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Abstract. In the present paper, the convexity of fuzzy sets is generalized based on
conjunctive aggregation functions, and the degree of the non-convexity of fuzzy sets
is considered as an application of the generalized convexity. Then, the properties of
the generalized convexity of fuzzy sets, and the properties of the degree of the non-
convexity of fuzzy sets with respect to operations are investigated.

1. Introduction. The concept of fuzzy sets has been primarily introduced for represent-
ing sets containing uncertainty or vagueness by Zadeh [7] as fuzzy set theory. Then, fuzzy
set theory has been applied in various areas of decision making theory including economics
and optimization, etc., widely. We consider fuzzy sets on Rn, and identify each fuzzy set
on Rn with its membership function. The convexity of a fuzzy set is defined by the qua-
siconcavity of its membership function. Quasiconcavity of functions is defined using the
minimum operation. Due to the importance in economics and optimization, etc., several
generalizations of quasiconcavity of functions have been introduced and investigated; see [6]
and the references therein. In [3], the quasiconcavity of membership functions is generalized
by allowing arbitrary conjunctive aggregation functions instead of the minimum operation.
In [5], the degree of the non-quasiconcavity of membership functions is proposed as an appli-
cation of the generalized quasiconcavity. Since the convexity of a fuzzy set is defined by the
quasiconcavity of its membership function, the generalized quasiconcavity of membership
functions can be regarded as the generalized convexity of fuzzy sets, and the degree of the
non-quasiconcavity of membership functions can be regarded as the non-convexity of fuzzy
sets.

In the present paper, the properties of the generalized convexity of fuzzy sets, and the
properties of the degree of the non-convexity of fuzzy sets with respect to operations are
investigated.

The remainder of the present paper is organized as follows. In Section 2, some properties
of continuous conjunctive aggregation functions are presented. In Section 3, some properties
of fuzzy sets with respect to operations are presented. In Section 4, some properties of the
generalized convexity of fuzzy sets, and some properties of the degree of the non-convexity
of fuzzy sets with respect to operations are presented. Finally, conclusions are presented in
Section 5.

2. Aggregation functions In this section, the properties of continuous conjunctive
aggregation functions are investigated. Conjunctive aggregation functions are used in order
to generalize the convexity of fuzzy sets. For details of aggregation functions, see [1,6].

For a, b ∈ R ∪ {−∞,∞}, we set [a, b] = {x ∈ R : a ≤ x ≤ b}, [a, b[= {x ∈ R : a ≤ x <
b}, ]a, b] = {x ∈ R : a < x ≤ b}, and ]a, b[= {x ∈ R : a < x < b}.

First, aggregation functions are defined.
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Definition 1. (See [1].) Let G : [0, 1]2 → [0, 1]. The function G is called an aggregation
function if the following two axioms are satisfied: (G1) if xi, yi ∈ [0, 1], xi ≤ yi, i = 1, 2,
then G(x1, x2) ≤ G(y1, y2) (monotonicity), and (G2) G(0, 0) = 0 and G(1, 1) = 1 (boundary
condition).

Next, the definition of a property of aggregation functions is given.

Definition 2. (See [1].) Let G : [0, 1]2 → [0, 1] be an aggregation function. The aggregation
function G is said to be conjunctive if G(x, y) ≤ min{x, y} for any x, y ∈ [0, 1].

Next, the definition of a relationship between two aggregation functions is given.

Definition 3. (See [4].) Let G,G′ : [0, 1]2 → [0, 1] be aggregation functions. G is said
to dominate G′ (G À G′) if G(G′(x1, y1), G′(x2, y2)) ≥ G′(G(x1, x2), G(y1, y2)) for any
xi, yi ∈ [0, 1], i = 1, 2.

The concept of the domination for aggregation functions is closely related to the preser-
vation of T -transitivity in aggregating fuzzy relations, where T is a triangular norm; see
[4].

In order to measure the non-convexity of fuzzy sets in Section 4, we consider continuous
conjunctive aggregation functions G(p) : [0, 1]2 → [0, 1], p ∈ [1,∞[ defined as

G(p)(x, y) = [min{x, y}]p for x, y ∈ [0, 1] (1)

for each p ∈ [1,∞[. The larger p is, the larger the difference between G(p) and min = G(1)

is.
The following proposition shows a property of continuous conjunctive aggregation func-

tion.

Proposition 1. Let G : [0, 1]2 → [0, 1] be a continuous conjunctive aggregation function,
and let A,B ⊂ [0, 1]. Then,

sup
x∈A,y∈B

G(x, y) = G(sup A, supB),

where sup ∅ = 0 for ∅ ⊂ [0, 1].

Proof. If A = ∅ or B = ∅, then

sup
x∈A,y∈B

G(x, y) = 0 = G(supA, supB).

Assume that A 6= ∅ and B 6= ∅. Since G(x, y) ≤ G(supA, supB) for any x ∈ A and any
y ∈ B by the monotonicity of G, we have

sup
x∈A,y∈B

G(x, y) ≤ G(sup A, supB).

Suppose that
sup

x∈A,y∈B
G(x, y) < G(sup A, supB).

We set α = supA and β = supB. Note that α > 0 and β > 0. We set

ε =
G(α, β) − sup

x∈A,y∈B
G(x, y)

2
> 0.
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By the monotonicity of G and the continuity of G at (α, β), there exists δ such that 0 <
δ < min{α, β} and G(α, β)− ε < G(x, y) ≤ G(α, β) for any (x, y) ∈]α− δ, α]×]β − δ, β]. By
the definitions of α and β, there exists (x0, y0) ∈ (]α− δ, α]×]β − δ, β])∩ (A×B). Then, it
follows that

G(x0, y0) ≤ sup
x∈A,y∈B

G(x, y) < G(α, β) − ε < G(x0, y0),

which is a contradiction. 2

The following proposition shows a relationship between min = G(1) and G(p), p ∈ [1,∞[,
where G(p), p ∈ [1,∞[ are the continuous conjunctive aggregation functions defined by (1).

Proposition 2. min = G(1) À G(p) for any p ∈ [1,∞[.

Proof. Let xi, yi ∈ [0, 1], i = 1, 2, and let z be the minimum among xi, yi, i = 1, 2. Then,
we have

min{G(p)(x1, y1), G(p)(x2, y2)} = zp = G(p)(min{x1, x2}, min{y1, y2}).

2

3. Fundamental properties of fuzzy sets In this section, the properties of fuzzy sets
with respect to operations are investigated.

We consider fuzzy sets on Rn, and identify a fuzzy set ã on Rn with its membership
function ã : Rn → [0, 1]. Let F(Rn) be the set of all fuzzy sets on Rn.

For ã ∈ F(Rn) and α ∈]0, 1], the set

[ã]α = {x ∈ Rn : ã(x) ≥ α}

is called the α-level set of ã.
For a crisp set S ⊂ Rn, the function cS : Rn → {0, 1} defined as

cS(x) =
{

1 if x ∈ S,
0 if x /∈ S

for each x ∈ Rn is called the indicator function of S. Whenever we consider cS as a fuzzy
set, cS : Rn → {0, 1} is interpreted as cS : Rn → [0, 1].

A fuzzy set ã ∈ F(Rn) can be represented as

ã = sup
α∈]0,1]

αc[ea]α , (2)

which is well-known as the decomposition theorem; see [2].
A fuzzy set ã ∈ F(Rn) is said to be convex if ã(λx+(1−λ)y) ≥ min{ã(x), ã(y)} for any

x, y ∈ Rn and any λ ∈]0, 1[. That is, ã ∈ F(Rn) is said to be convex if ã is a quasiconcave
function.

We set

S(Rn) = {{Sα}α∈]0,1] : Sα ⊂ Rn, α ∈]0, 1], and Sβ ⊃ Sγ for β, γ ∈]0, 1] with β < γ},

and define M : S(Rn) → F(Rn) as

M({Sα}α∈]0,1]) = sup
α∈]0,1]

αcSα
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for each {Sα}α∈]0,1] ∈ S(Rn). For {Sα}α∈]0,1] ∈ S(Rn) and x ∈ Rn, it follows that

M({Sα}α∈]0,1])(x) = sup
α∈]0,1]

αcSα(x) = sup{α ∈]0, 1] : x ∈ Sα},

where sup ∅ = 0 for ∅ ⊂]0, 1]. The decomposition theorem (2) can be represented as

ã = M({[ã]α}α∈]0,1])

for ã ∈ F(Rn).
When ã = M({Sα}α∈]0,1]) for ã ∈ F(Rn) and {Sα}α∈]0,1] ∈ S(Rn), ã is called the fuzzy

set generated by {Sα}α∈]0,1], and {Sα}α∈]0,1] is called the generator of ã.
The following proposition shows a relationship between the inclusion relation of two

generators of two fuzzy sets and the inclusion relation of the two fuzzy sets.

Proposition 3. Let {Sα}α∈]0,1], {Tα}α∈]0,1] ∈ S(Rn). If Sα ⊂ Tα for any α ∈]0, 1], then
M({Sα}α∈]0,1]) ≤ M({Tα}α∈]0,1]).

Proof. For any x ∈ Rn, it follows that

{α ∈]0, 1] : x ∈ Sα} ⊂ {α ∈]0, 1] : x ∈ Tα},

and that
M({Sα}α∈]0,1])(x) = sup{α ∈]0, 1] : x ∈ Sα}

≤ sup{α ∈]0, 1] : x ∈ Tα} = M({Tα}α∈]0,1])(x).
2

The following proposition shows a relationship between a generator of a fuzzy set and
level sets of the fuzzy set.

Proposition 4. Let {Sα}α∈]0,1] ∈ S(Rn), and let ã = M({Sα}α∈]0,1]). In addition, let
α ∈]0, 1]. Then,

[ã]α =
∩

β∈]0,α[

Sβ .

Proof. It follows that

x ∈ [ã]α ⇔ ã(x) = sup{β ∈]0, 1] : x ∈ Sβ} ≥ α

⇔ x ∈ Sβ , β ∈]0, α[

⇔ x ∈
∩

β∈]0,α[

Sβ .

2

The following definitions are addition and scalar multiplication on F(Rn) by Zadeh’s
extension principle. See [2] for Zadeh’s extension principle.

Definition 4. For ã, b̃ ∈ F(Rn) and λ ∈ R, we define ã + b̃, λã ∈ F(Rn) as

(ã + b̃)(x) = sup
x=y+z

min
{

ã(y), b̃(z)
}

, (λã)(x) = sup
x=λy

ã(y)

for each x ∈ Rn, respectively.
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The following proposition shows a property of level sets of fuzzy sets with respect to
scalar multiplication.

Proposition 5. Let ã ∈ F(Rn), and let λ ∈ R. In addition, let α ∈]0, 1]. Then,
[λã]α ⊃ λ[ã]α.

Proof. Let x ∈ λ[ã]α. Then, there exists y0 ∈ [ã]α such that x = λy0. Since ã(y0) ≥ α,
it follows that (λã)(x) ≥ ã(y0) ≥ α. Therefore, we have x ∈ [λã]α. 2

The following proposition shows a relationship between scalar multiplication of fuzzy
sets and generators of the fuzzy sets.

Proposition 6. Let {Sα}α∈]0,1] ∈ S(Rn), and let ã = M({Sα}α∈]0,1]). In addition, let
λ ∈ R. Then,

λã = M({λSα}α∈]0,1]) = sup
α∈]0,1]

αcλSα .

Proof. For each α ∈]0, 1], it follows that [ã]α =
∩

β∈]0,α[ Sβ ⊃ Sα from Proposition 4, and

that [λã]α ⊃ λ[ã]α ⊃ λSα from Proposition 5. Thus, it follows that λã ≥ M({λSα}α∈]0,1])
from Proposition 3 and the decomposition theorem (2). Suppose that there exists x0 ∈ Rn

such that (λã)(x0) > M({λSα}α∈]0,1])(x0). We set γ = M({λSα}α∈]0,1])(x0). Then, since
(λã)(x0) = supx0=λy ã(y) > γ, there exists y0 ∈ Rn such that x0 = λy0 and ã(y0) > γ.
We set η = ã(y0) > γ. It follows that y0 ∈ [ã]η =

∩
β∈]0,η[ Sβ from Proposition 4, and that

x0 = λy0 ∈ λSβ for any β ∈]0, η[. Therefore, we have γ = M({λSα}α∈]0,1])(x0) = sup{α ∈
]0, 1] : x0 ∈ λSα} ≥ η > γ, which is a contradiction. 2

The following proposition shows the properties of scalar multiplication of fuzzy sets.

Proposition 7. Let ã ∈ F(Rn), and let λ, µ ∈ R.

(i) (λµ)ã = λ(µã).

(ii) 1ã = ã.

Proof.
(i) From the decomposition theorem (2) and Proposition 6, we have

(λµ)ã = M
(
{(λµ)[ã]α}α∈]0,1]

)
= M

(
{λ(µ[ã]α)}α∈]0,1]

)
= λM

(
{µ[ã]α}α∈]0,1]

)
= λ(µã).

(ii) From the decomposition theorem (2) and Proposition 6, we have

1ã = M
(
{1[ã]α}α∈]0,1]

)
= M

(
{[ã]α}α∈]0,1]

)
= ã.

2

4. Generalized convexity and degree of non-convexity In this section, the properties
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of the generalized convexity of fuzzy sets, and the properties of the degree of the non-
convexity of fuzzy sets with respect to operations are investigated.

The following definition is a generalization of the convexity of fuzzy sets by allowing
arbitrary conjunctive aggregation functions instead of the minimum operation, and is first
proposed in [3] as the generalized quasiconcavity of membership functions. We consider the
generalized quasiconcavity of membership functions as the generalized convexity of fuzzy
sets.

Definition 5. (See [3].) Let G : [0, 1]2 → [0, 1] be a conjunctive aggregation function, and
let ã ∈ F(Rn). The fuzzy set ã is said to be G-convex if

ã(λx + (1 − λ)y) ≥ G(ã(x), ã(y))

for any x, y ∈ Rn and any λ ∈]0, 1[.

For a conjunctive aggregation function G : [0, 1]2 → [0, 1] and ã ∈ F(Rn), if ã is convex,
then ã is G-convex from Definition 5.

The following proposition shows the properties of the G-convexity of fuzzy sets with
respect to operations.

Proposition 8. Let G : [0, 1]2 → [0, 1] be a continuous conjunctive aggregation function,
and let ã, b̃ ∈ F(Rn). In addition, let λ ∈ R.

(i) Assume that min = G(1) À G. If ã and b̃ are G-convex, then ã + b̃ is G-convex.

(ii) If ã is G-convex, then λã is G-convex. When λ 6= 0, if λã is G-convex, then ã is G-
convex.

Proof.
(i) Let x, x′ ∈ Rn, and let µ ∈]0, 1[. Fix any y, z,y′, z′ ∈ Rn such that x = y + z and
x′ = y′ + z′. Since µx + (1 − µ)x′ = (µy + (1 − µ)y′) + (µz + (1 − µ)z′), it follows that

(ã + b̃)(µx + (1 − µ)x′)

≥ min{ã(µy + (1 − µ)y′), b̃(µz + (1 − µ)z′)}
≥ min{G(ã(y), ã(y′)), G(̃b(z), b̃(z′))} (from the G-convexity of ã and b̃)

≥ G(min{ã(y), b̃(z)}, min{ã(y′), b̃(z′)}) (from min = G(1) À G).

By the arbitrariness of y, z, y′, z′, we have

(ã + b̃)(µx + (1 − µ)x′)

≥ sup
x = y + z

x′ = y′ + z′

G(min{ã(y), b̃(z)}, min{ã(y′), b̃(z′)})

= G

(
sup

x=y+z
min{ã(y), b̃(z)}, sup

x′=y′+z′
min{ã(y′), b̃(z′)}

)
(from Proposition 1)

= G((ã + b̃)(x), (ã + b̃)(x′)).

(ii) Assume that ã is G-convex. Let x, x′ ∈ Rn, and let µ ∈]0, 1[. Fix any y, y′ ∈ Rn such
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that x = λy and x′ = λy′. Since µx + (1 − µ)x′ = λ(µy + (1 − µ)y′), it follows that

(λã)(µx + (1 − µ)x′) ≥ ã(µy + (1 − µ)y′) ≥ G(ã(y), ã(y′))

from the G-convexity of ã. By the arbitrariness of y, y′, we have

(λã)(µx + (1 − µ)x′)
≥ sup

x = λy
x′ = λy′

G(ã(y), ã(y′))

= G

(
sup

x=λy
ã(y), sup

x′=λy′
ã(y′)

)
(from Proposition 1)

= G((λã)(x), (λã)(x′)).

The latter assertion follows from the former assertion and Proposition 7. 2

Let G : [0, 1]2 → [0, 1] be a conjunctive aggregation function. Assume that ã ∈ F(Rn)
is G-convex. Then, the larger the difference between G and min = G(1) is, the larger the
allowable non-convexity of ã is.

Now, the degree of the non-convexity of fuzzy sets is defined. The degree of the non-
convexity of fuzzy sets is first proposed in [5] as the degree of the non-quasiconcavity of
membership functions. We consider the degree of the non-quasiconcavity of membership
functions as the degree of the non-convexity of fuzzy sets.

Definition 6. (See [5].) For ã ∈ F(Rn), the value

D(ã) = min{p ∈ [1,∞[: ã is G(p)-convex. } − 1 (3)

is called the degree of the non-convexity of ã, where min ∅ = ∞ for ∅ ⊂ [1,∞[, and G(p), p ∈
[1,∞[ are the continuous conjunctive aggregation functions defined by (1).

In (3), if {p ∈ [1,∞[: ã is G(p)-convex. } 6= ∅, then the minimum is attained; see [5].
The degree of the non-convexity of ã defined by (3) means that ã is convex when D(ã) = 0,
and that the larger D(ã) is, the larger the non-convexity of ã is.

The following proposition shows the properties of the degree of the non-convexity of
fuzzy sets.

Proposition 9. (See [5].) Let ã ∈ F(Rn).

(i) ã is convex if and only if D(ã) = 0.

(ii) ã is not G(p)-convex for any p ∈ [1, D(ã) + 1[.

(iii) ã is G(p)-convex for any p ∈ [D(ã) + 1,∞[.

The following example illustrates the degree of the non-convexity of fuzzy sets.

Example 1. (See [5].) For each α ∈
[
0, 1

2

[
, we define ãα ∈ F(R) as

ãα(x) =



0 if x ∈] −∞, 0] ∪ [6,∞[,
1
2
x if x ∈ [0, 1],

α sin 4xπ + 1
2

if x ∈ [1, 2],
1
2
x − 1

2
if x ∈ [2, 3],

− 1
2
x + 5

2
if x ∈ [3, 4],

α sin 4xπ + 1
2

if x ∈ [4, 5],
− 1

2
x + 3 if x ∈ [5, 6]
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(Figure 1). Then, D(ãα) =
log( 1

2−α)
log( 1

2+α) − 1 (Figure 2).
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Figure 1. ãα(x) (α = 0.25).
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Figure 2. pα =
log( 1

2−α)
log( 1

2+α) − 1, α ∈
[
0, 1

2

[
.

The following proposition shows the properties of the degree of the non-convexity of
fuzzy sets with respect to operations.

Proposition 10. Let ã, b̃ ∈ F(Rn), and let λ ∈ R.

(i) D(ã + b̃) ≤ max{D(ã), D(̃b)}.

(ii) D(λã) ≤ D(ã). When λ 6= 0, D(λã) = D(ã).

Proof.
(i) From Proposition 9 (iii), ã is G(p)-convex for p ∈ [D(ã) + 1,∞[, and b̃ is G(p)-convex for
p ∈ [D(̃b) + 1,∞[. Thus, ã and b̃ are G(p)-convex for p ∈ [max{D(ã) + 1, D(̃b) + 1},∞[.
From Propositions 2 and 8 (i), ã + b̃ is G(p)-convex for p ∈ [max{D(ã) + 1, D(̃b) + 1},∞[.
Therefore, we have

D(ã + b̃) ≤ max{D(ã), D(̃b)}.

(ii) From the former assertion of Proposition 8 (ii), we have

D(λã) ≤ D(ã).

From the latter assertion of Propositions 8 (ii), we have

D(λã) = D(ã).

when λ 6= 0. 2

The following example illustrates the degree of the non-convexity of fuzzy sets with
respect to operations.

Example 2. Consider ãα ∈ F(R) for α ∈
]
0, 1

2

[
defined in Example 1. We set pα =

log( 1
2−α)

log( 1
2+α) − 1. Then, pα > 0 and D(ãα) = pα. We set R̃ = cR ∈ F(R) and 0̃ = c{0} ∈ F(R).

(i) Let ã = ãα, and let b̃ = R̃. Since ã + b̃ = R̃, D(ã) = pα, and D(̃b) = 0, we have

D(ã + b̃) = 0 < pα = max{D(ã), D(̃b)}.

(ii) Let ã = ãα, and let b̃ = 0̃. Since ã + b̃ = ã, D(ã) = pα, and D(̃b) = 0, we have
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D(ã + b̃) = pα = max{D(ã), D(̃b)}.

(iii) Let ã = ãα, and let λ = 0. Since λã = 0̃, D(ã) = pα, and D(λã) = 0, we have

D(λã) = 0 < pα = D(ã).

5. Conclusions We dealt with the G-convexity of fuzzy sets, which was a generalization

of the convexity by allowing arbitrary conjunctive aggregation functions instead of the
minimum operation. Then, the properties of the G-convexity of fuzzy sets with respect to
operations were investigated. The degree of the non-convexity of fuzzy sets was considered
as an application of the G-convexity. Then, the properties of the degree of the non-convexity
of fuzzy sets with respect to operations were investigated.
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