TOLERANCES ON MONO-UNARY ALGEBRAS WITH LONG PRE-PERIODS

Chawewan Ratanaprasert and Klaus Denecke

Received May 9, 2012 ; revised February 26, 2013

Abstract

Iterating a unary operation defined on a finite set A one obtains a chain $$
A \supseteq \operatorname{Imf} \supseteq \operatorname{Im} f^{2} \supseteq \cdots \supseteq \operatorname{Im} f^{m}=\operatorname{Im} f^{m+1},
$$ where Imf is the image of f, i.e. the set of all images and $f^{i}:=\underbrace{f \circ \cdots \circ f}_{i-\text { times }}$ is the $i-t h$ iteration of $f, f^{0}:=i d_{A}$. The least integer $\lambda(f)$ with $\operatorname{Im} f^{\lambda(f)}=\operatorname{Im} f^{\lambda(f)+1}$ is called the pre-period of f. Let n be the cardinality of A. Then the pre-period of f is an integer between 0 and $n-1$. If $\lambda(f)=n-1$, then f is said to be a long-tailed operation ($L T$-operation) and if $\lambda(f)=n-2$, then f is said to be an $L T_{1}$-operation. In [3] the authors characterized $L T$ - and $L T_{1}$-operations and their invariant equivalence relations. In [4] these were generalized to partial operations and in [5] (see also [7]) to n-ary operations $(n>1)$. In this paper we study invariant tolerance relations of $L T$ and $L T_{1}$-operations. An algebra $(A ; f)$ where f is a unary operation on A is said to be a mono-unary algebra. For the theory of mono-unary algebras we refer the reader to the monograph [9]. Here we study the tolerance lattices of mono-unary algebras $(A ; f)$, where f is an $L T$ - or an $L T_{1}$-operation. Tolerances on mono-unary algebras were considered in [10] (see also [8]).

1 Preliminaries

To make this text independent we first repeat some results on $L T$ - and $L T_{1}$-operations from [3].

Theorem 1.1 [3] Let $f: A \rightarrow A$ be a unary operation and $|A|=n \geq 2$. Then the following propositions are satisfied:
(i) $\lambda(f)=n-1$ if and only if there exists an element $d \in A$ such that

$$
A=\left\{d, f(d), f^{2}(d), \ldots, f^{n-1}(d)=f^{n}(d)\right\}(\text { see e.g. }[2])
$$

(ii) Assume now that $n \geq 3$. Then $\lambda(f)=n-2$ and $\left|I m f^{n-2}\right|=1$ if and only if there are distinct elements $u, v \in A$ such that $A=\left\{u, v, f(v), \ldots, f^{n-2}(v)\right\}$ and such that there is an exponent k with $0 \leq k \leq n-2$ with $f(u)=f^{k+1}(v)$ and there is an integer m with $m+k=n-2$ with $f^{m+1}(u)=f^{m}(u)$.
(iii) We have $\lambda(f)=n-2$ and $\left|I m f^{n-2}\right|=2$ if and only if there are different elements $u, v \in A$ such that either
a) $A=\left\{v, u, f(u), \ldots, f^{n-2}(u)\right\}$ with $v=f(v)$ and $f^{n-1}(u)=f^{n-2}(u)$, or b) $A=$ $\underline{\left\{u, f(u), f^{2}(u) \ldots, v=f^{n-2}(u), f^{n-1}(u)\right\} \text { where } v=f^{n}(u)=f^{n-2}(u) .}$

2010 Mathematics Subject Classification. 03B50, 08A30, 08A55.
Key words and phrases. unary operation, pre-period, tolerance.

If we choose $A=\{0,1, \cdots, n-2, n-1\}, d=n-1, f(k)=k-1$ for $k \neq 0, f(0)=0$, then f can be pictured as a directed graph where the vertices are labeled by the elements and there is an directed edge from x to y if $f(x)=y$.

Figure 1: $L T$-operation
This graph is also called the graph of the mono-unary algebra $\mathcal{A}=(A ; f)$. The following equations for an $L T$-operation f and $x, y \in A$ will be used many times.

$$
f^{y}(x)=\left\{\begin{array}{l}
x-y \text { if } x \geq y \tag{*}\\
0 \text { if } x<y
\end{array}\right.
$$

2 Tolerances on $L T$-algebras

A tolerance on a mono-unary algebra $(A ; f)$ is a reflexive and symmetric binary relation T with the property that $(x, y) \in T$ implies $(f(x), f(y)) \in T$ for any $x, y \in A$. In a corresponding way, tolerances can be defined on arbitrary algebras. Congruences are transitive tolerances. For an element $a \in A$ let

$$
[a]_{T}:=\{x \in A \mid(a, x) \in T\} .
$$

In [8] this set is called a class of T. Let \leq be the usual order on $A=\{0,1, \ldots, n-1\}$. The following facts are well-known and easy to prove (see [8], [10]).

Proposition 2.1 Let $\mathcal{A}=(A ; f)$ be an LT-algebra and let T be a tolerance on \mathcal{A}.
(i) $[0]_{T}$ is convex with respect to \leq.
(ii) For any $x \neq y \in A$ if $T \neq \Delta_{A}$, there are distinct elements $u, v \in[0]_{T}$ such that $(u, v) \in T$.
(iii) Let $[0]_{T}=\{0,1, \ldots, k-1\}$. If $T \neq \Delta_{A}$, then $\left|[0]_{T}\right|>1$.
(iv) If T is a congruence, then $(x, y) \in T \Leftrightarrow\{x, y\} \subseteq[0]_{T}$ for all $x, y \in A$.
(v) For any $x, y \in A$, if $(x, y) \in T$ then $|x-y|<\left|[0]_{T}\right|$.

Proof. (i) We have to show: if $x \in[0]_{T}$ and $0 \leq y \leq x$, then $y \in[0]_{T}$. Because of $x \geq x-y$ by $\left(^{*}\right)$ we have $f^{x-y}(x)=x-(x-y)=y$. Now, $(0, x) \in T$ implies $\left(f^{x-y}(0), f^{x-y}(x)\right)=(0, y) \in T$.
(ii) We may assume that $\{x, y\} \nsubseteq[0]_{T}$, that $x<y$, and that $x \notin[0]_{T}$ since $y \notin[0]_{T}$ implies $x \notin[0]_{T}$ by (i). Let $[0]_{T}=\{0,1, \ldots, k-1\}$. Then $f^{x-k+1}(x)=k-1$. If $y \in[0]_{T}$, then $(0, y) \in T$ and $\left(f^{x-k+1}(0), f^{x-k+1}(y)\right)=\left(0, f^{x-k+1}(y)\right) \in T$, i.e. $f^{x-k+1}(y) \in[0]_{T}$ and if $y \notin[0]_{T}$, then $x-k+1>y-k+1$ implies that $f^{x-k+1}(y) \leq f^{y-k+1}(y)=$ $k-1$, so $f^{x-k+1}(y) \in[0]_{T}$. Let $v:=f^{x-k+1}(y)$. Now $(x, y) \in T$ implies $(k-1, v)=$ $\left(f^{x-k+1}(x), f^{x-k+1}(y)\right) \in T$ and hence $u:=k-1$ and v are the required elements.
(iii) Let $(x, y) \in T, x \neq y$. Then by (ii) there are elements $u, v \in\{0,1, \cdots, k-1\}, u \neq v$, such that $(u, v) \in T$. We may assume that $u \geq v$. Then $\left(f^{v}(u), f^{v}(v)\right)=(0, u-v) \in T$, where $0<u-v<k$.
(iv) is clear.
(v) Suppose that there are elements $x, y \in A$ such that $(x, y) \in T$ and $|x-y| \geq\left|[0]_{T}\right|$. We may assume that $[0]_{T}=\{0,1, \ldots, k-1\}$. Then $\left|[0]_{T}\right|=k$ and $|x-y|=x-y$. Since $(x, y) \in T$, we have $\left(f^{y}(x), f^{y}(y)\right)=(x-y, 0) \in T$. By assumption and by (i) we get $(0, k) \in T$, hence $\left|[0]_{T}\right| \geq k+1$, a contradiction.

Let $\operatorname{Tol}(\mathcal{A})$ denote the set of all tolerances of the mono-unary algebra \mathcal{A}. Clearly, the diagonal $\Delta_{A}=\{(a, a) \mid a \in A\}$ is contained in any $T \in \operatorname{Tol}(\mathcal{A})$ and any $T \in \operatorname{Tol}(\mathcal{A})$ is contained in the tolerance $A \times A$. The following properties of $\operatorname{Tol}(\mathcal{A})$ for a mono-unary algebra \mathcal{A} are well-known.

Proposition 2.2 ([10]) Let $(A ; f)$ be an arbitrary mono-unary algebra. Then $\operatorname{Tol}(\mathcal{A})$ forms an algebraic lattice with respect to set inclusion, which is a sublattice of the power set lattice $(\mathcal{P}(A \times A) ; \subseteq)$, and therefore, it is a distributive lattice.

Let $T(a, b)$ be the tolerance generated by the pair (a, b), i.e. the intersection of all tolerances on the given algebra \mathcal{A} which contain the pair (a, b). Let $\operatorname{Con}(\mathcal{A})$ be the congruence lattice of the algebra \mathcal{A}. Now we give two more properties of an $L T$-algebra.

Proposition 2.3 Let \mathcal{A} be an LT-algebra. Then
(i) $\bigcap\left(\operatorname{Tol}(\mathcal{A}) \backslash\left\{\Delta_{A}\right\}\right)=T(1,0)$.
(ii) If $\alpha, \beta \in \operatorname{Con}(\mathcal{A}) \backslash\left\{\Delta_{A}\right\}$, then $\alpha \cap \beta \neq \Delta_{A}$, i.e. \mathcal{A} is subdirectly irreducible.

Proof. (i) Let $T \in \operatorname{Tol}(\mathcal{A}), T \neq \Delta_{A}$. Then there are elements $a, b \in A$ with $a \neq b$ and $(a, b) \in T$. Without loss of generality we may assume that $a<b$. There follows $\left(f^{b-1}(a), f^{b-1}(b)\right)=(0,1) \in T$, i.e. $T(0,1) \subseteq T$ for any $T \neq \Delta_{A}, T \in \operatorname{Tol}(\mathcal{A})$. Then we have $T(0,1) \subseteq \bigcap\left(\operatorname{Tol}(\mathcal{A}) \backslash\left\{\Delta_{A}\right\}\right)$ and thus $\bigcap\left(\operatorname{Tol}(\mathcal{A}) \backslash\left\{\Delta_{A}\right\}\right)=T(1,0)$.
(ii) In a similar way as in the proof of (i) we see that any congruence of $(A ; f)$ contains the congruence generated by $(0,1)$ and therefore $\alpha, \beta \in \operatorname{Con}(\mathcal{A}) \backslash\left\{\Delta_{A}\right\}$ implies $\alpha \cap \beta \neq \Delta_{A}$ and this means that \mathcal{A} is subdirectly irreducible (see e.g. [1]).

By Proposition 2.1(iii) we have $\left|[0]_{T}\right|>1$ for any $T \in \operatorname{Tol}(\mathcal{A}), T \neq \Delta_{A}$ and by Proposition 2.1 (i) there is an element k with $1<k \leq n$ such that $[0]_{T}=\{0,1, \ldots, k-1\}$. For each $1 \leq t \leq k-1$, there is the greatest integer $a_{T}^{t} \in A$ such that $\left(a_{T}^{t}, a_{T}^{t}+t\right) \in T$. We consider the set

$$
B_{T}:=\bigcup_{1 \leq t \leq k-1}\left\{\left(a_{T}^{t}-s, a_{T}^{t}+t-s\right) \mid 0 \leq s \leq a_{T}^{t}\right\}
$$

Since B_{T} is closed under application of f, the tolerance generated by B_{T} consists precisely of all pairs from B_{T}, all pairs from $B_{T}^{d}:=\left\{(x, y) \in A \times A \mid(y, x) \in B_{T}\right\}$ and of all pairs from the diagonal Δ_{A}, i.e. $\left\langle B_{T}\right\rangle=B_{T} \cup B_{T}^{d} \cup \Delta_{A}$. By definition, $\left\langle B_{T}\right\rangle$ is the least tolerance containing B_{T}.

Lemma 2.4 (i) $\left\langle B_{T}\right\rangle=T$.
(ii) If $T=T(m, m+1)$ is the tolerance generated by $(m, m+1)$ for $0 \leq m \leq n$,
then $B_{T}=\{(0,1),(1,2),(2,3), \cdots,(m, m+1)\}$.
(iii) If $T=T(a, b)$, then there exists the greatest integer m such that

$$
B_{T}=\bigcup_{1 \leq t \leq m}\left\{\left(a_{T}^{t}-s, a_{T}^{t}+t-s\right) \mid 0 \leq s \leq a_{T}^{t}\right\}
$$

(iv) $0 \leq a_{T}^{t} \leq n-t-1$ for all $1 \leq t \leq k-1$.

Proof. (i) We have $[0]_{T}=\{0,1, \ldots, k-1\}$. Clearly, $B_{T} \subseteq T$ and then $\left\langle B_{T}\right\rangle \subseteq T$. Assume that $(x, y) \in T$ with $x \neq y$. We may assume that $x>y$. Then there exists an element t with $0<t<k$ such that $|x-y|=t$, i.e. $(x, y) \in\left\{\left(a_{T}^{t}-s, a_{T}^{t}+t-s\right) \mid 0 \leq s \leq a_{T}^{t}\right\} \subseteq B_{T}$ and then $T \subseteq\left\langle B_{T}\right\rangle$. Altogether, we have equality.
(ii) The set $\{(0,1),(1,2), \ldots,(m, m+1)\}$ can be written as $B_{T}=\bigcup_{1 \leq t \leq 1}\left\{\left(a_{T}^{1}-s, a_{T}^{1}+\right.\right.$ $\left.1-s) \mid 0 \leq s \leq a_{T}^{1}\right\}$ with $a_{T}^{1}=m,[0]_{T}=\{0,1\}$. We show that $T(m, m+1)=\left\langle B_{T}\right\rangle$. Indeed, $\{(0,1),(1,2), \ldots,(m, m+1)\} \subseteq T(m, m+1)$ implies $\left\langle B_{T}\right\rangle \subseteq T(m, m+1)$. Since $T(m, m+1)$ is the least tolerance containing $(m, m+1)$ and since $(m, m+1) \in\left\langle B_{T}\right\rangle$, we have $\left\langle B_{T}\right\rangle=T(m, m+1)$.
(iii) We may assume that $a>b$. Then $m=a-b$.
(iv) $\left(a_{T}^{t}, a_{T}^{t}+t\right) \in T$ implies $a_{T}^{t}+t \in A$, i.e. $a_{T}^{t}+t \leq n-1$, i.e. $a_{T}^{t} \leq n-t-1$.

To describe the tolerance lattice of \mathcal{A} we classify all tolerances by the cardinality of $[0]_{T}=$ $\{0,1, \ldots, k-1\}$.

Definition 2.5 Let $\operatorname{Tol}_{0}(\mathcal{A})=\left\{\Delta_{A}\right\}$ and for each $1<k \leq n$ let $\operatorname{Tol}_{k-1}(\mathcal{A})$ be the set of all tolerances on \mathcal{A} with $[0]_{T}=\{0,1, \ldots, k-1\}$.

By this definition, $\operatorname{Tol}_{1}(\mathcal{A})$ is the set of all tolerances on \mathcal{A} with $[0]_{T}=\{0,1\}$ and by Lemma $2.4, \operatorname{Tol}_{1}(\mathcal{A})=\{T(m, m+1) \mid m=0,1, \ldots, n-2\}$.

Let $\underline{n-1}:=(\{0, \ldots, n-2\} ; \leq)$ with the usual linear order $\leq \operatorname{defined}$ on A. The set $\operatorname{Tol}_{1}(\mathcal{A})$ is partially ordered with respect to set inclusion.

Proposition $2.6\left(\operatorname{Tol}_{1}(\mathcal{A}) ; \subseteq\right) \cong \underline{n-1}$.

Proof. The mapping $g:\{0,1, \ldots, n-2\} \rightarrow \operatorname{Tol}_{1}(\mathcal{A})$ defined by $g(m)=T(m, m+1)$ for all $0 \leq m<n-1$ is order-preserving since $l \leq m$ implies $T(l, l+1) \subseteq T(m, m+1)$. Conversely, from $T(l, l+1) \subseteq T(m, m+1)$ there follows $l \leq m$. This shows that g is one-to-one, i.e. an order-isomorphism. Since by definition of $\operatorname{Tol}_{1}(\mathcal{A})$ any tolerance from this set has the form $T(m, m+1)$ for $m \in\{0,1, \ldots, n-2\}$, the mapping g is onto and thus an order embedding.

Proposition 2.7 For $0<k<n, \operatorname{Tol}_{k}(\mathcal{A}) \cong \underline{n-k} \times \operatorname{Tol}_{k-1}(\mathcal{A})$.
Proof. Let $T \in \operatorname{Tol}_{k}(\mathcal{A})$. Then $[0]_{T}=\{0,1, \ldots, k-1\}$ and by Lemma $2.4(\mathrm{i}), T=\left\langle B_{T}\right\rangle$ where $B_{T}=\bigcup_{1 \leq t \leq k-1}\left\{\left(a_{T}^{t}-s, a_{T}^{t}+t-s\right) \mid 0 \leq s \leq a_{T}^{t}\right\}$. For $1 \leq t \leq k-1$, we consider the set $B_{T}^{t}:=\left\{\left(a_{T}^{t}-s, a_{T}^{t}+t-s\right) \mid 0 \leq s \leq a_{T}^{t}\right\}$. We define $T_{k-1}:=T \backslash\left(B_{T}^{k-1} \cup\left(B_{T}^{k-1}\right)^{d}\right)$. Then $T_{k-1} \in \operatorname{Tol}_{k-1}(\mathcal{A})$ and by Lemma $2.4(\mathrm{ii})$ we have $a_{T}^{k-1} \leq n-(k-1)-1=n-k$,
i.e. $a_{T}^{k-1} \in \underline{n-k}\left(=\{0,1, \ldots, n-k-1\}\right.$. Therefore, the pair $\left(a_{T}^{k-1}, T_{k-1}\right)$ belongs to the cartesian product $\underline{n-k} \times \operatorname{Tol}_{k-1}(\mathcal{A})$. Let $c \in \underline{n-k}$ and $\alpha \in \operatorname{Tol}_{k-1}(\mathcal{A})$. Define $\bar{\alpha}:=\left\langle B_{\alpha}\right\rangle$ where $B_{\alpha}=\{(c-s, c+k-1-s) \mid 0 \leq s \leq c\}$. Then $[0]_{\bar{\alpha}}=\{0,1, \ldots, k-1\}$ and thus $\bar{\alpha} \in \operatorname{Tol}_{k}(\mathcal{A})$, where $c=a_{\bar{\alpha}}^{k-1}$ and $\bar{\alpha}_{k-1}=\alpha$.
Define $g: \operatorname{Tol}_{k}(\mathcal{A}) \rightarrow \underline{n-k} \times \operatorname{Tol}_{k-1}(\mathcal{A})$ by $g(T)=\left(a_{T}^{k-1}, T_{k-1}\right)$. Since $[0]_{\alpha}=[0]_{\beta}$, we have $a_{\alpha}^{k-1} \leq a_{\beta}^{k-1}$, hence $B_{\alpha}^{k-1} \subseteq B_{\beta}^{k-1}$. Let $B_{\alpha}:=B_{\alpha}^{k-1} \cup\left(B_{\alpha}^{k-1}\right)^{d}$ and $B_{\beta}:=$ $B_{\beta}^{k-1} \cup\left(B_{\beta}^{k-1}\right)^{d}$. Since a_{α}^{k-1} is the greatest element such that $\left(a_{\alpha}^{k-1}, a_{\alpha}^{k-1}+k-1\right) \in \alpha$, we have $\left(B_{\beta} \backslash B_{\alpha}\right) \cap \alpha=\emptyset$ and then $\alpha_{k-1}=\alpha \backslash B_{\alpha}=\alpha \backslash B_{\beta} \subseteq \beta \backslash B_{\beta}=\beta_{k-1}$. Therefore, $g(\alpha)=\left(a_{\alpha}^{k-1}, \alpha_{k-1}\right) \leq\left(a_{\beta}^{k-1}, \beta_{k-1}\right)=g(\beta)$, where \leq is defined component-wise, using the usual order on the natural numbers for the first component and set-inclusion for the second one. Now assume that $\alpha, \beta \in \operatorname{Tol}_{k}(\mathcal{A})$ such that $g(\alpha) \leq g(\beta)$, i.e. $a_{\alpha}^{k-1} \leq a_{\beta}^{k-1}$ and $\alpha \subseteq \beta$. Then we have $B_{\alpha} \subseteq B_{\beta}$ and $\alpha=\alpha_{k-1} \cup B_{\alpha} \subseteq B_{k-1} \cup B_{\beta}=\beta$. Hence, g is an order-embedding and together with surjectivity we have an order isomorphism.

Our construction has the following consequences:
Corollary 2.8 (i) $\operatorname{Tol}_{k}(\mathcal{A})$ is a product of chains: $\operatorname{Tol}_{k}(\mathcal{A}) \cong \prod_{t=1}^{k} \underline{n-t}$ for all $0 \leq k \leq n$, especially, $\operatorname{Tol}_{n-1}(\mathcal{A}) \cong \underline{1} \times \ldots, \underline{n-2} \times \underline{n-1}$.
(ii) $\operatorname{Tol}_{k}(\mathcal{A}) \cap \operatorname{Tol}_{l}(\mathcal{A})=\emptyset$ for all $0 \leq k \neq l \leq n-1$ and $\operatorname{Tol}(\mathcal{A})=\underset{0 \leq k \leq n-1}{\bigcup} \operatorname{Tol}_{k}(\mathcal{A})$.
(iii) $\operatorname{Tol}_{k}(\mathcal{A})$ is isomorphic to a sublattice of $\operatorname{Tol}(\mathcal{A})$ for all $0 \leq k \leq n-1$ and $\operatorname{Tol}_{k-1}(\mathcal{A})$ is isomorphic to a sublattice of $\operatorname{Tol}_{k}(\mathcal{A})$ for all $0<k<n$.
(iv) $\operatorname{Tol}_{k}(\mathcal{A}) \cong \pi_{1}\left(\operatorname{Tol}_{k+1}(\mathcal{A})\right)$ where π_{1} is the first projection.

The ordered sum (see e.g. [6]) of a family of partially ordered sets will be denoted by the symbol \sum and if the family consists of finitely many partially ordered sets we will also use the symbol ${ }^{+}$

Theorem 2.9 The tolerance lattice of an LT-algebra is isomorphic to an ordered sum

$$
\operatorname{Tol}(\mathcal{A}) \cong \sum_{0 \leq k \leq n-1} \operatorname{Tol}_{k}(\mathcal{A}) \cong \sum_{0 \leq k \leq n-1} \prod_{t=1}^{k} \underline{n-t} .
$$

Let $\alpha, \beta \in \operatorname{Tol}(\mathcal{A})$. We define an equivalence relation on $\operatorname{Tol}(\mathcal{A})$ as follows:

$$
\alpha \sim \beta: \Leftrightarrow[0]_{\alpha}=[0]_{\beta}
$$

Then the quotient set $\operatorname{Tol}(\mathcal{A}) / \sim$ corresponds to the set $\left\{[0]_{\alpha} \mid \alpha \in \operatorname{Tol}(\mathcal{A})\right\}$ which can be regarded as a linearly ordered set that is isomorphic to the congruence lattice of $(A ; f)$. Altogether we have:

Corollary 2.10 Let $\mathcal{A}=(A ; f)$ be an LT-algebra. Then

$$
\underline{n-1} \cong \operatorname{Tol}_{1}(\mathcal{A}) \cong \operatorname{Tol}(\mathcal{A}) / \sim \cong \operatorname{Con}(\mathcal{A})
$$

Example 2.11 Let $A=\{0,1,2,3\}$ and let $f: A \rightarrow A$ be given by the following table

x	$f(x)$	$f^{2}(x)$	$f^{3}(x)$
0	0	0	0
1	0	0	0
2	1	0	0
3	2	1	0.

Then
$\operatorname{Tol}_{0}(\mathcal{A})=\left\{\Delta_{A}\right\}$,
$\operatorname{Tol}_{1}(\mathcal{A})=\{T(0,1), T(1,2), T(2,3)\}$,
$\operatorname{Tol}_{2}(\mathcal{A})=\{T(0,2), T((0,2),(1,2)), T((0,2),(2,3)), T(1,3)$,
$T((1,3),(1,2)), T((1,3),(2,3))\}$,
$\operatorname{Tol}_{3}(\mathcal{A})=\{T(0,3), T((0,3),(1,3)), T((0,3),(1,2)), T((0,3),(2,3))$,
$T((0,3),(1,3),(1,2)), T((0,3),(1,3),(2,3))\}$.
Then the tolerance lattice of $(A ; f)$ is given by Figure 2 .

Figure 2: Tolerance Lattice of an $L T$-algebra

3 Tolerances on $L T_{1}$-algebras with $\left|\operatorname{Im} f^{n-2}\right|=2$
Corresponding to Theorem 1.1 (iii) we have to consider the cases that f has two fixed points and that f has no fixed point. For the first case, let $A=\left\{v, u, f(u), \ldots, f^{n-2}(u)\right\}$ where $v=f(v)$ and $f^{n-1}(u)=f^{n-2}(u),|A|=n \geq 3$ and $\lambda(f)=n-2$. Without restriction of the generality we may assume that $A=\left\{0,0^{\prime}, 1,2, \ldots, n-2\right\}$ and $f(k)=k-1$ if $k \notin\left\{0,0^{\prime}\right\}$ and $f(0)=0, f\left(0^{\prime}\right)=0^{\prime}$. Let $B:=\{0,1, \ldots, n-2\}$ and let $f \mid B$ be the restriction of f onto B. Clearly, $f \mid B$ is an $L T$-operation on B. Then, Figure 3 shows

Figure 3: LT1-operation
the graph of the $L T 1$-algebra $(A ; f)$. Let \leq be the usual order on $\{0,1, \ldots, n-2\}$. For an LT1-operation we have $f^{y}(x)=x-y$ if $x \geq y, f^{y}\left(0^{\prime}\right)=0^{\prime}$ for all y and $f^{y}(x)=0$ if $0 \leq x<y$. For $T \in \operatorname{Tol}(\mathcal{A})$ let T_{B} be the restriction of T onto B. If $\left|\left[0^{\prime}\right]_{T}\right|>1$ let denote $\left[0^{\prime}\right]_{T}$ by $\left[0,0^{\prime}\right]_{T}$ since in the next proposition we will prove that in this case $0 \in\left[0^{\prime}\right]_{T}$.

Proposition 3.1

(i) $[0]_{T}$ is convex with respect to \leq.
(ii) $\left[0^{\prime}\right]_{T}=\left\{0^{\prime}\right\}$ or $\left[0^{\prime}\right]_{T} \backslash\left\{0^{\prime}\right\}$ is convex with respect to \leq and $0 \in\left[0^{\prime}\right]_{T}$.
(iii) $T_{B} \in \operatorname{Tol}(\mathcal{B})$ and $T=T_{B} \cup T_{\left[0^{\prime}\right]_{T}}$.
(iv) If $0^{\prime} \notin[0]_{T}$, then $[0]_{T}=[0]_{T_{B}}$.
(v) There exists the greatest element $k \in B$ such that $\left[0,0^{\prime}\right]_{T}=\left\{0^{\prime}\right\} \cup\{x \in B \mid x<$ k and $\left.\left(x, 0^{\prime}\right) \in T\right\}=\left\{0^{\prime}, 0,1, \ldots, k-1\right\}$. This k is denoted by $\left(0_{T}\right)^{\prime}$.
(vi) For all $\alpha, \beta \in \operatorname{Tol}(\mathcal{A})$, if $\alpha \subseteq \beta$, then $[0]_{\alpha} \subseteq[0]_{\beta},\left[0^{\prime}\right]_{\alpha} \subseteq\left[0^{\prime}\right]_{\beta},\left[0,0^{\prime}\right]_{\alpha} \subseteq\left[0,0^{\prime}\right]_{\beta}$ and $\alpha_{B} \subseteq \beta_{B}$.
(vii) For all $\alpha, \beta \in \operatorname{Tol}(\mathcal{A})$ we have $\left(0_{\alpha}\right)^{\prime} \leq\left(0_{\beta}\right)^{\prime} \Leftrightarrow\left[0,0^{\prime}\right]_{\alpha} \subseteq\left[0,0^{\prime}\right]_{\beta}$.

Proof. (i) can be proved in the same way as Proposition 2.1(i).
(ii) Assume that $\left[0^{\prime}\right]_{T} \neq\left\{0^{\prime}\right\}$. Let $x \in\left[0^{\prime}\right]_{T}, x \neq 0^{\prime}$ and $0 \leq y \leq x$. Then $\left(x, 0^{\prime}\right) \in T$ implies $\left(f^{x-y}(x), f^{x-y}\left(0^{\prime}\right)\right)=\left(y, 0^{\prime}\right) \in T$ and $\left(f^{x}(x), f^{x}\left(0^{\prime}\right)\right)=\left(0,0^{\prime}\right) \in T$.
(iii) $T_{B} \in \operatorname{Tol}(\mathcal{B})$ is clear. Since $T_{B} \subseteq T$ and $T_{\left[0^{\prime}\right]_{T}} \subseteq T$, we have $T_{B} \cup T_{\left[0^{\prime}\right]_{T}} \subseteq T$. Let $(x, y) \in T$. If $\{x, y\} \subseteq B$, then $(x, y) \in T_{B}$. If $\{x, y\} \nsubseteq B$, we may assume that $\bar{x}=0^{\prime}$, so $x, y \in\left[0^{\prime}\right]_{T}$, hence $(x, y) \in T_{\left[0^{\prime}\right]_{T}}$.
(iv) is clear.
(v) Since $\left(0,0^{\prime}\right) \in T$, there exists the greatest integer $k \in B$ such that $\left(0^{\prime}, k-1\right) \in T$. By
(ii) we have $0 \leq x \leq k-1 \Leftrightarrow\left(0^{\prime}, x\right) \in T$. (vi) is clear.
(vii) We have $\left(0_{\alpha}\right)^{\prime} \leq\left(0_{\beta}\right)^{\prime} \Leftrightarrow\left[0,0^{\prime}\right]=\left\{0^{\prime}, 0,1, \ldots,\left(0_{\alpha}\right)^{\prime}-1\right\} \subseteq\left\{0^{\prime}, 0,1, \ldots,\left(0_{\beta}\right)^{\prime}-1\right\}=$ $\left[0,0^{\prime}\right]_{\beta}$ for all $\alpha, \beta \in \operatorname{Tol}(\mathcal{A})$.

We define $\mathcal{C}_{0^{\prime}}:=\left\{\left[0^{\prime}\right]_{T} \mid T \in \operatorname{Tol}(\mathcal{A})\right\}$. Then
Proposition 3.2 (i) $\mathcal{C}_{0^{\prime}}=\left\{\left\{0^{\prime}\right\}\right\} \cup\left\{\left[0,0^{\prime}\right]_{T} \mid T \in \operatorname{Tol}(\mathcal{A})\right\}$.
(ii) $\left(\mathcal{C}_{0^{\prime}} ; \subseteq\right) \cong \underline{n-1}$.

Proof. (i) The inclusion $\left\{\left\{0^{\prime}\right\}\right\} \cup\left\{\left[0,0^{\prime}\right]_{T} \mid T \in \operatorname{Tol}(\mathcal{A})\right\} \subseteq \mathcal{C}_{0^{\prime}}$ is obvious. Let $\left[0^{\prime}\right]_{T} \in \mathcal{C}_{0^{\prime}}$. We may assume that $\left|\left[0^{\prime}\right]_{T}\right|>1$. Then $0 \in\left[0^{\prime}\right]_{T}$ and $\left[0^{\prime}\right]_{T}=\left[0,0^{\prime}\right]_{T} \in \mathcal{C}_{0^{\prime}}$.
(ii) We consider the mapping $g: \mathcal{C}_{0^{\prime}} \rightarrow \underline{n-1}$ defined by $\left\{0^{\prime}\right\} \mapsto 0$ and $\left[0,0^{\prime}\right]_{T} \mapsto\left(0_{T}\right)^{\prime}+1$. By Proposition 3.1 (vii) g is an order-embedding. We show that g is surjective. Let $k \in$ $\frac{n-1}{}$. If $k=0$, then $g\left(\left\{0^{\prime}\right\}\right)=0$ and if $k \in\{1, \ldots, n-1\}$, then $k-1 \in\{0, \ldots, n-2\}=B$. Let denote $T_{k}:=\left\{\left(x, 0^{\prime}\right) \mid x<k\right\}$ and define $T \subseteq A \times A$ by $T:=\Delta_{A} \cup T_{k} \cup T_{k}^{d}$. Then
$T \in \operatorname{Tol}(\mathcal{A})$ with $\left(0_{T}\right)^{\prime}=k-1$. So $g(T)=\left(0_{T}\right)^{\prime}+1=k-1+1=k$. Hence, g is an order-isomorphism.
Theorem 3.3 For the tolerance lattice of an $L T_{1}$-algebra we have

$$
\operatorname{Tol}(\mathcal{A}) \cong \underline{n-1} \times \operatorname{Tol}(\mathcal{B}) \cong \underline{n-1} \times \sum_{0 \leq k \leq n-1} \operatorname{Tol}_{k}(\mathcal{B}) \cong \underline{n-1} \times \sum_{0 \leq k \leq n-1} \prod_{t=1}^{k} \frac{n-t}{}
$$

Proof. We prove that $\operatorname{Tol}(\mathcal{A}) \cong \mathcal{C}_{0^{\prime}} \times \operatorname{Tol}(\mathcal{B})$. Let $g: \operatorname{Tol}(\mathcal{A}) \rightarrow \mathcal{C}_{0^{\prime}} \times \operatorname{Tol}(\mathcal{B})$ be defined by $T \mapsto\left(\left[0^{\prime}\right]_{T}, T_{B}\right)$ for all $T \in \operatorname{Tol}(\mathcal{A})$. By Proposition 3.1 (vi), g is order-preserving. Now, let $\alpha, \beta \in \operatorname{Tol}(\mathcal{A})$ such that $g(\alpha) \leq g(\beta)$. Then $\left[0^{\prime}\right]_{\alpha} \subseteq\left[0^{\prime}\right]_{\beta}$ and $\alpha_{B} \subseteq \beta_{B}$. By Proposition 3.1 (iii) it remains to prove that $\alpha_{\left[0^{\prime}\right]_{\alpha}} \subseteq \beta_{\left[0^{\prime}\right]_{\beta}}$. Let $(x, y) \in \alpha_{\left[0^{\prime}\right]_{\alpha}}$. Then $\{x, y\} \subseteq\left[0^{\prime}\right]_{\alpha}$ and $(x, y) \in \alpha$. Therefore, $\{x, y\} \subseteq\left[0^{\prime}\right]_{\beta}$. We will prove that $(x, y) \in \beta$. If $x=y$ or $0^{\prime} \in\{x, y\}$, then $(x, y) \in \beta$ since β is reflexive and $\left\{0^{\prime}, x\right\} \subseteq\left[0^{\prime}\right]_{\beta}$ or $\left\{0^{\prime}, y\right\} \subseteq\left[0^{\prime}\right]_{\beta}$. Thus we may assume that $x \neq y$ and $0^{\prime} \notin\{x, y\}$. Then $\{x, y\} \subseteq B$. Hence $(x, y) \in \alpha$ and $\{x, y\} \subseteq B$ implies that $(x, y) \in \alpha_{B} \subseteq \beta_{B}$ and $(x, y) \in \beta$. The rest follows from Theorem 1.10, the fact that $(B ; f \mid B)$ is an $L T$-algebra with $|B|=n-2$ and from Proposition 2.3.
Example 3.4 Let $A=\left\{0^{\prime}, 0,1,2\right\}$ and let $f: A \rightarrow A$ be given by the table

x	$f(x)$	$f^{2}(x)$	$f^{3}(x)$
0^{\prime}	0^{\prime}	0^{\prime}	0^{\prime}
0	0	0	0
1	0	0	0
2	1	0	0.

Then the tolerance lattice can be pictured as in Figure 4.

Figure 4: Tolerance Lattice of an $L T_{1}$-algebra

In the second case, $\lambda(f)=n-2,\left|I m f^{n-2}\right|=2$ and f has no fixed points. Let $A=$ $\left\{u, f(u), \ldots, f^{n-2}(u), f^{n-1}(u)\right\}, n \geq 3$ and $f^{n}(u)=f^{n-2}(u)$. Without restriction of the generality we may assume that $A=\{0,1,2, \ldots, n-2, n-1\}$ with $f(k)=k-1$ if $k \neq 0$ and $f(0)=1$. Then Figure 5 shows the graph of the $L T_{1}$-algebra $(A ; f)$.

Figure 5: $L T_{1}$-operation
Let \leq be the usual order on $\{0,1, \ldots, n-1\}$. For an $L T_{1}$-operation of this kind we have $f^{y}(x)=x-y$ if $x \geq y$ and

$$
f^{y}(x)=\left\{\begin{array}{lllll}
0 & \text { if } & x<y & \text { and } & y-x
\end{array}\right. \text { is even }
$$

We consider the following set of tolerances on $\mathcal{A}: \operatorname{Tol}_{0}(\mathcal{A})=\left\{\Delta_{A}\right\}$ and let $\operatorname{Tol}_{k}(\mathcal{A})$ be the set of all tolerance relations on $(A ; f)$ such that k is the greatest integer in $A \backslash\{0\}$ with $(0, k) \in T$. Let $\left[\frac{n}{2}\right]$ be the greatest integer which is smaller than $\frac{n}{2}$. Then we have

Lemma 3.5 (i) Let $0<k<n$ and $T \in \operatorname{Tol}_{k}(\mathcal{A})$. Then $|x-y|<k$ if $(x, y) \in T$ for all $x, y \in A$.
(ii) For all $T \in \operatorname{Tol}_{1}(\mathcal{A})$ there is the greatest integer $m \in A$ such that $T=\Delta_{A} \cup\{(0,1), \ldots,(m, m+$ 1) $\} \cup\{(0,1), \ldots,(m, m+1)\}^{d}$ and $\operatorname{Tol}_{1}(\mathcal{A}) \cong \underline{n-1}$.
(iii) For $0 \leq k \leq\left[\frac{n}{2}\right]$, if $T \in \operatorname{Tol}_{2 k+1}(\mathcal{A})$, then $(0,1) \in T$ and if $T \in \operatorname{Tol}_{2 k}(\mathcal{A})$, then $(0,2) \in T$.
(iv) If $T \in \operatorname{Tol}(\mathcal{A})$, then there exists the greatest non-negative integer k such that $T \in$ $\operatorname{Tol}_{k}(\mathcal{A})$ and for each $0<t \leq k$ there exists the greatest element $a_{T}^{t} \in A$ such that $\left(a_{T}^{t}, a_{T}^{t}+\right.$ $t) \in T$.
(v) $T=\left\langle B_{T}\right\rangle$ where $B_{T}=\underset{0 \leq t \leq k}{\bigcup}\left\{\left(a_{T}^{t}-s, a_{T}^{t}+t+s\right) \mid 0 \leq s \leq a_{T}^{t}\right\}$.

Proof. (i) Suppose that there are $x>y$ in A such that $(x, y) \in T$ and $x-y \geq k$. Then $(x, y) \in T$ implies $\left(f^{y}(x), f^{y}(y)\right)=(x-y, 0) \in T$. Therefore, there exists an integer t with $t \geq k$ and $(0, t) \in T$, which contradicts $T \in \operatorname{Tol}_{k}(\mathcal{A})$.
(ii) This follows in a similar way as the corresponding proposition in section 1 and $\operatorname{Tol}_{1}(\mathcal{A}) \cong$ $\underline{n-1}$ can be proved by using the mapping g with $g(k)=T(k, k+1), k \in\{0,1, \ldots, n-2\}$. (iii) By definition of $T_{2 k+1}(\mathcal{A})$ we have $(0,2 k+1) \in T$ and this implies

$$
\left(f^{2 k+1}(0), f^{2 k+1}(2 k+1)\right)=(1,0)
$$

If $T \in \operatorname{Tol}_{2 k}(\mathcal{A})$, then $(0,2 k) \in T$ implies

$$
\left(f^{2 k-2}(0), f^{2 k-2}(2 k)\right)=(0,2 k-(2 k-2))=(0,2) \in T .
$$

(iv) Let $T \in \operatorname{Tol}(\mathcal{A}) \backslash\left\{\Delta_{A}\right\}$. Then there are elements $x \neq y$ in A such that $(x, y) \in T$. Without restriction of the generality we may assume that $y<x$ and $x=y+m$ for some
$m \geq 1$; hence $(x, y) \in T$ implies $\left(f^{y}(x), f^{y}(y)\right)=(x-y, 0)=(m, 0) \in T$, i.e. there exists an element $t \geq 1$ such that $(0, t) \in T$. Let $k \geq 1$ be the greatest integer in A such that $(0, k) \in T$. The second proposition is clear.
(v) This follows in the same way as Proposition 1.5.

Let
$\mathcal{T}^{0}:=\bigcup_{0 \leq k \leq\left[\frac{n}{2}\right]}\left\{T \in \operatorname{Tol}_{2 k}(\mathcal{A}) \mid(0,1) \notin T\right\}$,
$\mathcal{T}^{1}:=\bigcup_{0 \leq k \leq\left[\frac{n}{2}\right]}\left\{T \in \operatorname{Tol}_{2 k+1}(\mathcal{A}) \mid(0,2) \notin T\right\}$ and
$\mathcal{T}^{2}:=\left(\mathcal{T}^{0} \wedge \mathcal{T}^{1}\right) \cup\left(\mathcal{T}^{0} \vee \mathcal{T}^{1}\right)$, where
$\mathcal{T}^{0} \wedge \mathcal{T}^{1}:=\left\{T \cap S \mid T \in \mathcal{T}^{0}\right.$ and $\left.S \in \mathcal{T}^{1}\right\}, \mathcal{T}^{0} \vee \mathcal{T}^{1}:=\left\{T \cup S \mid T \in \mathcal{T}^{0}, S \in \mathcal{T}^{1}\right\}$.
For each $0 \leq k \leq\left[\frac{n}{2}\right]$, let denote $\mathcal{T}_{k}^{0}:=\mathcal{T}^{0} \cap \operatorname{Tol}_{2 k}(\mathcal{A})$ and $\mathcal{T}_{k}^{1}:=\mathcal{T}^{1} \cap \operatorname{Tol}_{2 k+1}(\mathcal{A})$. Then we have

Proposition 3.6 (i) For each $0<k \leq\left[\frac{n}{2}\right]$ and for each $T \in \mathcal{T}_{k}^{0}$, if $(x, y) \in T$, then $|x-y|=2 m$ for some $0 \leq m \leq k$.
(ii) For each $0<k \leq\left[\frac{n}{2}\right]$ and for each $T \in \mathcal{T}_{k}^{1}$, if $(x, y) \in T$, then $|x-y|=2 m+1$ for some $0 \leq m \leq k$.
(iii) For $0 \leq k \leq\left[\frac{n}{2}\right], \mathcal{T}_{k}^{1} \cong \underline{n-k-1} \times P_{k}$ where $P_{0}:=(\{0,1\} ; \leq)$ and $P_{k}:=\prod_{1 \leq t \leq k} \underline{n-2 t-1}$ and $\mathcal{T}_{k}^{0} \cong \underline{n-k-1} \times Q_{k}$ where $Q_{0}:=(\{0,1\} ; \leq)$ and $Q_{k}:=\prod_{1 \leq k \leq k} \underline{n-2 t-2}$.
Proof. (i) Assume that $(x, y) \in T$. If $x=y$, then we choose $m=0$. Now we may assume that $x \neq y$. Since $\mathcal{T}_{k}^{0} \subseteq \mathcal{T}^{0}$, we have $(0,1) \notin T$. Suppose that $|x-y|=2 m+1$ for some $0 \leq m \leq k$. We may assume that $x=y+2 m+1$. Then $(x, y)=(y+2 m+1, y) \in T$ implies $\left(f^{y+2 m+1}(y+2 m+1), f^{y+2 m+1}(y)\right)=(0,1) \in T$, a contradiction.
(ii) can be proved similar to (i).
(iii) $\mathcal{T}_{1}^{1}=\operatorname{Tol}_{1}(\mathcal{A}) \cong \underline{n-1} \cong \underline{n-1} \times \underline{1}$ is clear by Proposition 1.7. So, the proposition is true if $k=0$. Assume that $\mathcal{T}_{k}^{1} \cong n-k-1 \times P_{k}$ for $k \geq 0$. We notice that $T \cup$ $\{(0,2 k+3),(2 k+3,0)\} \in \mathcal{T}_{k+1}^{1}$ for all $\overline{T \in \mathcal{T}_{k}^{1}}$ and define $\varphi: \mathcal{T}_{k}^{1} \rightarrow \mathcal{T}_{k+1}^{1}$ by $\varphi(T)=$ $T \cup\{(0,2 k+3),(2 k+3,0)\}$ for all $T \in \mathcal{T}_{k}^{1}$. Clearly, φ is order-preserving. Since $(0,2 k+3)$ implies $(f(0), f(2 k+3))=(1,2 k+2) \in T$ and this implies $(0,2 k+1) \in T$ for all $T \in \mathcal{T}_{k+1}^{1}$, we have $\varphi(T(1,2 k+2))=\varphi(T(0,2 k+1))=T(0,2 k+3)$ for $T(1,2 k+2), T(0,2 k+1)) \in \mathcal{T}_{k}^{1}$ and $T(0,2 k+3) \in \mathcal{T}_{k+1}^{1}$ and hence $\left.\varphi\left(\mathcal{T}_{k}^{1}\right)\right) \cong \mathcal{T}_{k}^{1} / \operatorname{ker} \varphi \cong \underline{n-k-2} \times P_{k}$. Let $T \in \mathcal{T}_{k+1}^{1}$. Then $k+1$ is the greatest integer such that $k+1 \leq\left[\frac{n}{2}\right]$ and $(0,2 k+3) \in T$. We have $T=\left\langle B_{T}^{k+1}\right\rangle$, where $B_{T}^{k+1}=\bigcup_{0 \leq m \leq k+1}\left\{\left(a_{T}^{2 m+1}-s, a_{T}^{2 m+1}+2 m+1-s\right) \mid 0 \leq s \leq a_{T}^{2 m+1}\right\}$. Since $a_{T}^{2 k+3}+2(2 k+1)+1 \leq n-1$ and $a_{T}^{2 k+3} \leq n-1-2 k-3=n-2 k-4$, we get $a_{T}^{2 k+3} \in \underline{n-2 k-3}$. Let $T^{\prime}:=T \backslash\left\{\left(a_{T}^{2 k+3}-s, a_{T}^{2 k+3}+2 k+3-s\right) \mid 0 \leq s \leq a_{t}^{2 k+3}\right\}$. Then $T^{\prime} \in \mathcal{T}_{k}^{1}$.
Let $g: \mathcal{T}_{k+1}^{1} \rightarrow \varphi\left(\mathcal{T}_{k}^{1}\right) \times \underline{n-2 k-3}$ be defined by $g(T):=\left(\varphi\left(T^{\prime}\right), a_{T}^{k+1}\right)$ for all $T \in \mathcal{T}_{k+1}^{1}$. If $T_{1} \subseteq T_{2}$ in \mathcal{T}_{k+1}^{1}, then $T_{1}^{\prime} \subseteq T_{2}^{\prime}$ and $a_{T_{1}}^{2 k+3} \leq a_{T_{2}}^{2 k+3}$. Conversely, if $g\left(T_{1}\right) \subseteq g\left(T_{2}\right)$ for $T_{1}, T_{2} \in \mathcal{T}_{k+1}^{\prime}$, then $\varphi\left(T_{1}^{\prime}\right) \subseteq \varphi\left(T_{2}^{\prime}\right)$ and $a_{T_{1}}^{2 k+3} \leq a_{T_{2}}^{2 k+3}$. Hence, $\left[T_{1}^{\prime}\right]_{k e r \varphi} \subseteq\left[T_{2}^{\prime}\right]_{k e r \varphi}$, which implies that $T_{1}^{\prime} \subseteq T_{2}^{\prime}$ (using $\left.\varphi\left(\mathcal{T}_{k}^{1}\right) \cong \mathcal{T}_{k}^{1} / \operatorname{ker} \varphi\right)$. Therefore, $T_{1}=T_{1}^{\prime} \cup B_{T_{1}}^{k+1} \cup\left(B_{T_{1}}^{k+1}\right)^{d} \subseteq$ $T_{2}^{\prime} \cup B_{T_{2}}^{k+1} \cup\left(B_{T_{2}}^{k+1}\right)^{d}=T_{2}$. Let $T \in \mathcal{T}_{k}^{1}$ and let $c \in \underline{n-2 k-3}$ and let $T=\varphi(T) \cup B_{c} \cup B_{c}^{d}$ where $B_{\bar{c}}:=\{(c-s, c+2 k+3-s) \mid 0 \leq s \leq c\}$. Then $\bar{T} \in \mathcal{T}_{k+1}^{1}$ where $a_{T}^{k+1}=c$ and $\varphi(T)=\bar{T}$. Then we have

$$
\begin{aligned}
\mathcal{T}_{k+1}^{1} & \cong \varphi\left(\mathcal{T}_{k}^{1}\right) \times \underline{n-2 k-3} \\
& \cong\left(\underline{n-k-2} \times \prod_{1 \leq t \leq k} \underline{n-2 t-1}\right) \times \underline{n-2 k-3} \\
& \cong \underline{n-k-2} \times\left[\left(\prod_{1 \leq t \leq k} \underline{n-2 t-1}\right) \times \underline{n-2 k-3}\right] \\
& \cong \underline{n-(k+1)-1 \times P_{k+1}}
\end{aligned}
$$

(iv) can be proved in a similar way.

On \mathcal{T}^{1}, a partial order can be defined by:

$$
a \leq b:=\Leftrightarrow \begin{cases}a, b \in \mathcal{T}_{k}^{1} & \text { and } a \leq_{k} b \text { for some } 0 \leq k \leq\left[\frac{n}{2}\right] \text { or } \\ a \in \mathcal{T}_{k}^{1}, b \in \mathcal{T}_{k+1}^{1} & \text { for some } 0 \leq k \leq\left[\frac{n}{2}\right]\end{cases}
$$

On \mathcal{T}^{0} a partial order can be defined in a similar way. Finally, we have the following result:
Theorem 3.7 For the tolerance lattice of an $L T_{1}$-algebra $(A ; f)$ with $\left|I m f^{n-1}\right|=2$ and f has no fixed point we have

$$
(\operatorname{Tol}(\mathcal{A}) ; \subseteq)=\mathcal{T}^{0} \cup \mathcal{T}^{1} \cup \mathcal{T}^{2}
$$

with $\mathcal{T}^{0} \cong \sum_{0 \leq k \leq\left[\frac{n}{2}\right]} \mathcal{T}_{k}^{0}$ and $\mathcal{T}^{1} \cong \sum_{0 \leq k \leq\left[\frac{n}{2}\right]} \mathcal{T}_{k}^{1}$.
Proof. It remains to prove that $\operatorname{Tol}(\mathcal{A}) \subseteq \mathcal{T}^{0} \cup \mathcal{T}^{1} \cup \mathcal{T}^{2}$. Let $T \in \operatorname{Tol}(\mathcal{A})$ and assume that there are elements $x, y, u, v \in A$ such that $(x, y) \in T$ and $(u, v) \in T$ with $|x-y|=$ $2 t+1,|u+v|=2 s$ for some $t \geq 0, s \geq 1$. Let k and m be the greatest integers with such properties, let $T_{1}=\left\langle B_{k}\right\rangle, T_{0}=\left\langle B_{m}\right\rangle$, where
$B_{k}=\bigcup_{0 \leq t \leq k}\left\{\left(a_{T}^{2 t+1}-s, a_{t}^{2 t+1}+2 t+1-s\right) \mid 0 \leq s \leq a_{T}^{2 t+1}\right\}$
and $B_{m}=\bigcup_{0 \leq t \leq m}\left\{\left(a_{T}^{2 t}-s, a_{T}^{2 t}+2 t-s\right) \mid 0 \leq s \leq a_{T}^{2 t}\right\}$.
Then $T_{0} \in \mathcal{T}^{0}$ and $T_{1} \in \mathcal{T}^{1}$ and $T=T_{0} \vee T_{1}$.
Example 3.8 Let $A=\{0,1,2,3\}$ and let $f: A \rightarrow A$ be given by the table

x	$f(x)$	$f^{2}(x)$	$f^{3}(x)$	$f^{4}(x)$
0	1	0	1	0
1	0	1	0	1
2	1	0	1	0
3	2	1	0	1.

Then the tolerance lattice can be pictured by Figure 6.

Figure 6: Tolerance Lattice of an $L T_{1}$-algebra

4 Tolerances on $L T_{1}$-algebras with $\left|I m f^{n-2}\right|=1$

Let A be a set with $|A|=n \geq 3$ and $A=\left\{v, u, f(u), \ldots, f^{n-2}(u)\right\}$, where $f^{n-1}(u)=$ $f^{n-2}(u)$ and $f(v)=f^{m}(u)$ for some $0 \leq m<n-2$. Without restriction of the generality we may assume that $A=\{0,1, \ldots, m-1, m, m+1, \ldots, n-1\}$ and that $f(t)=t-1$ if $t \notin\{0, n-1\}, f(0)=0$ and $f(n-1)=m$ for some $0 \leq m<n-2$.
Then Figure 7 shows the graph of the $L T_{1}$-algebra $(A ; f)$.

Figure 7: $L T_{1}$-algebra with $\left|I m f^{n-2}\right|=1$
For an $L T_{1}$-operation with $\left|\operatorname{Im} f^{n-2}\right|=1$ we have $f^{y}(x)=x-y$ if $x \geq y, x<n-1, f^{y}(n-$ $1)=m-(y-1)$ and $f^{y}(x)=0$ if $x<y$.

We introduce the following notation:
$\mathcal{T}:=\{T \in \operatorname{Tol}(\mathcal{A}) \mid(m+1, n-1) \notin T\}$
and if $m>0$, then we set $\mathcal{T}_{0}:=\left\{\Delta_{A}\right\}$, and for each $1 \leq k \leq n-2$ we define $\mathcal{T}_{k}:=$ $\mathcal{T} \cap \operatorname{Tol}_{k}(\mathcal{A})$. Moreover, let $\mathcal{T}_{k}(\mathcal{A}):=\left\{T \in \operatorname{Tol}(\mathcal{A}) \mid[0]_{T}:=\{0, \ldots, k-1\}\right\}$. Clearly, \mathcal{T}_{k} is a sublattice of \mathcal{T}. The following lemma turns out to be very useful for our next considerations.

Lemma 4.1 Let $1 \leq m<n-2, k \neq m$, and assume that $T(m-k+1, n-1)$ or $T(n-$ $1, m+k+1$) are in \mathcal{T}_{k}. Let \mathcal{X} and \mathcal{Y} be disjoint isomorphic sublattices of \mathcal{T}_{k}. If $Y=$ $\{T \cup T(m-k+1, n-1) \mid T \in X\}$ or $Y=\{T \cup T(n-1, m+k+1) \mid T \in X\}$, then $\mathcal{X} \dot{\cup} \mathcal{Y} \cong \underline{2} \times \mathcal{X}$.

Proof. Define $g: \mathcal{X} \dot{\cup} \mathcal{Y} \rightarrow \underline{2} \times \mathcal{X}$ by

$$
g(T):= \begin{cases}(0, T) & \text { if } T \in X \\ \left(0, T^{\prime}\right) & \text { if } T \in Y \text { and } T=T^{\prime} \cup T(m-k+1, n-1)\end{cases}
$$

in the first case or

$$
g(T):= \begin{cases}(0, T) & \text { if } T \in X \\ \left(0, T^{\prime}\right) & \text { if } T \in Y \text { and } T=T^{\prime} \cup T(n-1, m+k+1)\end{cases}
$$

in the second one. It is clear that g is an isomorphism.
For each $k \geq 1, i \geq 0$ and $T \in \mathcal{T}_{k}$, let $B_{T}^{i}:=\{(i+t, i+t+k) \mid 0 \leq t \leq i\}$. As we have shown in section 1 we have $T(i, i+k)=\Delta_{A} \cup B_{T}^{i} \cup\left(B_{T}^{i}\right)^{d}$. Let $B:=\{T(i, i+k) \mid 0 \leq i \leq n-k-2\}$. For $k \neq m$ let $C:=\{T \cup T(m-k+1, n-1) \mid T \in B\}$ and $D:=\{T \cup T(n-1, m+k+1) \mid$ $T \in B \cup C\}$ and let $\overline{\mathcal{T}}_{k}:=B \cup C \cup D$.

If $k=m$, one can see that $T(0, n-1) \supset T(0, m) \subset T(1, n-1)$. Moreover, we introduce the following notation:

$$
\begin{aligned}
& \bar{C}:=\{T \cup T(0, n-1) \mid T \in B\}, \\
& \bar{D}:=\{T \cup T(1, n-1) \mid T \in B \cup \bar{C}\}, \\
& \bar{E}:=\{T \cup T(n-1,2 m+1) \mid T \in B \cup \bar{C} \cup \bar{D}\},
\end{aligned}
$$

and let $\overline{\mathcal{T}}_{m}:=B \cup \bar{C} \cup \bar{D} \cup \bar{E}$.
Now we consider the cases $1<m<n-2$ and $m=0$.
Proposition 4.2 Let $1<m<n-2$.

1. If $k \neq m$, then
2.

$$
\overline{\mathcal{T}}_{m} \cong \begin{cases}\underline{2^{2}} \times \underline{m} \stackrel{+}{2}^{3} \times n-2 m-1 & \text { if } 2 m \leq n-3, \\ \underline{2^{2}} \times \underline{n-m}-1 & \text { if } 2 m>n-3\end{cases}
$$

Proof. Let $1<m<n-2$. We consider two cases.

1. $1 \leq k \neq m$. For each $0 \leq i \leq j \leq n-2$, let

$$
\begin{aligned}
B_{i, j} & :=\{T(t, t+k) \mid i \leq t \leq j\}, \\
C_{i, j} & :=\left\{T \cup T(m-k+1, n-1) \mid T \in B_{i, j}\right\}, \\
D_{i, j} & :=\left\{T \cup T(n-1, m+k+1) \mid T \in B_{i, j} \cup C_{i, j}\right\} .
\end{aligned}
$$

Then $B_{i, j} \subseteq B, C_{i, j} \subseteq C, D_{i, j} \subseteq D$ and $B_{i, j}$ is a sublattice of \mathcal{T}_{k} which is isomorphic to $\underline{j-i+1}$.

Case 1: $1 \leq k<m$. Then $1<m<n-2$ and $1 \leq k<m$ imply that $1 \leq m-k<n-k-2$ which implies that $m-k+1 \leq n-k-1 \leq n-2$. Consequently, $T(m-k+1, n-1) \in \mathcal{T}_{k}$ and then $\left.\mathcal{A}:=B_{0, m-k-1} \dot{\cup}\{T(m-k, m) \subset T(m-k+1), n-1)\right\} \cong \underline{m-k} \dot{\sqcup}^{+} \underline{2}$.
If $k>n-m-3$, then $n-2<m+k+1$ and therefore $T(n-1, m+k+1) \notin \mathcal{T}_{k}$; hence $D=\emptyset$.
Thus $\overline{\mathcal{T}}_{k}=B \cup C=\mathcal{A} \dot{\cup} B_{m-k+1, n-k-2} \dot{\cup} C_{m-k+1, n-k-2}$. Since $B_{m-k+1, n-k-2}$ is a sublattice of \mathcal{T}_{k}, Lemma 4.1 implies that $B_{m-k+1, n-k-2} \cup C_{m-k+1, n-k-2} \cong \underline{2} \times B_{m-k+1, n-k-2} \cong$ $\underline{2} \times \underline{n-m-2}$. Hence $\overline{\mathcal{T}}_{k} \cong \underline{m-k} \underline{\underline{2}} \underline{\underline{2}} \dot{+} \underline{2} \times \underline{n-m-2}$. But, if $k \leq n-m-3$ then $T(n-1, m+k+1) \in \overline{\mathcal{T}}_{k}$. Therefore, $\overline{\mathcal{T}}_{k}=\mathcal{A} \dot{\cup}\left(B_{m-k+1, m-1} \dot{\cup} C_{m-k+1, m-1}\right) \dot{\cup}\left(B_{m, n-k-2} \dot{\cup}\right.$ $\left.C_{m, n-k-2} \dot{\cup} D_{m, n-k-2}\right)$. Since $B_{m-k+1, m-1}, B_{m, n-k-2}$ and $B_{m, n-k-2} \dot{\cup} C_{m, n-k-2}$ are sublattices of \mathcal{T}_{k}, Lemma 4.1 implies that
$B_{m-k+1, m-1}$ ப $C_{m-k+1, m-1}$
$\cong \underline{2} \times B_{m-k+1, m-1}$
$\cong \underline{2} \times \underline{k-1}$,
$B_{m, n-k-2} \dot{\cup} C_{m, n-k-2}$
$\cong \underline{2} \times B_{m, n-k-2}$
$\cong \underline{2} \times \underline{n-m-k-1}$ and
$B_{m, n-k-2} \dot{\cup} C_{m, n-k-2} \dot{\cup} D_{m, n-k-2}$
$\cong \underline{2} \times\left(B_{m, n-k-2} \cup C_{m, n-k-2}\right)$
$\cong \underline{2} \times \underline{2} \times \underline{n-m-k-1}$
$\cong \underline{2^{2}} \times \underline{n-m-k-1}$.
Therefore, $\overline{\mathcal{T}}_{k} \cong \underline{m-k} \underline{\square} \underline{\underline{2}} \sqcup^{+} \underline{2} \times \underline{k-1} \times \underline{2^{2}} \times \underline{n-m-k-1}$.
Case 2: $m<k<n-2$. Then $m-k+1 \leq 0$ and then $T(m-k+1, n-1) \notin \mathcal{T}_{k}$; hence, $C=\emptyset$. If $k>n-m-3$, then $n-2<m+k+1$ and then $T(n-1, m+k+1) \notin \mathcal{T}_{k}$; hence $D=\emptyset$. Therefore, $\overline{\mathcal{T}}_{k}=B=B_{0, n-k-2} \cong \underline{n-k-1}$. If $k \leq n-m-3$, then $T(n-1, m+k+1) \in \mathcal{T}_{k}$ and therefore, $D \neq \emptyset$. In this case, $\overline{\mathcal{T}}_{k}=B_{0, m-1} \dot{\cup}\{T(m, m+k) \subset T(n-1, m+k+1)\} \dot{\cup}\left(B_{m+1, n-k-2} \dot{\cup} D_{m+1, n-k-2}\right)$. Since $B_{m+1, n-k-2}$ is a sublattice of \mathcal{T}_{k}, Lemma 4.1 implies that

$$
B_{m+1, n-k-2} \dot{\cup} D_{m+1, n-k-2} \cong \underline{2} \times B_{m+1, n-k-2} \cong \underline{2} \times \underline{n-m-k-2}
$$

Hence, $\overline{\mathcal{T}}_{k} \cong \underline{m} \sqcup \underline{2} \underline{2} \sqcup^{+} \underline{2} \times \underline{n-m-k-2}$.
2. $1 \leq k=m<n-2$. Then $T(0, n-1) \in \mathcal{T}_{m}$ and $T(1, n-1) \in \mathcal{T}_{m}$. If $2 m>n-3$, then $2 m+1>n-2$; so, $T(n-1,2 m+1) \notin \mathcal{T}_{m}$, hence, $\bar{E}=\emptyset$. Therefore, $\overline{\mathcal{T}}_{m}=B \cup \bar{C} \cup$ $\bar{D}=B_{0, n-m-2} \dot{\cup} C_{0, n-m-2} \dot{\cup} D_{0, n-m-2}$. Since $B_{0, n-m-2}$ and $B_{0, n-m-2} \dot{\cup} C_{o, n-m-2}$ are
sublattices of \mathcal{T}_{m}, Lemma 4.1 implies that

$$
B_{0, n-m-2} \dot{\cup} C_{0, n-m-2} \cong \underline{2} \times B_{0, n-m-2} \cong \underline{2} \times \underline{n-m-1}
$$

and

$$
\begin{aligned}
& \left(B_{0, n-m-2} \dot{\cup} C_{0, n-m-2}\right) \dot{\cup} D_{0, n-m-2} \\
& \quad \cong \underline{2} \times\left(B_{0, n-m-2} \dot{\cup} C_{0, n-m-2}\right) \\
& \quad \cong \underline{2} \times \underline{2} \times \underline{n-m-1} .
\end{aligned}
$$

Therefore, $\mathcal{T}_{m} \cong \underline{2^{2}} \times \underline{n-m-1}$.
If $2 m \leq n-3$, then $T(n-1,2 m+1) \in \mathcal{T}_{m}$ and

$$
\overline{\mathcal{T}}_{m}=\bar{B} \cup \bar{C} \cup \bar{D} \cup \bar{E}
$$

$$
=\left(B_{0, m-1} \dot{\cup} \bar{C}_{0, m-1} \cup \bar{D}_{0, m-1}\right)
$$

$$
\dot{\cup} \quad\left(B_{n, n-m-2} \dot{\cup} \bar{C}_{m, n-m-2} \dot{\cup} \bar{D}_{m, n-m-2} \dot{\cup} \bar{E}_{m, n-m-2}\right) \text {. }
$$

Applying Lemma 4.1 in the same way as in the previous cases we obtain

$$
\begin{aligned}
& B_{0, m-1} \dot{\cup} \bar{C}_{0, m-1} \dot{\cup} \bar{D}_{0, m-1} \\
& \cong \underline{2} \times\left(B_{0, m-1} \dot{\cup} \bar{C}_{0, m-1}\right) \\
& \cong \underline{2} \times \underline{2} \times B_{0, m-1} \\
& \cong \underline{2^{2}} \times \underline{m}, \text { and } \\
& B_{m, n-m-2} \dot{\cup} \bar{C}_{m, n-m-2} \dot{\cup} \bar{D}_{m, n-m-2} \dot{\cup} \bar{E}_{m, n-m-2} \\
& \cong \underline{2} \times\left(B_{m, n-m-2} \dot{\cup} \bar{C}_{m, n-m-2} \dot{\cup} \bar{D}_{m, n-m-1}\right) \\
& \cong \underline{2} \times \underline{2} \times\left(B_{m, n-m-2} \dot{\cup} C_{m, n-m-2}\right) \\
& \cong \underline{2^{2}} \times \underline{2} \times B_{m, n-m-2} \\
& \cong \underline{2^{3}} \times \underline{n}-2 m-1 .
\end{aligned}
$$

Now we consider the case $m=0$.
Proposition 4.3 If $m=0$, then

$$
\mathcal{T}_{k} \cong \begin{cases}\underline{2} \times \underline{n-k-1} & \text { if } 1 \leq k \leq n-3 \\ \underline{1} & \text { if } k>n-3\end{cases}
$$

Proof. Let $m=0$ and $k \geq 1$. If $1 \leq k \leq n-3$, then $k+1 \leq n-2$ and therefore $T(n-1, k+1) \in \overline{\mathcal{T}}_{k}$. Let denote $G_{i, j}:=\left\{T \cup T(n-1, k+1) \mid T \in B_{i, j}\right\}$. Then $\overline{\mathcal{T}}_{k}=$ $B_{0, n-k-2} \dot{\cup} G_{0, n-k-2}$ and we have

$$
\overline{\mathcal{T}}_{k} \cong \underline{2} \times B_{0, n-k-2} \cong \underline{2} \times \underline{n-k-1}
$$

where the isomorphism is defined similar as in Lemma 4.1. If $k>n-3$, then $T(n-1, k+1) \notin$ $\overline{\mathcal{T}}_{k}$. So, $\overline{\mathcal{T}}_{k}=B_{0, n-k-2} \cong \underline{n-k-1}$. From $k>n-3$ we obtain $n-k-1<2$, which shows that $\overline{\mathcal{T}}_{k} \cong \underline{1}$.
Moreover, we have
Corollary 4.4 Let $0 \leq m<n-2$. Then

1. $\mathcal{T}_{1}=\overline{\mathcal{T}}_{1}$ and
2. $\overline{\mathcal{T}}_{k}$ is a sublattice of \mathcal{T}_{k} for all $k \geq 1$.

Proposition 4.5

1. If $1 \leq m<n-2$, then $\mathcal{T}_{k} \cong \overline{\mathcal{T}}_{k} \times \mathcal{T}_{k-1}$ for all $k \geq 1$ and $\mathcal{T}_{0}=\left\{\Delta_{A}\right\}$.
2. For $m=0$, let $\mathcal{T}_{0}:=\left\{\Delta_{A}, T(0, n-1)\right\}$ and $\overline{\mathcal{T}}:=\mathcal{T}_{1} \cup\left\{T \cup T(0, n-1) \mid T \in \mathcal{T}_{1}\right\}$. Then $\overline{\mathcal{T}} \cong \underline{2} \times \mathcal{T}_{1}, \mathcal{T}_{2} \cong \overline{\mathcal{T}}_{2} \times \overline{\mathcal{T}}$ and $\mathcal{T}_{k} \cong \overline{\mathcal{T}}_{k} \times \mathcal{T}_{k-1}$ for all $k>2$.

Proof. 1. Let $1<m<n-2$ and $m \neq k>1$ and let $T \in \mathcal{T}_{k}$. Since $A \backslash\{n-1\}$ is an $L T$-algebra with fundamental operation $f \mid A \backslash\{n-1\}$, we have $a_{T}^{k-1} \in \underline{n-k-1}$. Then $T \supseteq T\left(a_{T}^{k-1}, a_{T}^{k-1}+k\right) \in B \subseteq \overline{\mathcal{T}}_{K}$ or $T \supseteq T\left(\left(a_{T}^{k-1}, a_{T}^{k-1}+k\right),\left(m-k+1, \overline{n-1)) \in C \subseteq \overline{\mathcal{T}}_{k} .}\right.\right.$ or $T \supseteq T\left(\left(a_{T}^{k-1}, a_{T}^{k-1}+k\right),(m-k+1, n-1),(n-1, m+k+1)\right) \in D \subseteq \overline{\mathcal{T}}_{k}$ depending on $(m-k+1, n-1) \in T$ or $(n-1, m+k+1) \in T$ or neither. In each case one can see that there exists an element $S_{T} \in \overline{\mathcal{T}}_{k}$ such that $S_{T} \subseteq T$; and thus $T \backslash S_{T} \in \mathcal{I}_{k-1}$. For the cases $k=m>1$ or $m=1$ one concludes in a similar way. Now we define a mapping $g: \mathcal{T}_{k} \rightarrow \overline{\mathcal{T}}_{k} \times \mathcal{T}_{k-1}$ by $g(T)=\left(S_{T}, T \backslash S_{T}\right)$ for all $T \in \mathcal{I}_{k}$. Then g is an order-embedding and it is easy to prove that $T \cup S \in \mathcal{T}_{k}$ for all $S \in \overline{\mathcal{T}}_{k}$ and $T \in \overline{\mathcal{T}}_{k-1}$. Hence, g is an order-isomorphism.
2. Let $m=0$. Proposition 4.3 and Corollary 4.4 imply that $\mathcal{T}_{1}=\overline{\mathcal{T}}_{1}$ and this is isomorphic to either $\underline{2} \times \underline{n-k-1}$ or to $\underline{1}$. In the case $m=0$ the set $\operatorname{Tol}(\mathcal{A})$ of all tolerances on \mathcal{A} contains $T(0, n-1)$. We set $H:=\left\{T \cup T(0, n-1) \mid T \in \mathcal{T}_{1}\right\}$ for all $1 \leq i, j \leq n-2$ and $\overline{\mathcal{T}}:=\mathcal{T}_{1} \dot{\cup} H$. Then with an isomorphism defined similar as in Lemma 4.1 we get $\overline{\mathcal{T}} \cong \underline{2} \times \mathcal{T}_{1}$.] Hence, $\overline{\mathcal{T}} \cong \underline{2}$ or $\overline{\mathcal{T}} \cong \underline{2^{2}} \times \underline{n-k-1}$.
Now we will show that $\mathcal{T}_{2} \cong \overline{\mathcal{T}}_{2} \times \overline{\mathcal{T}}$. Using an argumentation as in 1 . One gets $T \supseteq$ $T\left(a_{T}^{1}, a_{T}^{1}+2\right) \in B \subseteq \overline{\mathcal{T}}_{2}$ or $T \supseteq T\left(\left(a_{T}^{1}, a_{T}^{1}+2\right),(n-1,3)\right) \in C \subseteq \overline{\mathcal{T}}_{2}$ for all $T \in \mathcal{T}_{2}$. Hence for all $T \in \mathcal{T}_{2}$ there exists $S_{T} \in \overline{\mathcal{T}}_{2}$ such that $S_{T} \subseteq T$. Since $\bar{S}_{T} \cup \bar{T} \in T$ for all $\bar{T} \in \overline{\mathcal{T}}$, we have $T=S_{T} \dot{\cup}\left\{\bar{T} \cup S_{T} \mid \bar{T} \in \overline{\mathcal{T}}\right\}$. Then the mapping defined by $T \mapsto\left(S_{T}, T \backslash S_{T}\right)$ for all $T \in \mathcal{T}_{2}$ is an isomorphism from \mathcal{T}_{2} to $\overline{\mathcal{T}}_{2} \times \overline{\mathcal{T}}$. A similar argumentation as in 1. shows $\mathcal{T}_{k} \cong \overline{\mathcal{T}}_{k} \times \mathcal{T}_{k-1}$ for all $k>2$.

Our construction has the following consequences:
Corollary 4.6 1. For $m \neq 0, \mathcal{T}_{k} \cap \mathcal{T}_{l}=\emptyset$ for all $0 \leq k \neq l \leq n-2$ and $\mathcal{T}=\bigcup_{0 \leq k \leq n-2} \mathcal{T}_{k}$.
2. For $m=0, \mathcal{T}_{k} \cap \mathcal{T}_{l}=\emptyset$ for all $1<k \neq l \leq n-2, \mathcal{T}_{k} \cap \overline{\mathcal{T}}=\emptyset$ and $\mathcal{T}_{k} \cap \mathcal{T}_{0}=\emptyset$ for all $k \geq 2$ and $\overline{\mathcal{T}} \cap \mathcal{T}_{0}=\emptyset$. Moreover, $\mathcal{T}=\mathcal{T}_{0} \dot{\cup} \overline{\mathcal{T}} \dot{\cup} \bigcup_{2 \leq k \leq n-2} \mathcal{T}_{k}$.
3. For all $0 \leq k \leq n-2, \mathcal{T}_{k}$ and $\overline{\mathcal{T}}$ are isomorphic to a sublattice of \mathcal{T}.
4. For all $0<k \leq n-2, \mathcal{T}_{k-1}$ is isomorphic to a sublattice of \mathcal{T}_{k}.

Using the definition of an ordered sum we have:
Proposition 4.7 1. For $m \neq 0, \mathcal{T} \cong \mathcal{T}_{0}{ }^{+} \mathcal{T}_{1}{ }^{+} \ldots \stackrel{+}{\sqcup} \mathcal{T}_{n-2}$ and $\mathcal{T}_{0}=\left\{\Delta_{A}\right\}$.
2. For $m=0, \mathcal{T} \cong \underline{2} \sqcup \underline{2} \times \mathcal{T}_{1}{ }^{+} \mathcal{T}_{2} \cdots \stackrel{+}{\sqcup} \mathcal{T}_{n-2}$.

Finally we get our result:
Theorem 4.8 $\operatorname{Tol}(\mathcal{A}) \cong \underline{2} \times \mathcal{T}$.
Proof. Let $\alpha: \operatorname{Tol}(\mathcal{A}) \rightarrow \underline{2} \times \mathcal{T}$ be defined by

$$
\alpha(T)= \begin{cases}(0, T) & \text { if }(n-1, m+1) \notin T \\ (1, T \backslash\{(n-1, m+1)\} & \text { if }(n-1, m+1) \in T\end{cases}
$$

Then, clearly, α is an order-isomorphism.
We consider the following example for $n=4, m=1$:

Example 4.9

x	$f(x)$	$f^{2}(x)$
0	0	0
1	0	0
2	1	0
3	1	0.

Then the tolerance lattice is pictured in Figure 8.

Figure 8: Tolerance Lattice of an $L T_{1}$-algebra

References

[1] K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC 2002.
[2] K. Denecke and R. Pöschel, The characterization of Sheffer functions by hyperidentities, Semigroup Forum 373 (1988), 351-362.
[3] C. Ratanaprasert and K. Denecke, Unary Operations with Long Pre-Periods, Discrete Mathematics with its Application in Information Science and Related Topics, Conference, Beibei, Chongqing, (20/10/2004) in: Discr. Math. Vol. 308 No 21 (2008), 4998-5005.
[4] K. Denecke and C. Ratanaprasert, Partial Unary Operations with Long Pre-periods, J. Appl. Alg. Discr. Structures Vol. 5 (2007), 133-145.
[5] K. Denecke and C. Ratanaprasert, N-ary Operations with Long Pre-periods, Asian-European J. Math. Vol. 2 No. 2 (2009), 201-212.
[6] E. Harzheim, Ordered Sets, Springer 2005.
[7] C. Ratanaprasert and K. Denecke, Iteration of Total and Partial Unary Operations, Southeast Asian Bulletin of Mathematics 36 (2012), 687-694.
[8] I. Chajda, Algebraic Theory of Tolerance Relations, Univerzita Palackého Olomouc, 1991.
[9] D. Jakubiková Studenovská and J. Pócs, Monounary Algebras, Košice 2009.
[10] B. Zelinka, Tolerances on monounary algebras, Czech. Math. J. 34 (1984), 298-304.
C. Ratanaprasert

Department of Mathematics,
Faculty of Science,
Silpakorn University,
Nakornpathom 73000, Thailand.
E-mail: ratach@su.ac.th
K. Denecke

Department of Mathematics,
Faculty of Science,
Silpakorn University,
Nakornpathom 73000, Thailand.
E-mail: klausdenecke@hotmail.com

