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Abstract. Iterating a unary operation defined on a finite set A one obtains a chain

A ⊇ Imf ⊇ Imf2 ⊇ · · · ⊇ Imfm = Imfm+1,

where Imf is the image of f , i.e. the set of all images and f i := f ◦ · · · ◦ f
| {z }

i−times

is the

i − th iteration of f , f0 := idA. The least integer λ(f) with Imfλ(f) = Imfλ(f)+1 is
called the pre-period of f . Let n be the cardinality of A. Then the pre-period of f
is an integer between 0 and n − 1. If λ(f) = n − 1, then f is said to be a long-tailed
operation (LT -operation) and if λ(f) = n−2, then f is said to be an LT1-operation. In
[3] the authors characterized LT - and LT1-operations and their invariant equivalence
relations. In [4] these were generalized to partial operations and in [5] (see also [7]) to
n-ary operations (n > 1). In this paper we study invariant tolerance relations of LT -
and LT1-operations. An algebra (A; f) where f is a unary operation on A is said to
be a mono-unary algebra. For the theory of mono-unary algebras we refer the reader
to the monograph [9]. Here we study the tolerance lattices of mono-unary algebras
(A; f), where f is an LT - or an LT1-operation. Tolerances on mono-unary algebras
were considered in [10] (see also [8]).

1 Preliminaries

To make this text independent we first repeat some results on LT - and LT1-operations from
[3].

Theorem 1.1 [3] Let f : A → A be a unary operation and |A| = n ≥ 2. Then the following
propositions are satisfied:

(i) λ(f) = n − 1 if and only if there exists an element d ∈ A such that

A = {d, f(d), f2(d), . . . , fn−1(d) = fn(d)}(see e.g. [2]) .

(ii) Assume now that n ≥ 3. Then λ(f) = n − 2 and |Imfn−2| = 1 if and only if there
are distinct elements u, v ∈ A such that A = {u, v, f(v), . . . , fn−2(v)} and such that there
is an exponent k with 0 ≤ k ≤ n − 2 with f(u) = fk+1(v) and there is an integer m with
m + k = n − 2 with fm+1(u) = fm(u).

(iii) We have λ(f) = n − 2 and |Imfn−2| = 2 if and only if there are different elements
u, v ∈ A such that either

a)A = {v, u, f(u), . . . , fn−2(u)} with v = f(v) and fn−1(u) = fn−2(u), or b) A =
{u, f(u), f2(u) . . . , v = fn−2(u), fn−1(u)} where v = fn(u) = fn−2(u).
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If we choose A = {0, 1, · · · , n − 2, n − 1}, d = n − 1, f(k) = k − 1 for k 6= 0, f(0) = 0, then
f can be pictured as a directed graph where the vertices are labeled by the elements and
there is an directed edge from x to y if f(x) = y.

Figure 1: LT -operation

This graph is also called the graph of the mono-unary algebra A = (A; f). The following
equations for an LT -operation f and x, y ∈ A will be used many times.

fy(x) =
{

x − y if x ≥ y
0 if x < y

(∗)

2 Tolerances on LT -algebras

A tolerance on a mono-unary algebra (A; f) is a reflexive and symmetric binary relation T
with the property that (x, y) ∈ T implies (f(x), f(y)) ∈ T for any x, y ∈ A. In a corre-
sponding way, tolerances can be defined on arbitrary algebras. Congruences are transitive
tolerances. For an element a ∈ A let

[a]T := {x ∈ A | (a, x) ∈ T}.

In [8] this set is called a class of T . Let ≤ be the usual order on A = {0, 1, . . . , n− 1}. The
following facts are well-known and easy to prove (see [8], [10]).

Proposition 2.1 Let A = (A; f) be an LT -algebra and let T be a tolerance on A.

(i) [0]T is convex with respect to ≤.

(ii) For any x 6= y ∈ A if T 6= ∆A, there are distinct elements u, v ∈ [0]T such
that (u, v) ∈ T .

(iii) Let [0]T = {0, 1, . . . , k − 1}. If T 6= ∆A, then |[0]T | > 1.

(iv) If T is a congruence, then (x, y) ∈ T ⇔ {x, y} ⊆ [0]T for all x, y ∈ A.

(v) For any x, y ∈ A, if (x, y) ∈ T then |x − y| < |[0]T |.

Proof. (i) We have to show: if x ∈ [0]T and 0 ≤ y ≤ x, then y ∈ [0]T . Because
of x ≥ x − y by (*) we have fx−y(x) = x − (x − y) = y. Now, (0, x) ∈ T implies
(fx−y(0), fx−y(x)) = (0, y) ∈ T .
(ii) We may assume that {x, y} 6⊆ [0]T , that x < y, and that x 6∈ [0]T since y 6∈ [0]T
implies x 6∈ [0]T by (i). Let [0]T = {0, 1, . . . , k − 1}. Then fx−k+1(x) = k − 1. If y ∈ [0]T ,
then (0, y) ∈ T and (fx−k+1(0), fx−k+1(y)) = (0, fx−k+1(y)) ∈ T , i.e. fx−k+1(y) ∈ [0]T
and if y 6∈ [0]T , then x − k + 1 > y − k + 1 implies that fx−k+1(y) ≤ fy−k+1(y) =
k − 1, so fx−k+1(y) ∈ [0]T . Let v := fx−k+1(y). Now (x, y) ∈ T implies (k − 1, v) =
(fx−k+1(x), fx−k+1(y)) ∈ T and hence u := k − 1 and v are the required elements.
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(iii) Let (x, y) ∈ T, x 6= y. Then by (ii) there are elements u, v ∈ {0, 1, · · · , k − 1}, u 6= v,
such that (u, v) ∈ T . We may assume that u ≥ v. Then (fv(u), fv(v)) = (0, u − v) ∈ T ,
where 0 < u − v < k.
(iv) is clear.
(v) Suppose that there are elements x, y ∈ A such that (x, y) ∈ T and |x − y| ≥ |[0]T |.
We may assume that [0]T = {0, 1, . . . , k − 1}. Then |[0]T | = k and |x − y| = x − y. Since
(x, y) ∈ T , we have (fy(x), fy(y)) = (x − y, 0) ∈ T . By assumption and by (i) we get
(0, k) ∈ T , hence |[0]T | ≥ k + 1, a contradiction. ¥

Let Tol(A) denote the set of all tolerances of the mono-unary algebra A. Clearly, the
diagonal ∆A = {(a, a) | a ∈ A} is contained in any T ∈ Tol(A) and any T ∈ Tol(A) is
contained in the tolerance A × A. The following properties of Tol(A) for a mono-unary
algebra A are well-known.

Proposition 2.2 ([10]) Let (A; f) be an arbitrary mono-unary algebra. Then Tol(A)
forms an algebraic lattice with respect to set inclusion, which is a sublattice of the power
set lattice (P(A × A);⊆), and therefore, it is a distributive lattice.

Let T (a, b) be the tolerance generated by the pair (a, b), i.e. the intersection of all tolerances
on the given algebra A which contain the pair (a, b). Let Con(A) be the congruence lattice
of the algebra A. Now we give two more properties of an LT -algebra.

Proposition 2.3 Let A be an LT -algebra. Then

(i)
∩

(Tol(A) \ {∆A}) = T (1, 0).

(ii) If α, β ∈ Con(A) \ {∆A}, then α ∩ β 6= ∆A, i.e. A is subdirectly irreducible.

Proof. (i) Let T ∈ Tol(A), T 6= ∆A. Then there are elements a, b ∈ A with a 6= b
and (a, b) ∈ T . Without loss of generality we may assume that a < b. There follows
(f b−1(a), f b−1(b)) = (0, 1) ∈ T , i.e. T (0, 1) ⊆ T for any T 6= ∆A, T ∈ Tol(A). Then we
have T (0, 1) ⊆

∩
(Tol(A) \ {∆A}) and thus

∩
(Tol(A) \ {∆A}) = T (1, 0).

(ii) In a similar way as in the proof of (i) we see that any congruence of (A; f) contains the
congruence generated by (0, 1) and therefore α, β ∈ Con(A) \ {∆A} implies α ∩ β 6= ∆A

and this means that A is subdirectly irreducible (see e.g. [1]). ¥

By Proposition 2.1(iii) we have |[0]T | > 1 for any T ∈ Tol(A), T 6= ∆A and by Proposition
2.1 (i) there is an element k with 1 < k ≤ n such that [0]T = {0, 1, . . . , k − 1}. For each
1 ≤ t ≤ k − 1, there is the greatest integer at

T ∈ A such that (at
T , at

T + t) ∈ T . We consider
the set

BT :=
∪

1≤t≤k−1

{(at
T − s, at

T + t − s) | 0 ≤ s ≤ at
T }.

Since BT is closed under application of f , the tolerance generated by BT consists precisely
of all pairs from BT , all pairs from Bd

T := {(x, y) ∈ A × A | (y, x) ∈ BT } and of all pairs
from the diagonal ∆A, i.e. 〈BT 〉 = BT ∪Bd

T ∪∆A. By definition, 〈BT 〉 is the least tolerance
containing BT .

Lemma 2.4 (i) 〈BT 〉 = T.

(ii) If T = T (m,m + 1) is the tolerance generated by (m,m + 1) for 0 ≤ m ≤ n,
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then BT = {(0, 1), (1, 2), (2, 3), · · · , (m,m + 1)}.

(iii) If T = T (a, b), then there exists the greatest integer m such that

BT =
∪

1≤t≤m

{(at
T − s, at

T + t − s) | 0 ≤ s ≤ at
T }.

(iv) 0 ≤ at
T ≤ n − t − 1 for all 1 ≤ t ≤ k − 1.

Proof. (i) We have [0]T = {0, 1, . . . , k−1}. Clearly, BT ⊆ T and then 〈BT 〉 ⊆ T . Assume
that (x, y) ∈ T with x 6= y. We may assume that x > y. Then there exists an element t
with 0 < t < k such that |x − y| = t, i.e. (x, y) ∈ {(at

T − s, at
T + t − s) | 0 ≤ s ≤ at

T } ⊆ BT

and then T ⊆ 〈BT 〉. Altogether, we have equality.
(ii) The set {(0, 1), (1, 2), . . . , (m,m + 1)} can be written as BT =

∪
1≤t≤1

{(a1
T − s, a1

T +

1 − s) | 0 ≤ s ≤ a1
T } with a1

T = m, [0]T = {0, 1}. We show that T (m,m + 1) = 〈BT 〉.
Indeed, {(0, 1), (1, 2), . . . , (m,m + 1)} ⊆ T (m, m + 1) implies 〈BT 〉 ⊆ T (m,m + 1). Since
T (m,m + 1) is the least tolerance containing (m,m + 1) and since (m,m + 1) ∈ 〈BT 〉, we
have 〈BT 〉 = T (m,m + 1).
(iii) We may assume that a > b. Then m = a − b.
(iv) (at

T , at
T + t) ∈ T implies at

T + t ∈ A, i.e. at
T + t ≤ n − 1, i.e. at

T ≤ n − t − 1. ¥

To describe the tolerance lattice of A we classify all tolerances by the cardinality of [0]T =
{0, 1, . . . , k − 1}.

Definition 2.5 Let Tol0(A) = {∆A} and for each 1 < k ≤ n let Tolk−1(A) be the set of
all tolerances on A with [0]T = {0, 1, . . . , k − 1}.

By this definition, Tol1(A) is the set of all tolerances on A with [0]T = {0, 1} and by Lemma
2.4, Tol1(A) = {T (m,m + 1) | m = 0, 1, . . . , n − 2}.

Let n − 1 := ({0, . . . , n−2};≤) with the usual linear order ≤ defined on A. The set Tol1(A)
is partially ordered with respect to set inclusion.

Proposition 2.6 (Tol1(A);⊆) ∼= n − 1.

Proof. The mapping g : {0, 1, . . . , n − 2} → Tol1(A) defined by g(m) = T (m,m + 1)
for all 0 ≤ m < n − 1 is order-preserving since l ≤ m implies T (l, l + 1) ⊆ T (m,m + 1).
Conversely, from T (l, l + 1) ⊆ T (m,m + 1) there follows l ≤ m. This shows that g is
one-to-one, i.e. an order-isomorphism. Since by definition of Tol1(A) any tolerance from
this set has the form T (m,m + 1) for m ∈ {0, 1, . . . , n− 2}, the mapping g is onto and thus
an order embedding. ¥

Proposition 2.7 For 0 < k < n, Tolk(A) ∼= n − k × Tolk−1(A).

Proof. Let T ∈ Tolk(A). Then [0]T = {0, 1, . . . , k − 1} and by Lemma 2.4 (i), T = 〈BT 〉
where BT =

∪
1≤t≤k−1

{(at
T − s, at

T + t− s) | 0 ≤ s ≤ at
T }. For 1 ≤ t ≤ k − 1, we consider the

set Bt
T := {(at

T − s, at
T + t − s) | 0 ≤ s ≤ at

T }. We define Tk−1 := T \ (Bk−1
T ∪ (Bk−1

T )d).
Then Tk−1 ∈ Tolk−1(A) and by Lemma 2.4(ii) we have ak−1

T ≤ n − (k − 1) − 1 = n − k,
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i.e. ak−1
T ∈ n − k (= {0, 1, . . . , n − k − 1}. Therefore, the pair (ak−1

T , Tk−1) belongs to the
cartesian product n − k × Tolk−1(A). Let c ∈ n − k and α ∈ Tolk−1(A). Define ᾱ := 〈Bα〉
where Bα = {(c − s, c + k − 1 − s) | 0 ≤ s ≤ c}. Then [0]ᾱ = {0, 1, . . . , k − 1} and thus
ᾱ ∈ Tolk(A), where c = ak−1

ᾱ and ᾱk−1 = α.
Define g : Tolk(A) → n − k × Tolk−1(A) by g(T ) = (ak−1

T , Tk−1). Since [0]α = [0]β ,
we have ak−1

α ≤ ak−1
β , hence Bk−1

α ⊆ Bk−1
β . Let Bα := Bk−1

α ∪ (Bk−1
α )d and Bβ :=

Bk−1
β ∪ (Bk−1

β )d. Since ak−1
α is the greatest element such that (ak−1

α , ak−1
α + k − 1) ∈ α, we

have (Bβ \ Bα) ∩ α = ∅ and then αk−1 = α \ Bα = α \ Bβ ⊆ β \ Bβ = βk−1. Therefore,
g(α) = (ak−1

α , αk−1) ≤ (ak−1
β , βk−1) = g(β), where ≤ is defined component-wise, using

the usual order on the natural numbers for the first component and set-inclusion for the
second one. Now assume that α, β ∈ Tolk(A) such that g(α) ≤ g(β), i.e. ak−1

α ≤ ak−1
β and

α ⊆ β. Then we have Bα ⊆ Bβ and α = αk−1 ∪ Bα ⊆ Bk−1 ∪ Bβ = β. Hence, g is an
order-embedding and together with surjectivity we have an order isomorphism. ¥

Our construction has the following consequences:

Corollary 2.8 (i) Tolk(A) is a product of chains: Tolk(A) ∼=
k∏

t=1
n − t for all 0 ≤ k ≤ n,

especially, Toln−1(A) ∼= 1 × . . . , n − 2 × n − 1.

(ii) Tolk(A) ∩ Toll(A) = ∅ for all 0 ≤ k 6= l ≤ n − 1 and Tol(A) =
∪

0≤k≤n−1

Tolk(A).

(iii) Tolk(A) is isomorphic to a sublattice of Tol(A) for all 0 ≤ k ≤ n − 1 and Tolk−1(A)
is isomorphic to a sublattice of Tolk(A) for all 0 < k < n.

(iv) Tolk(A) ∼= π1(Tolk+1(A)) where π1 is the first projection.

The ordered sum (see e.g. [6]) of a family of partially ordered sets will be denoted by the
symbol

∑
and if the family consists of finitely many partially ordered sets we will also use

the symbol
+
t

Theorem 2.9 The tolerance lattice of an LT -algebra is isomorphic to an ordered sum

Tol(A) ∼=
∑

0≤k≤n−1

Tolk(A) ∼=
∑

0≤k≤n−1

k∏
t=1

n − t.

Let α, β ∈ Tol(A). We define an equivalence relation on Tol(A) as follows:

α ∼ β :⇔ [0]α = [0]β .

Then the quotient set Tol(A)/∼ corresponds to the set {[0]α | α ∈ Tol(A)} which can be
regarded as a linearly ordered set that is isomorphic to the congruence lattice of (A; f).
Altogether we have:

Corollary 2.10 Let A = (A; f) be an LT -algebra. Then

n − 1 ∼= Tol1(A) ∼= Tol(A)/∼ ∼= Con(A).
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Example 2.11 Let A = {0, 1, 2, 3} and let f : A → A be given by the following table

x f(x) f2(x) f3(x)
0 0 0 0
1 0 0 0
2 1 0 0
3 2 1 0.

Then
Tol0(A) = {∆A},
Tol1(A) = {T (0, 1), T (1, 2), T (2, 3)},
Tol2(A) = {T (0, 2), T ((0, 2), (1, 2)), T ((0, 2), (2, 3)), T (1, 3),
T ((1, 3), (1, 2)), T ((1, 3), (2, 3))},
Tol3(A) = {T (0, 3), T ((0, 3), (1, 3)), T ((0, 3), (1, 2)), T ((0, 3), (2, 3)),
T ((0, 3), (1, 3), (1, 2)), T ((0, 3), (1, 3), (2, 3))}.

Then the tolerance lattice of (A; f) is given by Figure 2.

Tol(0.1)

Tol(1,2)

Tol(1,3)

Tol((1,3 ),(1,2))

Tol((0,3),(2,3))

Tol(2,3)

Tol(0,2)

Tol(0,3)

Tol((0,3),(1,3))

Tol((0,3),(1,3),(1,2))

Tol((0,3),(1,3),(2,3))

Tol((0,2),(1,2))

Tol((0,2),(2,3))

Tol((1,3),(2,3))

Tol((0,3),(1,2))

A x A

A

Figure 2: Tolerance Lattice of an LT -algebra

3 Tolerances on LT1-algebras with |Imfn−2| = 2

Corresponding to Theorem 1.1 (iii) we have to consider the cases that f has two fixed points
and that f has no fixed point. For the first case, let A = {v, u, f(u), . . . , fn−2(u)} where
v = f(v) and fn−1(u) = fn−2(u), |A| = n ≥ 3 and λ(f) = n− 2. Without restriction of the
generality we may assume that A = {0, 0′, 1, 2, . . . , n − 2} and f(k) = k − 1 if k 6∈ {0, 0′}
and f(0) = 0, f(0′) = 0′. Let B := {0, 1, . . . , n− 2} and let f |B be the restriction of f onto
B. Clearly, f |B is an LT -operation on B. Then, Figure 3 shows
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n−2 3 2 14 0 0’

Figure 3: LT1-operation

the graph of the LT1-algebra (A; f). Let ≤ be the usual order on {0, 1, . . . , n − 2}. For
an LT1-operation we have fy(x) = x − y if x ≥ y, fy(0′) = 0′ for all y and fy(x) = 0 if
0 ≤ x < y. For T ∈ Tol(A) let TB be the restriction of T onto B. If |[0′]T | > 1 let denote
[0′]T by [0, 0′]T since in the next proposition we will prove that in this case 0 ∈ [0′]T .

Proposition 3.1

(i) [0]T is convex with respect to ≤.

(ii) [0′]T = {0′} or [0′]T \ {0′} is convex with respect to ≤ and 0 ∈ [0′]T .

(iii) TB ∈ Tol(B) and T = TB ∪ T[0′]T .

(iv) If 0′ 6∈ [0]T , then [0]T = [0]TB
.

(v) There exists the greatest element k ∈ B such that [0, 0′]T = {0′} ∪ {x ∈ B | x <
k and (x, 0′) ∈ T} = {0′, 0, 1, . . . , k − 1}. This k is denoted by (0T )′.

(vi) For all α, β ∈ Tol(A), if α ⊆ β, then [0]α ⊆ [0]β , [0′]α ⊆ [0′]β , [0, 0′]α ⊆ [0, 0′]β and
αB ⊆ βB.

(vii) For all α, β ∈ Tol(A) we have (0α)′ ≤ (0β)′ ⇔ [0, 0′]α ⊆ [0, 0′]β .

Proof. (i) can be proved in the same way as Proposition 2.1(i).
(ii) Assume that [0′]T 6= {0′}. Let x ∈ [0′]T , x 6= 0′ and 0 ≤ y ≤ x. Then (x, 0′) ∈ T implies
(fx−y(x), fx−y(0′)) = (y, 0′) ∈ T and (fx(x), fx(0′)) = (0, 0′) ∈ T.

(iii) TB ∈ Tol(B) is clear. Since TB ⊆ T and T[0′]T ⊆ T , we have TB ∪ T[0′]T ⊆ T . Let
(x, y) ∈ T . If {x, y} ⊆ B, then (x, y) ∈ TB . If {x, y} 6⊆ B, we may assume that x = 0′, so
x, y ∈ [0′]T , hence (x, y) ∈ T[0′]T .
(iv) is clear.
(v) Since (0, 0′) ∈ T , there exists the greatest integer k ∈ B such that (0′, k − 1) ∈ T . By
(ii) we have 0 ≤ x ≤ k − 1 ⇔ (0′, x) ∈ T. (vi) is clear.
(vii) We have (0α)′ ≤ (0β)′ ⇔ [0, 0′] = {0′, 0, 1, . . . , (0α)′ − 1} ⊆ {0′, 0, 1, . . . , (0β)′ − 1} =
[0, 0′]β for all α, β ∈ Tol(A). ¥

We define C0′ := {[0′]T | T ∈ Tol(A)}. Then

Proposition 3.2 (i) C0′ = {{0′}} ∪ {[0, 0′]T | T ∈ Tol(A)}.

(ii) (C0′ ;⊆) ∼= n − 1.

Proof. (i) The inclusion {{0′}}∪ {[0, 0′]T | T ∈ Tol(A)} ⊆ C0′ is obvious. Let [0′]T ∈ C0′ .
We may assume that |[0′]T | > 1. Then 0 ∈ [0′]T and [0′]T = [0, 0′]T ∈ C0′ .
(ii) We consider the mapping g : C0′ → n − 1 defined by {0′} 7→ 0 and [0, 0′]T 7→ (0T )′ + 1.
By Proposition 3.1 (vii) g is an order-embedding. We show that g is surjective. Let k ∈
n − 1. If k = 0, then g({0′}) = 0 and if k ∈ {1, . . . , n− 1}, then k− 1 ∈ {0, . . . , n− 2} = B.
Let denote Tk := {(x, 0′) | x < k} and define T ⊆ A × A by T := ∆A ∪ Tk ∪ T d

k . Then
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T ∈ Tol(A) with (0T )′ = k − 1. So g(T ) = (0T )′ + 1 = k − 1 + 1 = k. Hence, g is an
order-isomorphism. ¥
Theorem 3.3 For the tolerance lattice of an LT1-algebra we have

Tol(A) ∼= n − 1 × Tol(B) ∼= n − 1 ×
∑

0≤k≤n−1

Tolk(B) ∼= n − 1 ×
∑

0≤k≤n−1

k∏
t=1

n − t.

Proof. We prove that Tol(A) ∼= C0′ × Tol(B). Let g : Tol(A) → C0′ × Tol(B) be defined
by T 7→ ([0′]T , TB) for all T ∈ Tol(A). By Proposition 3.1 (vi), g is order-preserving. Now,
let α, β ∈ Tol(A) such that g(α) ≤ g(β). Then [0′]α ⊆ [0′]β and αB ⊆ βB . By Proposition
3.1 (iii) it remains to prove that α[0′]α ⊆ β[0′]β . Let (x, y) ∈ α[0′]α . Then {x, y} ⊆ [0′]α and
(x, y) ∈ α. Therefore, {x, y} ⊆ [0′]β . We will prove that (x, y) ∈ β. If x = y or 0′ ∈ {x, y},
then (x, y) ∈ β since β is reflexive and {0′, x} ⊆ [0′]β or {0′, y} ⊆ [0′]β . Thus we may
assume that x 6= y and 0′ 6∈ {x, y}. Then {x, y} ⊆ B. Hence (x, y) ∈ α and {x, y} ⊆ B
implies that (x, y) ∈ αB ⊆ βB and (x, y) ∈ β. The rest follows from Theorem 1.10, the fact
that (B; f |B) is an LT -algebra with |B| = n − 2 and from Proposition 2.3. ¥
Example 3.4 Let A = {0′, 0, 1, 2} and let f : A → A be given by the table

x f(x) f2(x) f3(x)
0′ 0′ 0′ 0′

0 0 0 0
1 0 0 0
2 1 0 0.

Then the tolerance lattice can be pictured as in Figure 4.

T(0,1)
T(0’,0)

T(0’,1)

T(0’,2)

T(1,2)

T(0,2)

T((0,2),(1,2))

T((0’´0),(0,2),(1,2))

T((0’,0),(0,2),(1,2))

T((0’,0),(0,1))

T((0’,0),(1,2))

T((0’,0),(0,2))

T((0’,1),(0,1,))

T((0’,1),(0,2,))

T((0’,1),(1,2,))

T((0’,2),(0,1))

T((0’,2),(0,2))

T((0’,2),(1,2))

A x A

A

Figure 4: Tolerance Lattice of an LT1-algebra
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In the second case, λ(f) = n − 2, |Imfn−2| = 2 and f has no fixed points. Let A =
{u, f(u), . . . , fn−2(u), fn−1(u)}, n ≥ 3 and fn(u) = fn−2(u). Without restriction of the
generality we may assume that A = {0, 1, 2, . . . , n− 2, n− 1} with f(k) = k− 1 if k 6= 0 and
f(0) = 1. Then Figure 5 shows the graph of the LT1-algebra (A; f).

n−2 3 2 1 0

Figure 5: LT1-operation

Let ≤ be the usual order on {0, 1, . . . , n − 1}. For an LT1-operation of this kind we have
fy(x) = x − y if x ≥ y and

fy(x) =

{
0 if x < y and y − x is even
1 if x < y and y − x is odd

We consider the following set of tolerances on A : Tol0(A) = {∆A} and let Tolk(A) be the
set of all tolerance relations on (A; f) such that k is the greatest integer in A \ {0} with
(0, k) ∈ T . Let [n

2 ] be the greatest integer which is smaller than n
2 . Then we have

Lemma 3.5 (i) Let 0 < k < n and T ∈ Tolk(A). Then |x − y| < k if (x, y) ∈ T for all
x, y ∈ A.

(ii) For all T ∈ Tol1(A) there is the greatest integer m ∈ A such that T = ∆A∪{(0, 1), . . . , (m,m+
1)} ∪ {(0, 1), . . . , (m,m + 1)}d and Tol1(A) ∼= n − 1.

(iii) For 0 ≤ k ≤ [n
2 ], if T ∈ Tol2k+1(A), then (0, 1) ∈ T and if T ∈ Tol2k(A), then

(0, 2) ∈ T .

(iv) If T ∈ Tol(A), then there exists the greatest non-negative integer k such that T ∈
Tolk(A) and for each 0 < t ≤ k there exists the greatest element at

T ∈ A such that (at
T , at

T +
t) ∈ T .

(v) T = 〈BT 〉 where BT =
∪

0≤t≤k

{(at
T − s, at

T + t + s) | 0 ≤ s ≤ at
T }.

Proof. (i) Suppose that there are x > y in A such that (x, y) ∈ T and x − y ≥ k. Then
(x, y) ∈ T implies (fy(x), fy(y)) = (x − y, 0) ∈ T . Therefore, there exists an integer t with
t ≥ k and (0, t) ∈ T , which contradicts T ∈ Tolk(A).
(ii) This follows in a similar way as the corresponding proposition in section 1 and Tol1(A) ∼=
n − 1 can be proved by using the mapping g with g(k) = T (k, k + 1), k ∈ {0, 1, . . . , n − 2}.
(iii) By definition of T2k+1(A) we have (0, 2k + 1) ∈ T and this implies

(f2k+1(0), f2k+1(2k + 1)) = (1, 0).

If T ∈ Tol2k(A), then (0, 2k) ∈ T implies

(f2k−2(0), f2k−2(2k)) = (0, 2k − (2k − 2)) = (0, 2) ∈ T.

(iv) Let T ∈ Tol(A) \ {∆A}. Then there are elements x 6= y in A such that (x, y) ∈ T .
Without restriction of the generality we may assume that y < x and x = y + m for some
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m ≥ 1; hence (x, y) ∈ T implies (fy(x), fy(y)) = (x − y, 0) = (m, 0) ∈ T , i.e. there exists
an element t ≥ 1 such that (0, t) ∈ T . Let k ≥ 1 be the greatest integer in A such that
(0, k) ∈ T . The second proposition is clear.
(v) This follows in the same way as Proposition 1.5. ¥

Let
T 0:=

∪
0≤k≤[ n

2 ]

{T ∈ Tol2k(A) | (0, 1) 6∈ T},

T 1:=
∪

0≤k≤[ n
2 ]

{T ∈ Tol2k+1(A) | (0, 2) 6∈ T} and

T 2:=(T 0 ∧ T 1) ∪ (T 0 ∨ T 1), where
T 0 ∧ T 1:={T ∩ S | T ∈ T 0 and S ∈ T 1}, T 0 ∨ T 1 := {T ∪ S | T ∈ T 0, S ∈ T 1}.

For each 0 ≤ k ≤ [n
2 ], let denote T 0

k := T 0 ∩ Tol2k(A) and T 1
k := T 1 ∩ Tol2k+1(A).

Then we have

Proposition 3.6 (i) For each 0 < k ≤ [n
2 ] and for each T ∈ T 0

k , if (x, y) ∈ T , then
|x − y| = 2m for some 0 ≤ m ≤ k.

(ii) For each 0 < k ≤ [n
2 ] and for each T ∈ T 1

k , if (x, y) ∈ T , then |x − y| = 2m + 1 for
some 0 ≤ m ≤ k.

(iii) For 0 ≤ k ≤ [n
2 ], T 1

k
∼= n − k − 1×Pk where P0 := ({0, 1};≤) and Pk :=

∏
1≤t≤k

n − 2t − 1

and T 0
k
∼= n − k − 1 × Qk where Q0 := ({0, 1};≤) and Qk :=

∏
1≤k≤k

n − 2t − 2 .

Proof. (i) Assume that (x, y) ∈ T . If x = y, then we choose m = 0. Now we may assume
that x 6= y. Since T 0

k ⊆ T 0, we have (0, 1) 6∈ T . Suppose that |x − y| = 2m + 1 for some
0 ≤ m ≤ k. We may assume that x = y +2m+1. Then (x, y) = (y +2m+1, y) ∈ T implies
(fy+2m+1(y + 2m + 1), fy+2m+1(y)) = (0, 1) ∈ T , a contradiction.
(ii) can be proved similar to (i).
(iii) T 1

1 = Tol1(A) ∼= n − 1 ∼= n − 1 × 1 is clear by Proposition 1.7. So, the proposition
is true if k = 0. Assume that T 1

k
∼= n − k − 1 × Pk for k ≥ 0. We notice that T ∪

{(0, 2k + 3), (2k + 3, 0)} ∈ T 1
k+1 for all T ∈ T 1

k and define ϕ : T 1
k → T 1

k+1 by ϕ(T ) =
T ∪ {(0, 2k + 3), (2k + 3, 0)} for all T ∈ T 1

k . Clearly, ϕ is order-preserving. Since (0, 2k + 3)
implies (f(0), f(2k + 3)) = (1, 2k + 2) ∈ T and this implies (0, 2k + 1) ∈ T for all T ∈ T 1

k+1,
we have ϕ(T (1, 2k +2)) = ϕ(T (0, 2k +1)) = T (0, 2k +3) for T (1, 2k +2), T (0, 2k +1)) ∈ T 1

k

and T (0, 2k + 3) ∈ T 1
k+1 and hence ϕ(T 1

k )) ∼= T 1
k /kerϕ ∼= n − k − 2 × Pk. Let T ∈ T 1

k+1.
Then k + 1 is the greatest integer such that k + 1 ≤ [n

2 ] and (0, 2k + 3) ∈ T . We have
T = 〈Bk+1

T 〉, where Bk+1
T =

∪
0≤m≤k+1

{(a2m+1
T − s, a2m+1

T + 2m + 1 − s) | 0 ≤ s ≤ a2m+1
T }.

Since a2k+3
T + 2(2k + 1) + 1 ≤ n − 1 and a2k+3

T ≤ n − 1 − 2k − 3 = n − 2k − 4, we get
a2k+3

T ∈ n − 2k − 3. Let T ′ := T \ {(a2k+3
T − s, a2k+3

T + 2k + 3 − s) | 0 ≤ s ≤ a2k+3
t }. Then

T ′ ∈ T 1
k .

Let g : T 1
k+1 → ϕ(T 1

k ) × n − 2k − 3 be defined by g(T ) := (ϕ(T ′), ak+1
T ) for all T ∈ T 1

k+1.
If T1 ⊆ T2 in T 1

k+1, then T ′
1 ⊆ T ′

2 and a2k+3
T1

≤ a2k+3
T2

. Conversely, if g(T1) ⊆ g(T2) for
T1, T2 ∈ T ′

k+1, then ϕ(T ′
1) ⊆ ϕ(T ′

2) and a2k+3
T1

≤ a2k+3
T2

. Hence, [T ′
1]kerϕ ⊆ [T ′

2]kerϕ, which
implies that T ′

1 ⊆ T ′
2 (using ϕ(T 1

k ) ∼= T 1
k /kerϕ). Therefore, T1 = T ′

1 ∪ Bk+1
T1

∪ (Bk+1
T1

)d ⊆
T ′

2 ∪Bk+1
T2

∪ (Bk+1
T2

)d = T2. Let T ∈ T 1
k and let c ∈ n − 2k − 3 and let T = ϕ(T ) ∪Bc ∪Bd

c

where Bc := {(c − s, c + 2k + 3 − s) | 0 ≤ s ≤ c}. Then T̄ ∈ T 1
k+1 where ak+1

T = c and
ϕ(T ) = T̄ . Then we have
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T 1
k+1

∼= ϕ(T 1
k ) × n − 2k − 3

∼= (n − k − 2 ×
∏

1≤t≤k

n − 2t − 1) × n − 2k − 3

∼= n − k − 2 × [(
∏

1≤t≤k

n − 2t − 1) × n − 2k − 3]

∼= n − (k + 1) − 1 × Pk+1

(iv) can be proved in a similar way. ¥

On T 1, a partial order can be defined by:

a ≤ b :=⇔
{

a, b ∈ T 1
k and a ≤k b for some 0 ≤ k ≤ [n

2 ] or
a ∈ T 1

k , b ∈ T 1
k+1 for some 0 ≤ k ≤ [n

2 ] .

On T 0 a partial order can be defined in a similar way. Finally, we have the following result:

Theorem 3.7 For the tolerance lattice of an LT1-algebra (A; f) with |Imfn−1| = 2 and f
has no fixed point we have

(Tol(A);⊆) = T 0 ∪ T 1 ∪ T 2

with T 0 ∼=
∑

0≤k≤[ n
2 ]

T 0
k and T 1 ∼=

∑
0≤k≤[ n

2 ]

T 1
k .

Proof. It remains to prove that Tol(A) ⊆ T 0 ∪ T 1 ∪ T 2. Let T ∈ Tol(A) and assume
that there are elements x, y, u, v ∈ A such that (x, y) ∈ T and (u, v) ∈ T with |x − y| =
2t + 1, |u + v| = 2s for some t ≥ 0, s ≥ 1. Let k and m be the greatest integers with such
properties, let T1 = 〈Bk〉, T0 = 〈Bm〉, where
Bk =

∪
0≤t≤k

{(a2t+1
T − s, a2t+1

t + 2t + 1 − s) | 0 ≤ s ≤ a2t+1
T }

and Bm =
∪

0≤t≤m

{(a2t
T − s, a2t

T + 2t − s) | 0 ≤ s ≤ a2t
T }.

Then T0 ∈ T 0 and T1 ∈ T 1 and T = T0 ∨ T1. ¥

Example 3.8 Let A = {0, 1, 2, 3} and let f : A → A be given by the table

x f(x) f2(x) f3(x) f4(x)
0 1 0 1 0
1 0 1 0 1
2 1 0 1 0
3 2 1 0 1.

Then the tolerance lattice can be pictured by Figure 6.
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T(0,1)

T(1,2)

T(2,3)

T(0,3)

T(0,2)

T(1,3)

                

T((0,1),(0,2))

T((0,1),(1,3))

T((1,2),(0,2))

T((2,3),(0,2))

T((1,2),(1,3))

T((2,3),(1,3))

T((2,3),(0,3))

T((0,3),(0,2),(2,3)

T((0,3),(0,2))

T((0,3),(1,3))

T((0,3),(1,3), (2,3))

A x A

A

Figure 6: Tolerance Lattice of an LT1-algebra

4 Tolerances on LT1-algebras with |Imfn−2| = 1

Let A be a set with |A| = n ≥ 3 and A = {v, u, f(u), . . . , fn−2(u)}, where fn−1(u) =
fn−2(u) and f(v) = fm(u) for some 0 ≤ m < n − 2. Without restriction of the generality
we may assume that A = {0, 1, . . . ,m − 1,m,m + 1, . . . , n − 1} and that f(t) = t − 1 if
t 6∈ {0, n − 1}, f(0) = 0 and f(n − 1) = m for some 0 ≤ m < n − 2.
Then Figure 7 shows the graph of the LT1-algebra (A; f).

n−2 2 1 0n−3 m+1 m m−1

n−1

Figure 7: LT1-algebra with |Imfn−2| = 1

For an LT1-operation with |Imfn−2| = 1 we have fy(x) = x− y if x ≥ y, x < n− 1, fy(n−
1) = m − (y − 1) and fy(x) = 0 if x < y.

We introduce the following notation:

T := {T ∈ Tol(A) | (m + 1, n − 1) 6∈ T}
and if m > 0, then we set T0 := {∆A}, and for each 1 ≤ k ≤ n − 2 we define Tk :=
T ∩Tolk(A). Moreover, let Tk(A) := {T ∈ Tol(A) | [0]T := {0, . . . , k− 1}}. Clearly, Tk is a
sublattice of T . The following lemma turns out to be very useful for our next considerations.
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Lemma 4.1 Let 1 ≤ m < n − 2, k 6= m, and assume that T (m − k + 1, n − 1) or T (n −
1,m + k + 1) are in Tk. Let X and Y be disjoint isomorphic sublattices of Tk. If Y =
{T ∪ T (m − k + 1, n − 1) | T ∈ X} or Y = {T ∪ T (n − 1,m + k + 1) | T ∈ X}, then

X
·
∪ Y ∼= 2 ×X .

Proof. Define g : X
·
∪ Y → 2 ×X by

g(T ) :=
{

(0, T ) if T ∈ X
(0, T ′) ifT ∈ Y and T = T ′ ∪ T (m − k + 1, n − 1)

in the first case or

g(T ) :=
{

(0, T ) if T ∈ X
(0, T ′) ifT ∈ Y and T = T ′ ∪ T (n − 1,m + k + 1)

in the second one. It is clear that g is an isomorphism. ¥

For each k ≥ 1, i ≥ 0 and T ∈ Tk, let Bi
T := {(i+ t, i+ t+k) | 0 ≤ t ≤ i}. As we have shown

in section 1 we have T (i, i+k) = ∆A∪Bi
T ∪(Bi

T )d. Let B := {T (i, i+k) | 0 ≤ i ≤ n−k−2}.
For k 6= m let C := {T ∪ T (m− k + 1, n− 1) | T ∈ B} and D := {T ∪ T (n− 1,m + k + 1) |
T ∈ B ∪ C} and let T̄k := B ∪ C ∪ D.

If k = m, one can see that T (0, n− 1) ⊃ T (0,m) ⊂ T (1, n− 1). Moreover, we introduce the
following notation:

C̄ := {T ∪ T (0, n − 1) | T ∈ B},
D̄ := {T ∪ T (1, n − 1) | T ∈ B ∪ C̄},
Ē := {T ∪ T (n − 1, 2m + 1) | T ∈ B ∪ C̄ ∪ D̄},

and let T̄m := B ∪ C̄ ∪ D̄ ∪ Ē.

Now we consider the cases 1 < m < n − 2 and m = 0.

Proposition 4.2 Let 1 < m < n − 2.

1. If k 6= m, then

T̄k
∼=



m − k
+
t2

+
t2 × k − 1

+
t22 × n − m − k − 1 if 1 ≤ k < m

and k ≤ n − m − 3,

m − k
+
t2

+
t2 × n − m − 2 if 1 ≤ k < m and k > n − m − 3,

m
+
t2

+
t2 × m − n − k − 2 if 1 < m < k ≤ n − m − 3,

n − k − 1 if 1 < m < k
and k > n − m − 3.

2.

T̄m
∼=

{
22 × m

+
t23 × n − 2m − 1 if 2m ≤ n − 3,

22 × n − m − 1 if 2m > n − 3.

Proof. Let 1 < m < n − 2. We consider two cases.

1. 1 ≤ k 6= m. For each 0 ≤ i ≤ j ≤ n − 2, let
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Bi,j := {T (t, t + k) | i ≤ t ≤ j},
Ci,j := {T ∪ T (m − k + 1, n − 1) | T ∈ Bi,j},
Di,j := {T ∪ T (n − 1,m + k + 1) | T ∈ Bi,j ∪ Ci,j}.

Then Bi,j ⊆ B,Ci,j ⊆ C,Di,j ⊆ D and Bi,j is a sublattice of Tk which is isomorphic to
j − i + 1.

Case 1: 1 ≤ k < m. Then 1 < m < n− 2 and 1 ≤ k < m imply that 1 ≤ m− k < n− k − 2
which implies that m− k + 1 ≤ n− k − 1 ≤ n− 2. Consequently, T (m− k + 1, n− 1) ∈ Tk

and then A := B0,m−k−1

·
∪ {T (m − k,m) ⊂ T (m − k + 1), n − 1)} ∼= m − k

+
t2.

If k > n−m−3, then n−2 < m+k+1 and therefore T (n−1, m+k+1) 6∈ Tk; hence D = ∅.
Thus T̄k = B ∪C = A

·
∪ Bm−k+1,n−k−2

·
∪ Cm−k+1,n−k−2. Since Bm−k+1,n−k−2 is a sublat-

tice of Tk, Lemma 4.1 implies that Bm−k+1,n−k−2

·
∪ Cm−k+1,n−k−2

∼= 2×Bm−k+1,n−k−2
∼=

2 × n − m − 2. Hence T̄k
∼= m − k

+
t2

+
t2 × n − m − 2. But, if k ≤ n − m − 3 then

T (n−1,m+k+1) ∈ T̄k. Therefore, T̄k = A
·
∪ (Bm−k+1,m−1

·
∪ Cm−k+1,m−1)

·
∪ (Bm,n−k−2

·
∪

Cm,n−k−2

·
∪ Dm,n−k−2). Since Bm−k+1,m−1, Bm,n−k−2 and Bm,n−k−2

·
∪ Cm,n−k−2 are sub-

lattices of Tk, Lemma 4.1 implies that
Bm−k+1,m−1

·
∪ Cm−k+1,m−1

∼= 2 × Bm−k+1,m−1
∼= 2 × k − 1,

Bm,n−k−2

·
∪ Cm,n−k−2

∼= 2 × Bm,n−k−2
∼= 2 × n − m − k − 1 and

Bm,n−k−2

·
∪ Cm,n−k−2

·
∪ Dm,n−k−2

∼= 2 × (Bm,n−k−2

·
∪ Cm,n−k−2)

∼= 2 × 2 × n − m − k − 1
∼= 22 × n − m − k − 1.

Therefore, T̄k
∼= m − k

+
t2

+
t2 × k − 1 × 22 × n − m − k − 1.

Case 2: m < k < n−2. Then m−k+1 ≤ 0 and then T (m−k+1, n−1) 6∈ Tk; hence, C = ∅.
If k > n−m− 3, then n− 2 < m + k + 1 and then T (n− 1, m + k + 1) 6∈ Tk; hence D = ∅.
Therefore, T̄k = B = B0,n−k−2

∼= n − k − 1. If k ≤ n−m−3, then T (n−1,m+k +1) ∈ Tk

and therefore, D 6= ∅. In this case,
T̄k = B0,m−1

·
∪ {T (m,m + k) ⊂ T (n − 1,m + k + 1)}

·
∪ (Bm+1,n−k−2

·
∪ Dm+1,n−k−2).

Since Bm+1,n−k−2 is a sublattice of Tk, Lemma 4.1 implies that

Bm+1,n−k−2

·
∪ Dm+1,n−k−2

∼= 2 × Bm+1,n−k−2
∼= 2 × n − m − k − 2.

Hence, T̄k
∼= m

+
t2

+
t2 × n − m − k − 2.

2. 1 ≤ k = m < n − 2. Then T (0, n − 1) ∈ Tm and T (1, n − 1) ∈ Tm. If 2m > n − 3,
then 2m + 1 > n − 2; so, T (n − 1, 2m + 1) 6∈ Tm, hence, Ē = ∅. Therefore, T̄m = B ∪ C̄ ∪
D̄ = B0,n−m−2

·
∪ C0,n−m−2

·
∪ D0,n−m−2. Since B0,n−m−2 and B0,n−m−2

·
∪ Co,n−m−2 are
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sublattices of Tm, Lemma 4.1 implies that

B0,n−m−2

·
∪ C0,n−m−2

∼= 2 × B0,n−m−2
∼= 2 × n − m − 1

and
(B0,n−m−2

·
∪ C0,n−m−2)

·
∪ D0,n−m−2

∼= 2 × (B0,n−m−2

·
∪ C0,n−m−2)

∼= 2 × 2 × n − m − 1.

Therefore, Tm
∼= 22 × n − m − 1.

If 2m ≤ n − 3, then T (n − 1, 2m + 1) ∈ Tm and
T̄m = B ∪ C̄ ∪ D̄ ∪ Ē

= (B0,m−1

·
∪ C̄0,m−1

·
∪ D̄0,m−1)

·
∪ (Bn,n−m−2

·
∪ C̄m,n−m−2

·
∪ D̄m,n−m−2

·
∪ Ēm,n−m−2).

Applying Lemma 4.1 in the same way as in the previous cases we obtain
B0,m−1

·
∪ C̄0,m−1

·
∪ D̄0,m−1

∼= 2 × (B0,m−1

·
∪ C̄0,m−1)

∼= 2 × 2 × B0,m−1
∼= 22 × m, and

Bm,n−m−2

·
∪ C̄m,n−m−2

·
∪ D̄m,n−m−2

·
∪ Ēm,n−m−2

∼= 2 × (Bm,n−m−2

·
∪ C̄m,n−m−2

·
∪ D̄m,n−m−1)

∼= 2 × 2 × (Bm,n−m−2

·
∪ Cm,n−m−2)

∼= 22 × 2 × Bm,n−m−2
∼= 23 × n − 2m − 1.

¥

Now we consider the case m = 0.

Proposition 4.3 If m = 0, then

Tk
∼=

{
2 × n − k − 1 if 1 ≤ k ≤ n − 3
1 if k > n − 3 .

Proof. Let m = 0 and k ≥ 1. If 1 ≤ k ≤ n − 3, then k + 1 ≤ n − 2 and therefore
T (n − 1, k + 1) ∈ T̄k. Let denote Gi,j := {T ∪ T (n − 1, k + 1) | T ∈ Bi,j}. Then T̄k =

B0,n−k−2

·
∪ G0,n−k−2 and we have

T̄k
∼= 2 × B0,n−k−2

∼= 2 × n − k − 1

where the isomorphism is defined similar as in Lemma 4.1. If k > n−3, then T (n−1, k+1) 6∈
T̄k. So, T̄k = B0,n−k−2

∼= n − k − 1. From k > n − 3 we obtain n − k − 1 < 2, which shows
that T̄k

∼= 1. ¥

Moreover, we have

Corollary 4.4 Let 0 ≤ m < n − 2. Then

1. T1 = T̄1 and

2. T̄k is a sublattice of Tk for all k ≥ 1.
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Proposition 4.5

1. If 1 ≤ m < n − 2, then Tk
∼= T̄k × Tk−1 for all k ≥ 1 and T0 = {∆A}.

2. For m = 0, let T0 := {∆A, T (0, n − 1)} and T̄ := T1 ∪ {T ∪ T (0, n − 1) | T ∈ T1}. Then
T̄ ∼= 2 × T1, T2

∼= T̄2 × T̄ and Tk
∼= T̄k × Tk−1 for all k > 2.

Proof. 1. Let 1 < m < n − 2 and m 6= k > 1 and let T ∈ Tk. Since A \ {n − 1} is an
LT -algebra with fundamental operation f |A \ {n − 1}, we have ak−1

T ∈ n − k − 1. Then
T ⊇ T (ak−1

T , ak−1
T + k) ∈ B ⊆ T̄K or T ⊇ T ((ak−1

T , ak−1
T + k), (m − k + 1, n − 1)) ∈ C ⊆ T̄k

or T ⊇ T ((ak−1
T , ak−1

T + k), (m − k + 1, n − 1), (n − 1,m + k + 1)) ∈ D ⊆ T̄k depending
on (m − k + 1, n − 1) ∈ T or (n − 1,m + k + 1) ∈ T or neither. In each case one can see
that there exists an element ST ∈ T̄k such that ST ⊆ T ; and thus T \ ST ∈ Tk−1. For
the cases k = m > 1 or m = 1 one concludes in a similar way. Now we define a mapping
g : Tk → T̄k × Tk−1 by g(T ) = (ST , T \ ST ) for all T ∈ Tk. Then g is an order-embedding
and it is easy to prove that T ∪ S ∈ Tk for all S ∈ T̄k and T ∈ T̄k−1. Hence, g is an
order-isomorphism.
2. Let m = 0. Proposition 4.3 and Corollary 4.4 imply that T1 = T̄1 and this is isomorphic
to either 2 × n − k − 1 or to 1. In the case m = 0 the set Tol(A) of all tolerances on A
contains T (0, n − 1). We set H := {T ∪ T (0, n − 1) | T ∈ T1} for all 1 ≤ i, j ≤ n − 2

and T̄ := T1

·
∪ H. Then with an isomorphism defined similar as in Lemma 4.1 we get

T̄ ∼= 2 × T1. ] Hence, T̄ ∼= 2 or T̄ ∼= 22 × n − k − 1.

Now we will show that T2
∼= T̄2 × T̄ . Using an argumentation as in 1. One gets T ⊇

T (a1
T , a1

T + 2) ∈ B ⊆ T̄2 or T ⊇ T ((a1
T , a1

T + 2), (n − 1, 3)) ∈ C ⊆ T̄2 for all T ∈ T2. Hence
for all T ∈ T2 there exists ST ∈ T̄2 such that ST ⊆ T . Since ST ∪ T̄ ∈ T for all T̄ ∈ T̄ ,
we have T = ST

·
∪ {T̄ ∪ ST | T̄ ∈ T̄ }. Then the mapping defined by T 7→ (ST , T \ ST ) for

all T ∈ T2 is an isomorphism from T2 to T̄2 × T̄ . A similar argumentation as in 1. shows
Tk

∼= T̄k × Tk−1 for all k > 2. ¥

Our construction has the following consequences:

Corollary 4.6 1. For m 6= 0, Tk ∩ Tl = ∅ for all 0 ≤ k 6= l ≤ n − 2 and T =
∪

0≤k≤n−2

Tk.

2. For m = 0, Tk ∩ Tl = ∅ for all 1 < k 6= l ≤ n − 2, Tk ∩ T̄ = ∅ and Tk ∩ T0 = ∅
for all k ≥ 2 and T̄ ∩ T0 = ∅. Moreover, T = T0

·
∪ T̄

·
∪

∪
2≤k≤n−2

Tk.

3. For all 0 ≤ k ≤ n − 2, Tk and T̄ are isomorphic to a sublattice of T .
4. For all 0 < k ≤ n − 2, Tk−1 is isomorphic to a sublattice of Tk.

Using the definition of an ordered sum we have:

Proposition 4.7 1. For m 6= 0, T ∼= T0

+
tT1

+
t · · ·

+
tTn−2 and T0 = {∆A}.

2. For m = 0, T ∼= 2
+
t2 × T1

+
tT2 · · ·

+
tTn−2.

Finally we get our result:

Theorem 4.8 Tol(A) ∼= 2 × T .

Proof. Let α : Tol(A) → 2 × T be defined by
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α(T ) =
{

(0, T ) if (n − 1,m + 1) 6∈ T
(1, T \ {(n − 1,m + 1)} if (n − 1,m + 1) ∈ T

.

Then, clearly, α is an order-isomorphism. ¥

We consider the following example for n = 4,m = 1:

Example 4.9

x f(x) f2(x)
0 0 0
1 0 0
2 1 0
3 1 0.

Then the tolerance lattice is pictured in Figure 8.
A x A

A

T(2,3)

T(0,1)

T(0,2) T(0,3) T(1,2) T(1,3)

T((0,2),(0,3),(1,2),(1,3))

T((0,2),(0,3),(1,2),(1,3),(2,3))

T((0,1),(2,3))

T((1,3),(2,3))

T((0,2),(0,3))

Figure 8: Tolerance Lattice of an LT1-algebra
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