∞

k=1 Uk refines {f−1(St(v,K)) | v ∈ K(0)}.

(9) If W ∈ W satisfies W ∩ Vm 6= ∅, then W meets at most one member of Uk for k ≤
(n+0)+(n+1)+...+(n+m) and meets no member of Uk for k > (n+0)+(n+1)+...+(n+m).

Then U =
∪∞

k=1 Uk is a locally finite open cover of X by (7) and (9). For each U ∈ U
there is v(U) ∈ K(0) such that U ⊂ f−1(St(v(U), K)) by (8). For each v ∈ K(0) we put
Qv =

∪
{U ∈ U | v(U) = v}, and Q = {Qv | v ∈ K(0)}. Then Q is a locally finite open cover

of X such that Qv ⊂ f−1(St(v,K)) for each v ∈ K(0). Let {κv | v ∈ K(0)} be a partition
of unity subordinated to Q. We define g : X → K as g(x) =

∑
v∈K(0) κv(x)v. Then g is a

K-approximation of f .

Now, let x ∈ X. Notice that N(x) ⊂ Vn0 ⊂ Vn0 . By (9), ordy Q ≤ ordy U ≤ ϕ(x) + 1
for each y ∈ N(x). Hence g(y) ∈ K(ϕ(x)) for each y ∈ N(x) and hence g(N(x)) ⊂ K(ϕ(x)).

(b) ⇒ (a) : We use the proof of [6; Theorem 2.4]. We shall show that for every β ≤ α

(10) X −
∪

{Pξ | ξ < ωβ} ⊂ Xβ .

The validity of (10) is clear for β = 0. To prove (10) by transfinite induction we assume
(10) for γ < β. Let x /∈ Xβ . Notice that β(x) < β.

If x ∈
∪
{Pξ | ξ < ωβ(x)}, then x ∈

∪
{Pξ | ξ < ωβ} by β(x) < β.

We shall also show that if x ∈ X −
∪
{Pξ | ξ < ωβ(x)}, then x ∈

∪
{Pξ | ξ < ωβ}. Since

N(x) is an open neighborhood of x in Xβ(x), by the induction hypothesis, N(x) ∩ (X −∪
{Pξ | ξ < ωβ(x)}) is an open neighborhood of x in X −

∪
{Pξ | ξ < ωβ(x)}. There is an

open neighborhood V (x) of x in X −
∪
{Pξ | ξ < ωβ(x)} such that

V (x) ⊂ N(x) ∩ (X −
∪

{Pξ | ξ < ωβ(x)}).

Let U be a finite open cover of V (x). Given U ∈ U , choose an open subset Ũ of X such
that Ũ ∩ V (x) = U . Put Ũ = {Ũ | U ∈ U} ∪ {X − V (x)}. We index a covering Ũ as
Ũ = {Uv | v ∈ S}. We use the proof of [1; Theorem 2.1]. Choose a partition of unity
{αv | v ∈ S} of X with α−1

v (0, 1] ⊂ Uv for all v ∈ S and notice that f(y) =
∑

v∈S αv(y)v
defines a map f : X → K, where K is the full complex with S as its set of vertices. Then, by
(b), there is a K-approximation g of f such that g(N(y)) ⊂ K(ϕ(y)) for each y ∈ X. Notice
that g−1(St(v,K)) ⊂ Uv for all v ∈ S and Ṽ = {g−1(St(v,K)) | v ∈ S} is an open cover of
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X. In particular, g(V (x)) ⊂ g(N(x)) ⊂ K(ϕ(x)). Then V = {Ṽ ∩ V (x) | Ũ ∈ Ṽ} is a finite
open cover of V (x) such that V is a refinement of U and sup{ordyV | y ∈ V (x)} ≤ ϕ(x)+1.
Hence

(11) dimV (x) ≤ dim V (x) ≤ ϕ(x).

We use the proof of [6; Theorem 2.4].

x ∈ V (x) ⊂ Pϕ(x)(X −
∪

{Pξ | ξ < ωβ(x)}) = Pωβ(x)+ϕ(x)

⊂
∪

{Pξ | ξ < ω(β(x) + 1)} ⊂
∪

{Pξ | ξ < ωβ}.

Thus, (10) holds.
In particular,

(12) X −
∪

{Pξ | ξ < ωα} ⊂ Xα.

We use the proof of [6; Theorem 2.4]. We shall show that

(13) X −
∪

{Pξ | ξ < ωα} ⊂
∪

{Pξ | ωα ≤ ξ < ωα + n}.

If n = 0 then Xα = ∅, and hence X −
∪
{Pξ | ξ < ωα} = ∅ by (12).

Assume that n > 0. Let x ∈ X −
∪
{Pξ | ξ < ωα}. Since x ∈ Xα by (12), β(x) = α.

Hence N(x) is an open neighborhood of x in Xα. By (12), N(x)∩ (X −
∪
{Pξ | ξ < ωα}) is

an open neighborhood of x in X −
∪
{Pξ | ξ < ωα}. There is an open neighborhood V (x)

of x in X −
∪
{Pξ | ξ < ωα} such that

V (x) ⊂ N(x) ∩ (X −
∪

{Pξ | ξ < ωα}).

By the proof of (11), dim V (x) ≤ dim V (x) ≤ ϕ(x). Furthermore ϕ(x) = n − 1 by x ∈ Xα.
Hence,

x ∈ V (x) ⊂ Pϕ(x)(X −
∪

{Pξ | ξ < ωα}) = Pωα+ϕ(x)

⊂
∪

{Pξ | ωα ≤ ξ ≤ ωα + ϕ(x)} ⊂
∪

{Pξ | ωα ≤ ξ < ωα + n}.

Thus, (13) holds.
Therefore X =

∪
{Pξ | 0 ≤ ξ < ωα + n} and hence sindX ≤ ωα + n.

(b) ⇒ (c) : The proof is similar to the proof of [5; Theorem]. For completeness, we
give the proof. Let m ≥ −1. In addition, let ϕ : X → ω be as in (b). We put ψ(x) =
max{m,ϕ(x)} for each x ∈ X. Let K be a metric simplicial complex and let f : X → K
be a continuous mapping. By Lemma 2.7, there are an open subset U of X and a K-
approximation g1 of f such that f−1(K(m)) ⊂ U , g1|f−1(K(m)) = f |f−1(K(m)) and g1|U is
an m-dimensional K-approximation of f |U . Then, by (b), there is a K-approximation g2 of
g1 such that g2(N(x)) ⊂ K(ϕ(x)) for each x ∈ X. Let κ : X → [0, 1] be a continuous mapping
such that κ(f−1(K(m))) = 1 and κ(X−U) = 0. We define g(x) = κ(x)g1(x)+(1−κ(x))g2(x)
for each x ∈ X. Then g is a K-approximation of f and g(N(x)) ⊂ K(ψ(x)) for each x ∈ X.

(c) ⇒ (b) is obvious. ¤

We obtain the Main Theorem 2.8 and Theorem 2.9.
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Theorem 2.8. The following conditions are equivalent for a metrizable space X:
(a) X is an ω1-strongly countable-dimensional space.
(b) There are an ordinal number α < ω1, a closed α-sequence F = {Xβ | 0 ≤ β ≤ α}

in X, an F-neighborhood function N : X → P(X) and a function ϕ : X → ω satisfing the
following condition: For every metric simplicial complex K and every continuous mapping
f : X → K there is a K-approximation g of f such that g(N(x)) ⊂ K(ϕ(x)) for each x ∈ X.

(c) There are an ordinal number α < ω1, a closed α-sequence F = {Xβ | 0 ≤ β ≤ α} in
X and an F-neighborhood function N : X → P(X), and for every integer m ≥ −1 there is
a function ψ : X → ω satisfing the following condition: For every metric simplicial complex
K and every continuous mapping f : X → K there is a K-approximation g of f such that
g(N(x)) ⊂ K(ψ(x)) for each x ∈ X and g|f−1(K(m)) = f |f−1(K(m)).

Proof. (b) ⇒ (a) : Refer to the proof of [6; Theorem 2.9]. By the proof of (13) of
Theorem 2.5, X −

∪
{Pξ | ξ < ωα} ⊂

∪
{Pξ | ωα ≤ ξ < ωα + ω}. Hence sind X ≤ ωα + ω,

and hence X is an ω1-strongly countable-dimensional space.
The implications (a) ⇒ (b), (b) ⇒ (c) and (c) ⇒ (b) are obvious by proofs of Theorem

2.5 and [5; Theorem]. ¤

Notice that if N : X → P(X) is an {X}-neighborhood function then N(x) is an open
neighborhood of x in X for each x ∈ X.

Theorem 2.9. The following conditions are equivalent for a metrizable space X:
(a) X is a locally finite-dimensional space.
(b) There are an {X}-neighborhood function N : X → P(X) and a function ϕ : X → ω

satisfing the following condition: For every metric simplicial complex K and every contin-
uous mapping f : X → K there is a K-approximation g of f such that g(N(x)) ⊂ K(ϕ(x))

for each x ∈ X.
(c) There is an {X}-neighborhood function N : X → P(X), and for every integer

m ≥ −1 there is a function ψ : X → ω satisfing the following condition: For every metric
simplicial complex K and every continuous mapping f : X → K there is a K-approximation
g of f such that g(N(x)) ⊂ K(ψ(x)) for each x ∈ X and g|f−1(K(m)) = f |f−1(K(m)).
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