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TOLERANCES ON MONO-UNARY ALGEBRAS WITH LONG
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ABSTRACT. Iterating a unary operation defined on a finite set A one obtains a chain
2 1
ADImf 2 Imf* D - D Imf™ = Imf™*,

where Imf is the image of f, i.e. the set of all images and f* := fo---o f is the

—
i—times
i — th iteration of f, f° := ida. The least integer A(f) with ImfMN) = Im A+ g
called the pre-period of f. Let n be the cardinality of A. Then the pre-period of f
is an integer between 0 and n — 1. If A(f) = n — 1, then f is said to be a long-tailed
operation (LT-operation) and if A(f) = n—2, then f is said to be an LTi-operation. In
[3] the authors characterized LT- and LTi-operations and their invariant equivalence
relations. In [4] these were generalized to partial operations and in [5] (see also [7]) to
n-ary operations (n > 1). In this paper we study invariant tolerance relations of LT-
and LTi-operations. An algebra (A; f) where f is a unary operation on A is said to
be a mono-unary algebra. For the theory of mono-unary algebras we refer the reader
to the monograph [9]. Here we study the tolerance lattices of mono-unary algebras
(A; f), where f is an LT- or an LTi-operation. Tolerances on mono-unary algebras
were considered in [10] (see also [8]).

1 Preliminaries

To make this text independent we first repeat some results on LT- and LT;-operations from

3].

Theorem 1.1 [3] Let f : A — A be a unary operation and |A| = n > 2. Then the following
propositions are satisfied:

(i) M(f) =n—1 if and only if there exists an element d € A such that

A={d, f(d), f*(d),..., "1 (d) = f"(d)}(see e.g. [2]) .

(i) Assume now that n > 3. Then A(f) = n — 2 and |Imf"2| = 1 if and only if there
are distinct elements u,v € A such that A = {u,v, f(v),..., " 2(v)} and such that there
is an exponent k with 0 < k < n — 2 with f(u) = f*T1(v) and there is an integer m with
m—+k=n—2 with f"*(u) = fm(u).
(iii) We have A(f) = n — 2 and |Imf"~2| = 2 if and only if there are different elements
u,v € A such that either

a)A = {v,u, f(u),..., " 2(u)} withv = f(v) and f* " 1(u) = f"2(u), or b) A =
{u’ f(u)a fz(u) U= fn_2<u)’ fn—l(u)} where v = fn(u) = fn_Q(u)'
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If we choose A = {0,1,--- ,n—2,n—1},d=n—1,f(k) =k —1for k # 0, f(0) = 0, then
f can be pictured as a directed graph where the vertices are labeled by the elements and
there is an directed edge from z to y if f(x) = y.

O—»O0 oo o O—Po—PpO0—PO )Q
n-1 4 3 2 1 0

Figure 1: LT-operation

This graph is also called the graph of the mono-unary algebra A = (A4; f). The following
equations for an LT-operation f and z,y € A will be used many times.

r—yifzx>y

fy(x):{()ifx<y_ (*)

2 Tolerances on LT-algebras

A tolerance on a mono-unary algebra (A; f) is a reflexive and symmetric binary relation T'
with the property that (z,y) € T implies (f(z), f(y)) € T for any z,y € A. In a corre-
sponding way, tolerances can be defined on arbitrary algebras. Congruences are transitive
tolerances. For an element a € A let

[a]r :={z € A (a,z) € T}.

In [8] this set is called a class of T'. Let < be the usual order on A = {0,1,...,n —1}. The
following facts are well-known and easy to prove (see [8], [10]).

Proposition 2.1 Let A = (A; f) be an LT-algebra and let T be a tolerance on A.

(i) [0]r is convex with respect to <.

(ii) For any = # y € A if T # Ay, there are distinct elements u, v € [0]7 such
that (u,v) € T.

(iii) Let [0] = {0,1,...,k — 1}. If T # A4, then |[0]7] > 1.
(iv) If T is a congruence, then (z,y) € T < {z,y} C [0]r for all z,y € A.
(v) For any z,y € A, if (z,y) € T then |z — y| < |[0]r]|.

Proof. (i) We have to show: if z € [0]r and 0 < y < z, then y € [0]7. Because
of x > z —y by (*) we have f* ¥%(z) = x — (x —y) = y. Now, (0,z) € T implies
(F5(0), *~¥(x)) = (0,) € T

(i) We may assume that {z,y} < [0]r, that z < y, and that = & [0]r since y & [0]
implies = ¢ [0]7 by (i). Let [0]7 = {0,1,...,k —1}. Then f*~*+l(z) =k — 1. If y € [0]
then (0,) € T and (f*~*+1(0), f*F¥1(y)) = (0, fF+1(y)) € T, ie. f*+¥1(y) € [0
and if y & [0]7, then 2 — k +1 > y — k + 1 implies that fo=*+1(y) < fy=ktl(y)
k—1, so f==**1(y) € [0]p. Let v := f*~**1(y). Now (x,y) € T implies (k — 1,v)
(fe=k+1(x), fr=*+1(y)) € T and hence u := k — 1 and v are the required elements.

S
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(iii) Let (z,y) € T,x # y. Then by (ii) there are elements u,v € {0,1,--- ,k — 1}, u # v,
such that (u,v) € T. We may assume that v > v. Then (f?(u), f*(v)) = (0,u—v) € T,
where 0 <u —v < k.

(iv) is clear.

(v) Suppose that there are elements =,y € A such that (z,y) € T and |r — y| > |[0]7].
We may assume that [0]r = {0,1,...,k —1}. Then |[0]r| = k and |z — y| = = — y. Since
(x,y) € T, we have (fY(x), f¥(y)) = (x —y,0) € T. By assumption and by (i) we get
(0,k) € T, hence |[0]7| > k + 1, a contradiction. |

Let Tol(A) denote the set of all tolerances of the mono-unary algebra A. Clearly, the
diagonal Ay = {(a,a) | a € A} is contained in any T € Tol(A) and any T € Tol(A) is
contained in the tolerance A x A. The following properties of Tol(A) for a mono-unary
algebra A are well-known.

Proposition 2.2 ([10]) Let (4; f) be an arbitrary mono-unary algebra. Then Tol(A)
forms an algebraic lattice with respect to set inclusion, which is a sublattice of the power
set lattice (P(A x A); ), and therefore, it is a distributive lattice.

Let T'(a, b) be the tolerance generated by the pair (a,b), i.e. the intersection of all tolerances
on the given algebra A which contain the pair (a,b). Let Con(A) be the congruence lattice
of the algebra A. Now we give two more properties of an LT-algebra.

Proposition 2.3 Let A be an LT -algebra. Then

() N(Tol(A)\ {Aa}) = T(1,0).
(ii) If a, 8 € Con(A) \ {A4}, then aN B # Ay, ie. A is subdirectly irreducible.

Proof. (i) Let T € Tol(A),T # A,s. Then there are elements a,b € A with a # b
and (a,b) € T. Without loss of generality we may assume that a < b. There follows
(f=Y(a), fo=L(b)) = (0,1) € T, ie. T(0,1) C T for any T # Aa,T € Tol(A). Then we
have T(0,1) C ((Tol(A) \ {Aa}) and thus ((Tol(A) \ {A4}) =T(1,0).

(ii) In a similar way as in the proof of (i) we see that any congruence of (A; f) contains the
congruence generated by (0,1) and therefore a, 5 € Con(A) \ {Aa} implies a N3 # Ay
and this means that A is subdirectly irreducible (see e.g. [1]). |

By Proposition 2.1(iii) we have |[0]7| > 1 for any T' € Tol(A), T # A4 and by Proposition
2.1 (i) there is an element k& with 1 < k£ < n such that [0]7 = {0,1,...,k — 1}. For each
1 <t < k-1, there is the greatest integer al. € A such that (ak.,al +1t) € T. We consider
the set
Br = U {(a — s,al+t—5)|0< s <ak}.
1<t<k—1

Since By is closed under application of f, the tolerance generated by B consists precisely
of all pairs from By, all pairs from B% := {(z,y) € A x A | (y,2) € Br} and of all pairs
from the diagonal A4, i.e. (Br) = By UB$UA 4. By definition, (Br) is the least tolerance
containing Br.

Lemma 2.4 (i) (By)=1T.
(ii) If T =T (m,m+ 1) is the tolerance generated by (m,m + 1) for 0 <m <mn,
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then Br = {(0,1),(1,2),(2,3),--- ,(m,m+ 1)}
(iii) If T = T(a,b), then there exists the greatest integer m such that

Br = U {(aly — 5,0 +t—5) | 0 < s <ak}.
1<t<m

(iv)0<ah.<n—t—1foralll <t<k-—1.

Proof. (i) We have [0]7 = {0,1,...,k—1}. Clearly, By C T and then (Br) C T. Assume
that (z,y) € T with  # y. We may assume that > y. Then there exists an element ¢
with 0 < ¢ < k such that |z —y| = ¢, ie. (z,y) € {(d — s, +t—5)|0<s<ak} C Br
and then T' C (Br). Altogether, we have equality.

(ii) The set {(0,1),(1,2),...,(m,m + 1)} can be written as Br = |J {(a} — s,a} +
1<t<1

1-35)|0<s<al} with al. = m,[0]r = {0,1}. We show that T(m,m + 1) = (Br).
Indeed, {(0,1),(1,2),...,(m,m + 1)} C T(m,m + 1) implies (Br) C T(m,m + 1). Since
T(m, m + 1) is the least tolerance containing (m,m + 1) and since (m,m + 1) € (Br), we
have (Br) = T(m,m + 1).

(iii) We may assume that a > b. Then m = a — b.

(iv) (af,al +t) € T implies al. +t € A, ie. a +t<n—1,ie ap <n—t—1. [ |

To describe the tolerance lattice of A we classify all tolerances by the cardinality of [0]y =
{0,1,...,k—1}.

Definition 2.5 Let Tolg(A) = {A4} and for each 1 < k < n let Toli_1(A) be the set of
all tolerances on A with [0]p = {0,1,...,k — 1}.

By this definition, T'ol; (A) is the set of all tolerances on A with [0]7 = {0, 1} and by Lemma
2.4, Tol1(A) ={T(m,m+1) |m=0,1,...,n—2}.

Let n — 1 := ({0,...,n—2}; <) with the usual linear order < defined on A. The set T'ol; (A)
is partially ordered with respect to set inclusion.

Proposition 2.6 (Tol;(A);C) ~n—1.

Proof.  The mapping ¢ : {0,1,...,n — 2} — Toli(A) defined by g(m) = T(m,m + 1)
for all 0 < m < n — 1 is order-preserving since | < m implies T'(I,1 + 1) C T(m,m + 1).
Conversely, from T(I,1 + 1) € T(m,m + 1) there follows | < m. This shows that g is
one-to-one, i.e. an order-isomorphism. Since by definition of Tol;(.A) any tolerance from
this set has the form T'(m,m + 1) for m € {0,1,...,n — 2}, the mapping g is onto and thus
an order embedding. |

Proposition 2.7 For 0 < k < n, Toli(A) 2 n—k x Tolg_1(A).

Proof. Let T € Tolg(A). Then [0]r ={0,1,...,k—1} and by Lemma 2.4 (i), T = (Br)

where Br = |J {(a}y —s,al+t—3s)|0<s<ak}. For1<t<k-—1, we consider the
1<t<k—1

set Bh = {(a — s,al +t—5) | 0 < s < ak}. We define Tj,_y := T\ (BE ' U (BE 1)),
Then Tj_; € Tolj_1(A) and by Lemma 2.4(ii) we have ab ! <n —(k—1) -1 =n —k,
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ie. af'en—k (={0,1,...,n —k — 1}. Therefore, the pair (ak ', Ty_1) belongs to the
cartesian product n — k x Tol,_1(A). Let c € n — k and a € Tolj,_1(A). Define & := (B,)
where B, = {(¢c —s,c+k—1—35)|0< s <c¢}. Then [0]g = {0,1,...,k — 1} and thus
a € Tolk(A), where ¢ = af~land ap_1 = .

Define g : Toli(A) — n—k x Toly_1(A) by g(T) = (a1, Ty_1). Since [0], = [0]g,
we have af™' < af™', hence BE~! C BE™'. Let B, := B! U (BE')? and By :=
Bg_l U (Bg_l)d. Since a®~! is the greatest element such that (¥~ !, a*"1 + &k —1) € a, we

«
have (Bg \ By) N = 0 and then ay_1 = a\ B, = o\ Bg C 8\ Bg = (Bk_1. Therefore,
g(a) = (a8 1 ap_y) < (ag_l,ﬂk_l) = ¢(B), where < is defined component-wise, using
the usual order on the natural numbers for the first component and set-inclusion for the
second one. Now assume that «, 3 € Tolj(A) such that g(a) < g(8), i.e. ab1 < a];fl and
o C 3. Then we have B, C Bg and o« = a1 U By € Bi_1 U Bg = 3. Hence, g is an
order-embedding and together with surjectivity we have an order isomorphism. |

Our construction has the following consequences:

k
Corollary 2.8 (i) Toly(A) is a product of chains: Tolx(A) = [[ n—t for all0 < k <n,
=1
especially, Tol,_1(A) = 1x...,n—2xn—1.

(ii) Tolg(A) N Toli(A) =0 for all0 <k#1<n—1andTol(A)= | Toli(A).

(iii) Toly(.A) is isomorphic to a sublattice of Tol(A) for all 0 < k <n —1 and Tolx_1(A)
is isomorphic to a sublattice of Toly(A) for all 0 < k < n.

(iv) Tol(A) = w1 (Tolg+1(A)) where w1 is the first projection.

The ordered sum (see e.g. [6]) of a family of partially ordered sets will be denoted by the
symbol > and if the family consists of finitely many partially ordered sets we will also use

the symbol Ij

Theorem 2.9 The tolerance lattice of an LT -algebra is isomorphic to an ordered sum

k
Tol(A)= > Tol(A)= Y [[r-t

0<k<n—1 0<k<n—1t=1

Let o, 8 € Tol(A). We define an equivalence relation on Tol(A) as follows:
an~ B [0]a = [0]s.
Then the quotient set T'0l(A)/~ corresponds to the set {[0], | « € Tol(A)} which can be

regarded as a linearly ordered set that is isomorphic to the congruence lattice of (A; f).
Altogether we have:

Corollary 2.10 Let A= (A4;f) be an LT-algebra. Then

n—1 2 Toly(A) = Tol(A)/~ = Con(A).
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Example 2.11 Let A={0,1,2,3} and let f: A — A be given by the following table

Then
Tolo(A) = {A4},
Tol(A) ={T(0,1)
Toly(A) = {T(0,2),T((0,2),
T((1,3),(1,2)),7((1,3),(2,3
Tol3(A) = {T(0,3), T'((
7((0,3), (1,3), (

Then the tolerance lattice of (4; f) is given by Figure 2.

AxA

Tol((0,3),(1,3),(2,3))

Tol((1,3),2.3)) O T0l((0,3),(1,3),(1,2))

2,3))

o)
Tol((1.3).(12)) Tol((0,3),(1,3))

Tol((0,3),(1,2))
Tol((0,2),(2,3))

Tol(2,3) »  Tol(0,3)

Tol((0,2),(1,2))

Tol(0,2)

Tol(1,2) “Q

¢ Tol(0.1)

Figure 2: Tolerance Lattice of an LT-algebra

3 Tolerances on LTj-algebras with [Imf"~2| =2

Corresponding to Theorem 1.1 (iii) we have to consider the cases that f has two fixed points
and that f has no fixed point. For the first case, let A = {v,u, f(u),..., f*"2(u)} where
v=f(v) and f""L(u) = f*"2(u),|A] =n > 3 and A\(f) = n — 2. Without restriction of the
generality we may assume that A = {0,0',1,2,...,n — 2} and f(k) =k —11if k ¢ {0,0'}
and f(0) =0, f(0') =0". Let B:={0,1,...,n—2} and let f|B be the restriction of f onto
B. Clearly, f|B is an LT-operation on B. Then, Figure 3 shows
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O—»0 e o o—)o—>0—>0—>Q Q

n-2 4 3 2 1 0 o

Figure 3: LT 1-operation

the graph of the LT1-algebra (A; f). Let < be the usual order on {0,1,...,n — 2}. For
an LT1-operation we have f¥(z) =z —y if x >y, fY(0') = 0’ for all y and fY(z) = 0 if
0 <z <y. For T € Tol(A) let T be the restriction of T onto B. If |[0']7| > 1 let denote
[0']7 by [0,0]7 since in the next proposition we will prove that in this case 0 € [0]r.

Proposition 3.1

(i) [0]r is convex with respect to <.

(i) [0']7 = {0'} or [0']7 \ {0'} is convex with respect to < and 0 € [0']r.
(iii) Tp € Tol(B) and T' = Tp U Tjy1,-

(iv) If 0" & [0]7, then [0)7 = [0]7, -

(v) There exists the greatest element k € B such that [0,0']r = {0’} U{x € B | z <
k and (x,0') € T} ={0,0,1,...,k — 1}. This k is denoted by (Or)’.
(

vi) For all o, 8 € Tol(A), if « C (3, then [0]o C [0]g,[0]a C [0']5,[0,0]o € [0,0']g and
ap C BB.

(vii) For all o, 5 € T'ol(A) we have (0,)" < (0g)" < [0,0']o C [0,0]3.

Proof. (i) can be proved in the same way as Proposition 2.1(i).

() Assume that [0']7 # {0'}. Let « € [0']r,2 # 0/ and 0 < y < z. Then (z,0") € T implies
(770 (@), f770(0) = (,0) € T and (f*(x), f7(0')) = (0,0) € T

(iii) Tp € Tol(B) is clear. Since Tp C T and Ty, € T, we have Tp U Ty, € T. Let
(x,y) € T. If {z,y} C B, then (z,y) € Tp. If {x,y} € B, we may assume that x = 0', so
z,y € [0']7, hence (z,y) € Tio),-

(iv) is clear.

(v) Since (0,0’) € T, there exists the greatest integer k € B such that (0',k — 1) € T. By
(i) wehave0<x<k—1<:)(0’ x) € T. (vi) is clear.

(vil) We have (04)" < (0g)" < [0,0'] = {0",0,1,...,(04) — 1} € {0/,0,1,...,(05) — 1} =
[0,0]g for all o, B € Tol(A). [ ]

We define Cyr := {[0']r | T € Tol(A)}. Then
Proposition 3.2 (i) Co = {{0'}}U{[0,0']7 | T € Tol(A)}.
(i) (CosC) =n—1.

Proof. (i) The inclusion {{0'}}U{[0,0']7 | T € Tol(A)} C Cy is obvious. Let [0’} € Cyr.
We may assume that |[0']r| > 1. Then 0 € [0’]r and [0']r = [0,0']r € Cyr.

(ii) We consider the mapping g : Co» — n — 1 defined by {0’} — 0 and [0,0']r — (0r)" + 1.
By Proposition 3.1 (vii) g is an order-embedding. We show that ¢ is surjective. Let k €
n—1. I k=0, then g({0'}) =0andif k€ {1,...,n—1}, then k—1€{0,...,n—2} = B.
Let denote T} := {(z,0') | * < k} and define T C Ax A by T := Ay UT, UTZ. Then
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T € Tol(A) with (07) =k —1. Sog(T) = (07r) +1 =%k —1+1= k. Hence, g is an
order-isomorphism. [ |

Theorem 3.3 For the tolerance lattice of an LT -algebra we have

k
Tol(A)2n—1xTol(B)2n—1x Z Tol,(B) 2n—1x Z Hn—t.
k<n—1t=1

0<k<n—1 0<

Proof. We prove that Tol(A) = Cy x Tol(B). Let g : Tol(A) — Co x Tol(B) be defined
by T + ([0']7,Tg) for all T € Tol(.A). By Proposition 3.1 (vi), g is order-preserving. Now,
let o, 8 € Tol(A) such that g(a) < g(8). Then [0'], C [0']g and ap C Sp. By Proposition
3.1 (iii) it remains to prove that ay, C Bjo,- Let (z,y) € oo, . Then {z,y} C [0'], and
(z,y) € a. Therefore, {z,y} C [0']3. We will prove that (z,y) € 8. If x =y or 0’ € {z,y},
then (x,y) € 0 since [ is reflexive and {0',z} C [0']z or {0',y} C [0/]g. Thus we may
assume that  # y and 0’ € {z,y}. Then {z,y} C B. Hence (z,y) € « and {z,y} C B
implies that (z,y) € ag C Op and (z,y) € 8. The rest follows from Theorem 1.10, the fact
that (B; f|B) is an LT-algebra with |B| =n — 2 and from Proposition 2.3. [ |

Example 3.4 Let A={0/,0,1,2} and let f : A — A be given by the table

v | f@) | f2=2) | fP(x)

oo 0’ 0’
010 0 0
110 0 0
2 |1 0 0.

Then the tolerance lattice can be pictured as in Figure 4.

D
T(0,2),(0.2
T((0,0),(0,2),(1,2)) (@202

T((070),(0,2),(1.2))

T((0,2),(1,2))

Figure 4: Tolerance Lattice of an LT}-algebra
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In the second case, A\(f) = n — 2,[Imf" 2| = 2 and f has no fixed points. Let A =
{u, f(u), ..., f"2(u), f* " Y(u)},n > 3 and f(u) = f* 2(u). Without restriction of the
generality we may assume that A = {0,1,2,...,n—2,n—1} with f(k) =k—1if k£ # 0 and
f(0) = 1. Then Figure 5 shows the graph of the LT}-algebra (A4; f).

O——»0—»0 o0 0 o O—>»0——>»0 O
n-2 3 2 1 \—/0

Figure 5: LT}-operation

Let < be the usual order on {0,1,...,n — 1}. For an LTj-operation of this kind we have
fl(x)=x—yifz>yand

() 0 if z<y and y—=x iseven
€T =
1 if z<y and y—a isodd

We consider the following set of tolerances on A : Tolg(A) = {A 4} and let Toli(A) be the
set of all tolerance relations on (A4; f) such that k is the greatest integer in A \ {0} with
(0,k) € T. Let [§] be the greatest integer which is smaller than . Then we have

Lemma 3.5 (i) Let 0 < k <n and T € Toli(A). Then |z —y| < k if (z,y) € T for all
x,y € A.

(ii) For allT € Toly(A) there is the greatest integer m € A such that T = A U{(0,1),...,(m, m+
DIU{0,1),...,(m,m+1)}* and Toly(A) = n — 1.

(iii) For 0 < k < [3], if T € Tologs1(A), then (0,1) € T and if T € Tolak(A), then
(0,2) eT.

(iv) If T € Tol(A), then there exists the greatest non-negative integer k such that T €

Toli,(A) and for each 0 < t < k there exists the greatest element a’, € A such that (ak., al- +
t)yeT.

(v) T = (Br) where Br = | {(a —s,a-+t+s)]|0<s<ak}.
0<t<k

Proof. (i) Suppose that there are > y in A such that (z,y) € T and © — y > k. Then
(z,y) € T implies (f¥(z), f¥(y)) = (z — y,0) € T. Therefore, there exists an integer ¢ with
t >k and (0,t) € T, which contradicts T' € Tolj(A).

(ii) This follows in a similar way as the corresponding proposition in section 1 and T'ol; (A) =2
n — 1 can be proved by using the mapping g with g(k) = T(k,k + 1),k € {0,1,...,n —2}.
(iii) By definition of Tog41(A) we have (0,2k + 1) € T and this implies

(fH0), £ 2k + 1)) = (1,0).
If T € Tolap(A), then (0,2k) € T implies
(F52(0), £2-2(2k)) = (0,2 — (26 —2)) = (0,2) € T,

(iv) Let T € Tol(A) \ {Aa}. Then there are elements x # y in A such that (x,y) € T.
Without restriction of the generality we may assume that y < = and = = y + m for some
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m > 1; hence (x,y) € T implies (f¥(z), f¥(y)) = (x —y,0) = (m,0) € T, i.e. there exists
an element ¢ > 1 such that (0,¢) € T. Let k > 1 be the greatest integer in A such that
(0,k) € T. The second proposition is clear.

(v) This follows in the same way as Proposition 1.5. |

Let
TO0.= U {T € Tola(A) | (0,1) & T},

0<k<[%]
Th= U {T €Tolayi1(A)|(0,2) ¢ T} and

0<k<[2]
T2=(T°ANTHU(T°VT!), where
TONTH={TNS|TeTand ST}, T°VT ={TUS|TeT%SeT'}.

For each 0 < k < [%], let denote 7,0 := T° N Tolyi(A) and T} := T N Tolopy1(A).

Then we have

Proposition 3.6 (i) For each 0 < k < [%] and for each T € T, if (z,y) € T, then
|z — y| = 2m for some 0 < m < k.

(ii) For each 0 < k < [%] and for each T € T}, if (z,y) € T, then |x —y| = 2m + 1 for
some 0 <m < k.

(iii) For0 < k < [2], 7} 2 n—k — 1xX Py, where Py := ({0,1}; <) and Py := [] n—2t—1
E— 1<t<k

and T 2 n —k — 1 x Q) where Qo := ({0,1};<) and Qi == [[ n—2t—2.
1<k<k

Proof. (i) Assume that (x,y) € T. If z = y, then we choose m = 0. Now we may assume
that = # y. Since 7,2 C 79, we have (0,1) € T. Suppose that |z — y| = 2m + 1 for some
0 < m < k. We may assume that x = y+2m+ 1. Then (z,y) = (y+2m+1,y) € T implies
(fyr2mtl(y 4+ 2m + 1), fyH2mT1(y)) = (0,1) € T, a contradiction.
(ii) can be proved similar to (i).
(iii) 7' = Tol;(A) 2 n—1 = n—1 x 1 is clear by Proposition 1.7. So, the proposition
is true if £k = 0. Assume that Tkl “n—k—1x P, for £k > 0. We notice that T U
{(0,2k + 3),(2k + 3,0)} € T}, for all T € T} and define ¢ : T,) — T,1, by o(T) =
TU{(0,2k +3),(2k +3,0)} for all T € 7;!. Clearly,  is order-preserving. Since (0, 2k + 3)
implies (f(0), f(2k+3)) = (1,2k +2) € T and this implies (0,2k+1) € T for all T € T,
we have ¢(T'(1,2k+2)) = p(T(0,2k+1)) = T(0,2k+3) for T(1,2k+2),T(0,2k+1)) € T;!
and T'(0,2k + 3) € T;',, and hence o(7}!)) = T, [kero =2 n—k —2x P,. Let T € T,!, .
Then k + 1 is the greatest integer such that £ 41 < [§] and (0,2k 4+ 3) € T. We have
= (BE™), where B = | {(a@" —s,a2" T 4 2m 41 —5) |0 < s < a2
0<m<k+1

Since a2 ™ + 22k +1) +1 < n —1 and a2 <n—1-2k -3 = n — 2k — 4, we get
a2t en -2k =3 Let T := T\ {(a23 — 5,02 4 2k +3 —5) | 0 < s < a?*3}. Then
T € T}.

Let g : T4y — @(T;}) x n— 2k — 3 be defined by ¢(T) := (p(T"),a5™") for all T € T,1,;.
If Ty C Tp in T, ), then T{ C T4 and a7 < a3, Conversely, if g(Ty) C g(T) for
T, Ty € 7, ,,, then p(T7) C ¢(T3) and a2k+3 < aZT’ZJrS. Hence, [T7]kere € [T5]kery, Which
implies that 7] C T} (using p(7}') = ’Tl/kenp). Therefore, Ty = T{ U Bf U (B C
T5U Béﬂjl U (Béi;rl)d =Ty Let T € T, and let c € n — 2k — 3 and let T = (T) U B, U B¢
where B, := {(c —s,c+2k+3—5) | 0<s <c}. Then T € T!,; where ab™ = ¢ and
@(T) =T. Then we have
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o(TH) xn—2k—3

(n=k—2x J] n=2t—1)xn—2k—3
1<t<k

n—k—2x[( [ n—=-2t—1)xn—2k—3]
1<t<k

n—(k+1)—1x Py

1
T

vl

R

I

(iv) can be proved in a similar way. |

On 71, a partial order can be defined by:

a,be T} and a <j, b for some 0 < k < [%] or

agb:=<:>{ aEZj,bG']}lH for someOSkS[%]

On 7Y a partial order can be defined in a similar way. Finally, we have the following result:

Theorem 3.7 For the tolerance lattice of an LTi-algebra (A; f) with |[Imf"~t| =2 and f
has no fixed point we have

(Tol(A); Q) =7°UT UT?

with 70> > Tl and T'= > T
0<k<[%] 0<k<[%]

Proof. It remains to prove that Tol(A) C T°UT'U T2 Let T € Tol(A) and assume
that there are elements z,y,u,v € A such that (z,y) € T and (u,v) € T with |z — y| =
2t 4+ 1, |u 4+ v| = 2s for some t > 0,s > 1. Let k and m be the greatest integers with such
properties, let 77 = (By), Ty = (By,), where

Br= U {(@" —s,ai 42t +1-5)|0< s <axtt}

0<t<k
and B, = U {(a¥ —s,a3 +2t—5)|0<s<aZ}
0<t<m
Then T()ETO and T} eT! and T =Ty VvV T;. |

Example 3.8 Let A ={0,1,2,3} and let f : A — A be given by the table

Then the tolerance lattice can be pictured by Figure 6.
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T((0,3),(1,3), (2.3))
T((0.3),(1,3)

T((2:3),(1,3))

-~

T((2,3),(0,2

,3),(0,2),(2,3)

T((1,2),(1,3))

T((0.3),0.2))
T((0,1),(1.3))

res) O/

T((2:3),00.3))

T((1.2).00,2))

T((0,1),(0.2))

T(0,2) O

Figure 6: Tolerance Lattice of an LTj-algebra

4 Tolerances on LTj-algebras with [Imf" 2| =1

Let A be a set with |[A] = n > 3 and A = {v,u, f(u),..., f"?(u)}, where f*"1(u) =
f"72(u) and f(v) = f™(u) for some 0 < m < n — 2. Without restriction of the generality
we may assume that A = {0,1,....m —1,m,m+1,...,n— 1} and that f(t) =t — 1 if
tZ{0,n—1},f(0)=0and f(n—1)=m for some 0 <m <n—2.

Then Figure 7 shows the graph of the LTj-algebra (A; f).

n-1
e}

O O 000 O \Hccco—boHO
n-2 n-3 m+1 m m-1 2 ' 0

Figure 7: LT-algebra with [Imf"~2| =1

For an LTj-operation with [Imf"2| =1 we have f¥(z) =x—yifz >y,x <n—1,f%(n—
1)=m—(y—1)and f¥(z)=0if z < y.

We introduce the following notation:

T:={T €Tol(A)| (m+1,n—-1)¢T}

and if m > 0, then we set Ty := {A4}, and for each 1 < k < n — 2 we define 7} :=
T NTolg(A). Moreover, let 7T, (A) := {T € Tol(A) | [0]r :={0,...,k—1}}. Clearly, 7y is a
sublattice of 7. The following lemma turns out to be very useful for our next considerations.
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Lemma 4.1 Let 1 < m < n — 2,k # m, and assume that T(m —k + 1,n — 1) or T'(n —
1,m+k+1) are in Ty. Let X and Y be disjoint isomorphic sublattices of T,. If Y =
{TUTm—-k+1n-1) | T e X}orY ={TUTn—1,m+k+1) | T € X}, then

XUY~2xX.
Proof. Define g: X UY — 2 x X by

)= OT) HTeX
IETZ10,1) ifTeY and T=T'UT(m—k+1,n—1)

in the first case or

)= [ OT) #Tex
FET=00,1) ifTeY and T=T'UT(n—1,m+k+1)

in the second one. It is clear that g is an isomorphism. |

For each k > 1,i > 0 and T € Ty, let Bh := {(i+t,i+t+k) | 0 <t <i}. As we have shown
in section 1 we have T'(i,i+k) = AyUBSU(BL)4. Let B := {T'(i,i+k) |0 <i<n—k—2}.
Fork#mlet C:={TUT(m—-k+1,n—-1)|Te€B}and D:={TUT(n—1,m+k+1)]|
TeBUC}andlet T, := BUCUD.

If k = m, one can see that T(0,n —1) D T(0,m) C T(1,n —1). Moreover, we introduce the
following notation:

= {TuT(O,n—1)|T € B},

= {TuT(1,n—1)|T € BUC},

= {TUT(n-1,2m+1)|T € BUCUD},

and let 7,, ;== BUCUDUE.

o Q)
\

Now we consider the cases 1 <m <n — 2 and m = 0.

Proposition 4.2 Letl <m <n—2.
1. If k # m, then

m— k22 x k=102 xn—m—k—1if1<k<m
and k <n—m — 3,
+_+

7. m—kl2L2xn—m—-2ifl<k<mand k>n—m—3,

+ +
mR2I2xm-—-n—k—-2ifl<m<k<n-—m-—3,
n—k—1ifl<m<k
and kK >n—m — 3.

Il

T oo 22 5 ml123 x n— 2m — 1 if 2m <n — 3,
2xn—m-—1 if 2m > n — 3.

Proof. Let 1 <m < n— 2. We consider two cases.

1. 1<k#m. Foreach0<i<j<n-—2 let
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Bij = A{T(t,t+k)|i<t<j},
Cry = {TUT(m-k+1n-1)|T¢ B}
Di’j = {TUT(n—l,m+k+1) ‘TEBi’jUCZ"j}.

Then B;; C B,C;; € C,D;; € D and B;; is a sublattice of 7, which is isomorphic to
j—i+1.

Case 1: 1 <k<m. Thenl<m<n—-2andl <k<mimplythat Il <m—-k<n—k—2
which implies that m —k+1<n—k —1<n—2. Consequently, T'(m—k+1,n—1) €T}

and then A := By ym_p_1 U{T(m —k,m) CT(m—k+1),n—1)} = L—ICEQ.

If kK >n—m—3, then n—2 < m+k+1 and therefore T(n—1,m+k+1) &€ Ty; hence D = {).
Thus 7y = BUC = AU By ps1m—k-2 U Con— ket 1n—k—2. Since By ji1.m_k_2 is a sublat-
tice of 7y, Lemma 4.1 implies that By, k410 k-2 U Conki1m—k2 = 2X B ppin_ k2 =
2 xn—m—2. Hence 7, = mﬁgﬂg Xxn—m-—2. But, if £ < n—m — 3 then
T(n—1,m+k+1) € T;.. Therefore, T, = A U (Brm—k+1,m—1 U Cr—k+1.m—1) U (Bmn—k—2 U

Cm,n7k72 U Dm,nfk72)~ Since Bmkarl,mfla Bm,n7k72 and Bm,n7k72 U Cm.,nfku are sub-
lattices of 73, Lemma 4.1 implies that
Bmfk%»l,mfl U Cm7k+1,mfl

2>< Bmkarl,mfl
2xk—1,

111

Bm,n—k—Q U Cm,n—k—Q
2 X Bm,n7k72
2xn—m-—k—1and

1R

Bm,n—k—Z U Om,n—k—2 U Dm,n—k—Q
2 X (Bm,n—k—Q U C’m,n—k—Q)
2x2xn—m-—k—1

2 xn—m—Fk—1.

1R 1R

- +_+
Therefore, 7, 2 m — k22 x k—1x22xn—m—k—1.

Case 2: m <k <n—2. Then m—k+1 <0 and then T(m—k+1,n—1) & Tt; hence, C = {.
Ifk>n—m-—3,thenn—2<m+k+1and then T(n—1,m+k+1) & Ti; hence D = (.
Therefore, T, = B = Bon—k—2Zn—k—1.Ifk<n—-m-3,then T(n—1,m+k+1) € T
and therefore, D # (). In this case,

T = Bon—1 U{T(m,m+k) CT(n—1,m+k+1)} U (Bmiint-2 U Dmitnk2)
Since Byy41,n—k—2 is a sublattice of 73, Lemma 4.1 implies that

Brit1n—k—2 UDmiinb222X Bk o=2xn—m—k—2.
_ + +
Hence, 7), € mlLI2L2 x n —m — k — 2.
2. 1<k=m<n—2 Then T(0,n—1) € T, and T(1,n — 1) € Tp,. If 2m > n — 3,

then 2m +1 >n —2; so, T(n — 1,2m + 1) &€ 7T,,, hence, E = (). Therefore, 7,, = BUC U

D = BO,n7m72 U CO,n7m72 U D07n7m72~ Since BO,n7m72 and BO,n7m72 U C'o,nfm72 are
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sublattices of 7,,, Lemma 4.1 implies that

BO,n7m72 U CO,n7m72 = 2 X BO,n7m72 = 2 Xxn—m-—1

and ) _
(BO,n—m—2 U CO,n—m—Q) U DO,n—m—2
2 X (BO,n—m—2 U CO,n—m—Z)
2x2xn—m—1.
Therefore, 7,, =222 xn —m — 1.
If 2m <n — 3, then T'(n — 1,2m + 1) € 7,, and
7, =BUCUDUE
= (Bom-1UCom-1UDym_1)
V) (Bn,n7m72 ) C_'771,71717172 ) Dm,n7m72 ) E_‘m,nfm72)-

1R

Applying Lemma 4.1 in the same way as in the previous cases we obtain
Bom-1U Com—1U Do m_1

2% (Bom—-1 U Com—1)

2 X2 X Bom-1

22 x m, and

1R 1R

Bm,n7m72 ) Cvm,nfm72 U Dm,n7m72 U Em,n7m72
2 X (Bm,n7m72 U C’m,nfm72 U Dm,nfmfl)

2 X 2 X (Bm,n7m72 U Cm,nfm72)
ﬁ X 2 X Bm,n7m72
22 xn—2m—1.

Il

1R 1R

Now we consider the case m = 0.

Proposition 4.3 If m = 0, then
T, o 2xn—k—1 if1<k<n-3
Tl if k>n—3

Proof. Let m :70 and kK > 1. If 1
T(n—1,k+1) € 7;. Let denote G ;

By p—k—2 U Gon—k—2 and we have

IA

Ty 22X Bopp2¥2xn—k—1

269

k<n-—3,then k+1 < n-—2 and thergfore
{TUT(n—-1,k+1) | T € B;;}. Then 7}, =

where the isomorphism is defined similar as in Lemma 4.1. If & > n—3, then T(n—1,k+1) &
7. S(_), Ty =Bop—k—2=n—k—1. From k >n — 3 we obtain n — k — 1 < 2, which shows

that 7, = 1.

Moreover, we have

Corollary 4.4 Let 0 < m <n —2. Then
1.7 =T and
2. Ty is a sublattice of Ty, for all k > 1.
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Proposition 4.5
LIf1<m<n-—2 then 7, 2T, x Ty forall k > 1 and 7o = {A4}.

2. For m =0, let Ty := {A4, T(0,n— 1)} and 7 := T, U{T UT(0,n — 1) | T € T;}. Then
T22xT, 7527y xT and Ty 2 T;, X Tj,_1 for all k > 2.

Proof. 1. Letl<m<mn—2andm#k>1andletT € 7. Since A\ {n — 1} is an
LT-algebra with fundamental operation f|A\ {n — 1}, we have a%' € n—k —1. Then
TOT(@h ek + k) e BC Tk or T T((ab7 a7 + k), (m—k+1,n—1))€CCT,
or T D T((ah ™t akmt +k),(m —k+1,n—1),(n—1,m+k+1)) € DC T; depending
on(m—k+1n—-1)eTor (n—1,m+k+1) €T or neither. In each case one can see
that there exists an element Sp € 7, such that Sp C T; and thus 7'\ Sy € T_;. For
the cases £k = m > 1 or m = 1 one concludes in a similar way. Now we define a mapping
g:Tw — Tp x Tr,_1 by g(T) = (S, T\ St) for all T € T;. Then g is an order-embedding
and it is easy to prove that T U S € T, for all S € 7, and T € Tj,_;. Hence, ¢ is an
order-isomorphism.

2. Let m = 0. Proposition 4.3 and Corollary 4.4 imply that 73 = 7; and this is isomorphic
to either 2 x n —k —1 or to 1. In the case m = 0 the set Tol(.A) of all tolerances on A
contains T(0,n —1). Weset H :== {TUTO,n—1) | T € 1} forall 1 < i,57 <n—2

and 7 := T, U H. Then with an isomorphism defined similar as in Lemma 4.1 we get

T=2x7. ]| Hence, T 220r7 =222 xn—k—1.

Now we will show that 7; = 7, x 7. Using an argumentation as in 1. One gets T 2
T(ak,at +2) € BC Ty or T D T((ak,ak +2),(n—1,3)) € C C T, for all T € T5. Hence

for all T € T there exists Sy € Ty such that Sy C T. Since SpUT € T for all T € 7,

we have T'= Sp U{T U Sy | T € T}. Then the mapping defined by 7'~ (S, T\ St) for
all T € 75 is an isomorphism from 75 to 75 X 7. A similar argumentation as in 1. shows
T =T, X Ti,_q for all k& > 2. |

Our construction has the following consequences:
Corollary 4.6 1. Form # 0,7, N7 =0 for all0<k#1<n—2and T = U 7

0<k<n—2
2. Form=0,T,NT=0forall<k#1<n—-2,T,NT=0and T, NTy =10

for allk >2 and TN'Ty = 0. Moreover, T=ToUT U | T
2<k<n—2

3. Forall0 <k <n—2,T; and T are isomorphic to a sublattice of T .
4. For all 0 < k <n—2, T_1 is isomorphic to a sublattice of Ty,.

Using the definition of an ordered sum we have:

Proposition 4.7 1. Form #0, 7T = %EITle e E’Tn,g and Ty = {Aa}.
2 Form=0,T=212x T 1T, ».

Finally we get our result:
Theorem 4.8 Tol(A)=2xT.

Proof. Let a:Tol(A) — 2 x T be defined by
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oT) = (0,7) if(n—1,m+1)¢T
Sl (L, T\{(n=1,m+1)} ifn—-1m+1)eT
Then, clearly, « is an order-isomorphism. |

We consider the following example for n = 4, m = 1:

Example 4.9

| f(z) | f2(2)

W N = O
— = O Ol

f
0
0
0
0
8

Then the tolerance lattice is pictured in Figure

T(0.2),(0.3)

Figure 8: Tolerance Lattice of an LTj-algebra
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