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NOTES ON SOME GENERALIZED CONVEX SETS
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Abstract. This paper discusses some properties of convex subsets of affine spaces
over the principal ideal domains Z[1/p], where p is a prime number. In particular, it
is shown that such convex sets are equivalent to certain algebras with finitely many
operations, and a minimal number of generators for the segments of the line Z[1/p] is
provided. In the case of p = 3, relations between convex sets and a certain groupoid
variety are discussed.

1 Introduction. It is well known that affine spaces over a subring R of the field R of real
numbers (or affine R-spaces) may be described as abstract algebras (A,P,R) with infinitely
many binary operations

xyr = x(1 − r) + yr

indexed by the elements of R, and the ternary Mal’cev operation

xyzP = x − y + z.

For a subfield F of R, the restriction of the set of basic operations to the operations indexed
by the open unit interval Io(F ) = {x ∈ F | 0 < x < 1} of F provides an algebraic description
of convex subsets of affine spaces over F (or F -convex sets) as algebras (C, Io(F )). (See
e.g.[13].) In this case the algebraic and geometric definitions of convex sets coincide.

The class of F -convex sets forms a quasivariety Cv(F ) (a subquasivariety of the variety
of so-called barycentric algebras over F ), and is defined by the identities

(1.1) xx p = x

of idempotence, the identities

(1.2) xy p = yx 1 − p

of skew-commutativity, the identities

(1.3) xy p z q = x yz q/(p + q − pq) p + q − pq

of skew-associativity and the quasi-identities

(1.4) (xyp = xzp) −→ (y = z)

of cancellation for all p, q in Io(F ). (See [6,9,10,13].)
Let us note that both affine R-spaces and F -convex sets may be considered as subreducts

of affine R-spaces, i.e. subalgebras of appropriate types of reducts of real affine spaces.
Recall as well that algebras describing affine spaces and convex sets belong to the family
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of algebras called modes, algebras that are idempotent and entropic. Indeed, any two
operations p and q of affine spaces satisfy the entropic law:

(1.5) xyp ztp q = xzq ytq p.

Both the geometric and algebraic concepts of F -convex sets were generalized in [2] to
the case of convex subsets of faithful affine spaces over principal ideal subdomains R of
the ring R. Algebraically they are described as algebras (C, Io(R)), where Io(R) is the
set of binary operations xyr for r ∈ Io(R) = {x ∈ R | 0 < x < 1}. Such Io(R)-algebras
were called R-convex sets. Geometric R-convex sets in finite dimensional affine spaces Rn

are described as the intersections of R-convex subsets of Rn with its subspace Rn. If R is
not a field, then the algebraic and geometric definitions of R-convex sets do not coincide.
An essential role is played by the segments (closed intervals) of R-lines (or simply lines),
one-dimensional affine R-spaces (R,P,R). For a < b in R, the segment or interval with
the endpoints a and b is defined to be [a, b]R = {x ∈ R | a ≤ x ≤ b}. Such segments are
geometric R-convex sets. Note however that there are algebraic convex subsets of R-lines
that are not segments. (For more detail, see [2].)

In this paper we are interested in convex sets over the principal ideal domains Rp =
Z[1/p], where p is a prime number. Such Rp-convex sets are considered here as Io(Rp)-
subreducts (C, Io(Rp)) of faithful affine Rp-spaces (A,P,Rp).

The paper contains three results. In Section 2, we show that Rp-convex sets (and even
more generally Io(Rp)-subreducts of affine Rp-spaces) may be described as certain modes
with finitely many binary operations. Section 3 deals with the segments of Rp-lines. It
was shown in [2] that, unlike the real case, such segments are not necessarily pairwise
isomorphic, and are not necessarily generated by their endpoints. They are however finitely
generated. In Section 4, we provide an exact number of minimal sets of generators for any
one of them. In the final section, we show that R3-convex sets belong to a certain variety
of groupoid modes, such that all its members embeddable into affine spaces in a non-trivial
way, actually embed into affine R3-spaces.

We refer the readers to the monographs [9,11,13] for additional information about the
algebraic concepts used in the paper, especially those concerning convex sets, barycentric
algebras, and affine spaces; to [1] for basic geometric properties of convex subsets of Rn,
and to [2] for more information about generalizations of convex sets. Our notation generally
follows the conventions established in the first three monographs mentioned above.

2 Convex sets over the rings Rp = Z[1/p]. In this section, we show that Rp-convex
sets may be described as certain modes with finitely many binary operations. First recall
that for a positive integer k, the elements of the interval [0, k]Rp of Rp may be described as
follows:

(2.1) [0, k]Rp = {m/pn | m,n ∈ Z, 0 ≤ m ≤ kpn}.

Moreover, all the intervals [0, pn]Rp , where n is any integer, are isomorphic, and each is
generated as an Io(Rp)-algebra by its endpoints [2].

Let us consider affine Rp-spaces (A,P,Rp) and their reducts

(A,Ωp) =
(
A, 1/p, 2/p, . . . , (p − 1)/p

)
.

We call such reducts p-reducts and their subalgebras p-subreducts of (A,P,Rp), or simply
p-modes. Note that p-modes obviously satisfy the identities (1.1) and (1.2) defining real
barycentric algebras. However they do not necessarily satisfy (1.3). For example, in the case
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of 2-modes, if p = q = 1/2, then q/(p + q − pq) = 2/3 does not belong to R2. All p-modes
form a quasivariety. (This follows from a more general result saying that the subreducts of
members of a given quasivariety again form a quasivariety [3, §11.1].)

Evidently, for any Io(Rp)-subreduct of an affine Rp-space A, the set Io(Rp) of operations
contains all the operations of Ωp. We will show that Ωp generates all the operations of
Io(Rp).

Lemma 2.1. Let (C, Io(Rp)) be an Io(Rp)-subreduct of an affine Rp-space. Then the set
Ωp of operations of C generates all the operations of the set Io(Rp).

Proof. First recall, that the interval

[0, 1]Rp = {m/pn | m,n ∈ Z, 0 ≤ m ≤ pn}

of the line Rp = Z[1/p] is the free algebra on two free generators 0 and 1 in the quasivariety
Q(Rp) of the Io(Rp)-subreducts of affine Rp-spaces. (See [8] and [13, Ch. 5].) Its elements
represent the binary term operations of Io(Rp)-subreducts of affine Rp-spaces. To show
that the operations of Ωp generate all the other operations of Io(Rp), it is enough to show
that the elements of the interval [0, 1]Rp

can be obtained by applying the operations of Ωp

to the elements 0 and 1. For each natural number n, let us define

In := {m/pn | 0 ≤ m ≤ pn}

and observe that [0, 1]Rp is a directed union of the sets In. Note also that any two elements
of [0, 1]Rp can always be written as quotients with common denominators. It will be shown,
by induction on n, that a single application of the operations of Ωp to elements of In

generates the elements of In+1. Evidently, single applications of Ωp to I0 produces the
elements 0, 1/p, . . . , (p − 1)/p, 1 of I1. Now assume that the elements of In have already
been obtained, and apply Ωp to In. Then for i = 1, . . . , p− 1, and 0 ≤ m < k ≤ pn, one has

m

pn

k

pn

i

p
=

m

pn
· p − i

p
+

k

pn
· i

p
=

m(p − i) + ki

pn+1
.

Moreover, this element lies between m/(pn) and k/(pn). Hence it belongs to In+1. In
particular, for m < pn,

m

pn

m + 1
pn

i

p
=

m

pn
· p − i

p
+

m + 1
pn

· i

p
=

m(p − i) + (m + 1)i
pn+1

=
mp + i

pn+1
.

Hence one does indeed obtain all the elements of In+1. It follows that this procedure will
generate precisely the elements of [0, 1]Rp .

Corollary 2.2. Let A be an affine Rp-space. Then each Io(Rp)-subreduct (B, Io(Rp)) of
A is equivalent to the p-subreduct (B, Ωp) of A. Similarly, each p-subreduct (C,Ωp) of A is
equivalent to the Io(Rp)-subreduct (C, Io(Rp)) of A.

Proposition 2.3. For a fixed prime number p, all p-modes satisfy the following identities:

xy 1/p = yx (p − 1)/p,

xy 2/p = yx (p − 2)/p,

. . .

xy bp/2c/p = yx (p − bp/2c)/p.
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Proof. This follows directly by the skew commutativity (1.2). Indeed, for any i = 1, . . . , bp/2c,

xy i/p = x(1 − i/p) + yi/p

= y(1 − (1 − i/p)) + x(1 − i/p)
= yx (p − i)/p.

Note that for p = 2, the identities of Proposition 2.3 reduce to the commutativity of the
operation x · y = (x + y)/2. In fact, each D-convex set (C, Io(D)), where D = R2 = Z[1/2]
is the set of rational dyadic numbers, is equivalent to the groupoid (C, ·). Such groupoids
are called commutative groupoid (or binary ) modes. The variety V2 = CB of commutative
binary modes is known to be generated by 2-modes [4]. This suggests the following question.

Question 2.4. Let p > 2 be a fixed prime number. Let Vp be the variety of modes of the
same type as p-modes, defined by the identities of Proposition 2.3. Does the class of all
p-modes generate the variety Vp?

We will return to this question in Section 5.

3 Intervals of the lines Rp = Z[1/p]. In what follows intervals (segments) of the line
Rp = Z[1/p] will be denoted simply by [a, b] instead of [a, b]Rp , and will be considered as
Io(Rp)-subreducts ([a, b], Io(Rp)) of the affine Rp-space (Rp, P,Rp).

All such intervals were classified (up to isomorphism) in [2]. They are geometric Rp-
convex sets, and form an obvious generalization of the segments of the dyadic line (D, P, D)
[5]. The intervals of the lines Rp are not necessarily pairwise isomorphic. In fact, each one
is isomorphic to some interval [0, k], where k is a positive integer not divisible by p, and
two such intervals are isomorphic precisely when their right hand endpoints coincide [2,5].

4 Generating intervals of Rp. In what follows, we fix a prime number p > 2. It
was shown in [2] that the intervals of the line Rp are not necessarily generated by their
endpoints, though they are finitely generated. Note that each positive integer k has a
unique representation

(4.1) k = k1p
n1 + k2p

n2 + · · · + kjp
nj ,

where the ni, for i = 1, . . . , j, are pairwise distinct non-negative integers such that n1 >
n2 > · · · > nj , and ki ∈ {0, 1, . . . , p − 1}. It was shown in [2] that for k > 1, the set

G ={0, pn1 , 2pn1 , . . . , k1p
n1 , k1p

n1 + pn2 , . . . ,

k1p
n1 + k2p

n2 , . . . ,

j∑
i=1

kip
ni = k}

forms a convenient set of generators of the interval [0, k]. However, it is not necessarily a
minimal set of generators. In [5], it was shown that the intervals of the dyadic line D are
minimally generated by two or three elements. We will find a minimal number of generators
for intervals of Rp by proving the following theorem. For brevity, we will say that an interval
is m-generated if it may be generated by m, but no fewer elements.

Theorem 4.1. Each interval of the line Rp is m-generated for some integer 1 < m ≤ p+1.
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First recall that each interval of Rp is isomorphic to an interval [0, k] for some positive
integer k not divisible by p. Since all such intervals are finitely generated, we may further
assume that each of them is isomorphic to an interval generated by some integers contained
within it. It suffices to observe that the interval [0, k] is isomorphic to each interval [0, kpn],
and take n sufficiently large. So in what follows we will drop the requirement that k is not
divisible by p and consider the intervals [0, k] for any positive integer k and with integral
generators. Recall that each set of generators of [0, k] must contain the endpoints 0 and k.

Proof. The proof will be based on a case analysis, and will be divided into lemmas labeled
by capital letters. First recall the following two properties (A) and (B) (see [2]):

(A) The interval [0, pn] is generated by its endpoints 0 and pn, and thus is 2-generated.

(B) Each interval [0, ipn], for 1 ≤ i < p, is isomorphic to the interval [0, i].

Next we show the following property.

(C) If k > 1 is not divisible by p, then the interval [0, k] is not 2-generated.

Proof. Note that in the interval [0, k], the elements 0 and k generate the set

(4.2) {km/pr | r ∈ N, m = 0, 1, . . . , pr} .

Since k 6= pr for any 0 < r ∈ N, none of the numbers 1, 2, . . . , k − 1 belongs to [0, k].

(D) Each interval [0, i], where 1 ≤ i < p, is (i + 1)-generated.

Proof. By (C), the interval [0, i] must contain at least three generators. It is clear that [0, 2]
is generated by 0, 1, and 2. Now if 2 < i < p, then [0, i] cannot have less than i + 1 integer
generators, since otherwise these generators would not generate all the integers between 0
and i.

As a corollary of (B) and (D), we get the following.

(E) Each interval [0, ipn], where 1 ≤ i < p, is (i + 1)-generated.

(F) Each interval [0, ipn + j], where 1 ≤ i < p and 1 ≤ j < pn, is (i + 2)-generated.

Proof. By (E), the interval [0, ipn] is (i + 1)-generated. The interval [(i − 1)pn + j, ipn + j]
is generated by its endpoints, the first of which is already contained in [0, ipn].

(G) Let k = ipn + (p− 1)pn−1 + · · ·+ (p− 1)p + (p− 1), where 1 ≤ i < p. Then [0, k] is
(i + 2)-generated.

Proof. First note that

(4.3) j := (p − 1)pn−1 + · · · + (p − 1)p + (p − 1) < pn.



278 A. B. ROMANOWSKA

Indeed,

j = (p − 1)pn−1 + · · · + (p − 1)p + (p − 1)

= (p − 1)(pn−1 + · · · + p + 1)

= (p − 1)[(pn−1 − 1)/(p − 1)]

= pn−1 − 1 < pn−1 < pn.

Then, by (F), it follows that the interval [0, ipn + j] is (i + 1)-generated.

(H) Let k have the form of (4.1), so k = k1p
n1 + k2p

n2 + · · · + kjp
nj , with n1 > n2 >

· · · > nj . Then [0, k] is (i + 2)-generated.

Proof. Let j := k2p
n2 + · · · + kjp

nj . Then by (4.3),

j < (p − 1)pn1−1 + (p − 1)pn1−2 . . . (p − 1)p + (p − 1) < pn1 .

Hence, by (F), the interval [0, k] is (i + 2)-generated.

The theorem follows by (A), (E) and (H).

5 Barycentric algebras over R3 = Z[1/3]. In this section we consider Io(R3)-subreducts
of affine R3-spaces. As demonstrated below, the case p = 3 is rather special.

Proposition 5.1. Each Io(R3)-subreduct (C, Io(R3)) of an affine R3-space is equivalent to
the groupoid (C, ·), where a · b = ab 1/3, satisfying the identity

(5.1) xy · yx = yx · x.

Proof. By Corollary 2.2, each such Io(R3)-subreduct C is equivalent to the 3-mode (C,Ω3).
By Proposition 2.3, (C,Ω3) is equivalent to the groupoid (C, ·), where the multiplication is
defined by a · b = ab 1/3. Note also that ab 2/3 = ba 1/3.

Then C satisfies the identity (5.1), since

xy · yx = (x(2/3) + y(1/3))(2/3) + (y(2/3) + x(1/3))(1/3)
= x(5/9) + y(4/9)
= (y(2/3) + x(1/3))(2/3) + x(1/3) = yx · x.

Let T be the variety of groupoid modes defined by the identity (5.1). Let Q(R3) be
the quasivariety of Io(R3)-subreducts of affine R3-spaces, and let Q(R•

3) be the quasivariety
of groupoids (as in Proposition 5.1) equivalent to such subreducts. Observe the following
obvious fact.

Lemma 5.2. The variety T contains Q(R•
3) as a subquasivariety. It also contains the

variety RZ of right-zero semigroups and the variety SL of semilattices.

Proof. The first statement follows by Proposition 5.1. The varieties RZ and SL are known
to be varieties of modes. Moreover, since the identities satisfied by RZ are precisely the
identities with the same last variable on both sides, and the identities satisfied by SL are
precisely the identities having the same sets of variables on both sides, it follows that they
both satisfy the identity (5.1) [13, §5.2].
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Note that non-trivial semilattices do not embed into affine spaces. On the other hand,
right-zero semigroups may be considered as 1-subreducts of any affine space, so they trivially
embed into any affine space. If a groupoid of T has no right semi-group as a subgroupoid,
and embeds into an affine space, we will say that it embeds non-trivially. We will show
that groupoids of T that embed non-trivially as subreducts into affine spaces are in fact
subreducts of affine R3-spaces. This can be done by looking for the so-called affinization
of the variety T . The affinization of a variety V of modes is the variety R(V) of affine
spaces over a certain ring R(V), with the property that all members of V that embed as
subreducts into some affine spaces are in fact subreducts of affine R(V)-spaces. (See [13,
§7.1], and also [7,12].) The variety R(V) is determined by the ring R(V), which may be
constructed using a method described in [13, §7.1]. The affinization ring R = R(T ) of
the variety T is computed as follows. The ring R is a quotient of the ring Z[X], and the
corresponding binary operation on an affine R-space is x ·y = x(1−X)+yX . The identity
(5.1) holds for x · y in R(T ). It follows that

xy · yx = [x(1 − X) + yX](1 − X) + [y(1 − X) + xX]X

= x(1 − 2X + 2X2) + y(2X − 2X2)

is equal to

yx · x = [y(1 − X) + xX](1 − X) + xX = x(2X − X2) + y(1 − 2X + X2).

Equating coefficients of x and y in the above expressions shows that

3X2 − 4X + 1 = 0,

whence X = 1/3 or X = 1. If X = 1, then x · y = y, and the groupoid operation is the
operation of a right-zero semi-group. If X = 1/3, then R is a quotient of Z[1/3]. Conversely,
affine spaces over Z[1/3] are T -groupoids under x · y = x(2/3) + y(1/3) = xy 1/3. Thus
R = Z[1/3] = R3. This is summarized as follows.

Proposition 5.3. The groupoids in T that embed non-trivially into affine spaces as sub-
reducts all belong to the quasivariety Q(R•

3).

It is clear that the variety V3 of Question 2.4 is the variety GM of all groupoid modes,
and the quasivariety of 3-modes coincides with Q(R•

3) and is (properly) contained in the
variety T . It follows that it cannot generate the variety V3, and we have a negative answer
to Question 2.4.

We are left with the following

Question 5.4. Does the quasivariety Q(R•
3) generate the variety T ?
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