TOLERANCES ON MONO-UNARY ALGEBRAS WITH LONG PRE-PERIODS

CHAWEWAN RATANAPRASERT AND KLAUS DENECKE

Received May 9, 2012; revised February 26, 2013

ABSTRACT. Iterating a unary operation defined on a finite set A one obtains a chain

 $A \supseteq Imf \supseteq Imf^2 \supseteq \cdots \supseteq Imf^m = Imf^{m+1},$

where Imf is the image of f, i.e. the set of all images and $f^i := \underbrace{f \circ \cdots \circ f}_{i-times}$ is the

i - th iteration of f, $f^0 := id_A$. The least integer $\lambda(f)$ with $Imf^{\lambda(f)} = Imf^{\lambda(f)+1}$ is called the pre-period of f. Let n be the cardinality of A. Then the pre-period of fis an integer between 0 and n - 1. If $\lambda(f) = n - 1$, then f is said to be a long-tailed operation (*LT*-operation) and if $\lambda(f) = n - 2$, then f is said to be an *LT*₁-operation. In [3] the authors characterized *LT*- and *LT*₁-operations and their invariant equivalence relations. In [4] these were generalized to partial operations and in [5] (see also [7]) to n-ary operations. An algebra (A; f) where f is a unary operation on A is said to be a mono-unary algebra. For the theory of mono-unary algebras we refer the reader to the monograph [9]. Here we study the tolerance lattices of mono-unary algebras (A; f), where f is an *LT*- or an *LT*₁-operation. Tolerances on mono-unary algebras were considered in [10] (see also [8]).

1 Preliminaries

To make this text independent we first repeat some results on LT- and LT_1 -operations from [3].

Theorem 1.1 [3] Let $f : A \to A$ be a unary operation and $|A| = n \ge 2$. Then the following propositions are satisfied:

(i) $\lambda(f) = n - 1$ if and only if there exists an element $d \in A$ such that

$$A = \{d, f(d), f^{2}(d), \dots, f^{n-1}(d) = f^{n}(d)\} (\text{see e.g. } [2]) .$$

(ii) Assume now that $n \ge 3$. Then $\lambda(f) = n - 2$ and $|Imf^{n-2}| = 1$ if and only if there are distinct elements $u, v \in A$ such that $A = \{u, v, f(v), \dots, f^{n-2}(v)\}$ and such that there is an exponent k with $0 \le k \le n - 2$ with $f(u) = f^{k+1}(v)$ and there is an integer m with m + k = n - 2 with $f^{m+1}(u) = f^m(u)$.

(iii) We have $\lambda(f) = n - 2$ and $|Imf^{n-2}| = 2$ if and only if there are different elements $u, v \in A$ such that either

a) $A = \{v, u, f(u), \dots, f^{n-2}(u)\}$ with v = f(v) and $f^{n-1}(u) = f^{n-2}(u)$, or b) $A = \{u, f(u), f^2(u) \dots, v = f^{n-2}(u), f^{n-1}(u)\}$ where $v = f^n(u) = f^{n-2}(u)$.

²⁰¹⁰ Mathematics Subject Classification. 03B50, 08A30, 08A55.

Key words and phrases. unary operation, pre-period, tolerance.

If we choose $A = \{0, 1, \dots, n-2, n-1\}, d = n - 1, f(k) = k - 1$ for $k \neq 0, f(0) = 0$, then f can be pictured as a directed graph where the vertices are labeled by the elements and there is an directed edge from x to y if f(x) = y.

Figure 1: *LT*-operation

This graph is also called the graph of the mono-unary algebra $\mathcal{A} = (A; f)$. The following equations for an *LT*-operation f and $x, y \in A$ will be used many times.

$$f^{y}(x) = \begin{cases} x - y \text{ if } x \ge y \\ 0 \text{ if } x < y \end{cases}$$
(*)

2 Tolerances on LT-algebras

A tolerance on a mono-unary algebra (A; f) is a reflexive and symmetric binary relation T with the property that $(x, y) \in T$ implies $(f(x), f(y)) \in T$ for any $x, y \in A$. In a corresponding way, tolerances can be defined on arbitrary algebras. Congruences are transitive tolerances. For an element $a \in A$ let

$$[a]_T := \{ x \in A \mid (a, x) \in T \}.$$

In [8] this set is called a class of T. Let \leq be the usual order on $A = \{0, 1, \dots, n-1\}$. The following facts are well-known and easy to prove (see [8], [10]).

Proposition 2.1 Let $\mathcal{A} = (A; f)$ be an LT-algebra and let T be a tolerance on \mathcal{A} .

- (i) $[0]_T$ is convex with respect to \leq .
- (ii) For any $x \neq y \in A$ if $T \neq \Delta_A$, there are distinct elements $u, v \in [0]_T$ such that $(u, v) \in T$.
- (iii) Let $[0]_T = \{0, 1, \dots, k-1\}$. If $T \neq \Delta_A$, then $|[0]_T| > 1$.
- (iv) If T is a congruence, then $(x, y) \in T \Leftrightarrow \{x, y\} \subseteq [0]_T$ for all $x, y \in A$.
- (v) For any $x, y \in A$, if $(x, y) \in T$ then $|x y| < |[0]_T|$.

Proof. (i) We have to show: if $x \in [0]_T$ and $0 \le y \le x$, then $y \in [0]_T$. Because of $x \ge x - y$ by (*) we have $f^{x-y}(x) = x - (x - y) = y$. Now, $(0, x) \in T$ implies $(f^{x-y}(0), f^{x-y}(x)) = (0, y) \in T$.

(ii) We may assume that $\{x, y\} \not\subseteq [0]_T$, that x < y, and that $x \notin [0]_T$ since $y \notin [0]_T$ implies $x \notin [0]_T$ by (i). Let $[0]_T = \{0, 1, \dots, k-1\}$. Then $f^{x-k+1}(x) = k-1$. If $y \in [0]_T$, then $(0, y) \in T$ and $(f^{x-k+1}(0), f^{x-k+1}(y)) = (0, f^{x-k+1}(y)) \in T$, i.e. $f^{x-k+1}(y) \in [0]_T$ and if $y \notin [0]_T$, then x - k + 1 > y - k + 1 implies that $f^{x-k+1}(y) \leq f^{y-k+1}(y) = k-1$, so $f^{x-k+1}(y) \in [0]_T$. Let $v := f^{x-k+1}(y)$. Now $(x, y) \in T$ implies $(k-1, v) = (f^{x-k+1}(x), f^{x-k+1}(y)) \in T$ and hence u := k-1 and v are the required elements.

(iii) Let $(x, y) \in T, x \neq y$. Then by (ii) there are elements $u, v \in \{0, 1, \dots, k-1\}, u \neq v$, such that $(u, v) \in T$. We may assume that $u \geq v$. Then $(f^v(u), f^v(v)) = (0, u - v) \in T$, where 0 < u - v < k.

(iv) is clear.

(v) Suppose that there are elements $x, y \in A$ such that $(x, y) \in T$ and $|x - y| \ge |[0]_T|$. We may assume that $[0]_T = \{0, 1, \dots, k - 1\}$. Then $|[0]_T| = k$ and |x - y| = x - y. Since $(x, y) \in T$, we have $(f^y(x), f^y(y)) = (x - y, 0) \in T$. By assumption and by (i) we get $(0, k) \in T$, hence $|[0]_T| \ge k + 1$, a contradiction.

Let $Tol(\mathcal{A})$ denote the set of all tolerances of the mono-unary algebra \mathcal{A} . Clearly, the diagonal $\Delta_A = \{(a, a) \mid a \in A\}$ is contained in any $T \in Tol(\mathcal{A})$ and any $T \in Tol(\mathcal{A})$ is contained in the tolerance $A \times A$. The following properties of $Tol(\mathcal{A})$ for a mono-unary algebra \mathcal{A} are well-known.

Proposition 2.2 ([10]) Let (A; f) be an arbitrary mono-unary algebra. Then $Tol(\mathcal{A})$ forms an algebraic lattice with respect to set inclusion, which is a sublattice of the power set lattice $(\mathcal{P}(A \times A); \subseteq)$, and therefore, it is a distributive lattice.

Let T(a, b) be the tolerance generated by the pair (a, b), i.e. the intersection of all tolerances on the given algebra \mathcal{A} which contain the pair (a, b). Let $Con(\mathcal{A})$ be the congruence lattice of the algebra \mathcal{A} . Now we give two more properties of an LT-algebra.

Proposition 2.3 Let \mathcal{A} be an LT-algebra. Then

- (i) $\bigcap (Tol(\mathcal{A}) \setminus \{\Delta_A\}) = T(1,0).$
- (ii) If $\alpha, \beta \in Con(\mathcal{A}) \setminus \{\Delta_A\}$, then $\alpha \cap \beta \neq \Delta_A$, i.e. \mathcal{A} is subdirectly irreducible.

Proof. (i) Let $T \in Tol(\mathcal{A}), T \neq \Delta_A$. Then there are elements $a, b \in A$ with $a \neq b$ and $(a, b) \in T$. Without loss of generality we may assume that a < b. There follows $(f^{b-1}(a), f^{b-1}(b)) = (0, 1) \in T$, i.e. $T(0, 1) \subseteq T$ for any $T \neq \Delta_A, T \in Tol(\mathcal{A})$. Then we have $T(0, 1) \subseteq \bigcap (Tol(\mathcal{A}) \setminus \{\Delta_A\})$ and thus $\bigcap (Tol(\mathcal{A}) \setminus \{\Delta_A\}) = T(1, 0)$.

(ii) In a similar way as in the proof of (i) we see that any congruence of (A; f) contains the congruence generated by (0, 1) and therefore $\alpha, \beta \in Con(\mathcal{A}) \setminus \{\Delta_A\}$ implies $\alpha \cap \beta \neq \Delta_A$ and this means that \mathcal{A} is subdirectly irreducible (see e.g. [1]).

By Proposition 2.1(iii) we have $|[0]_T| > 1$ for any $T \in Tol(\mathcal{A}), T \neq \Delta_A$ and by Proposition 2.1 (i) there is an element k with $1 < k \leq n$ such that $[0]_T = \{0, 1, \ldots, k-1\}$. For each $1 \leq t \leq k-1$, there is the greatest integer $a_T^t \in A$ such that $(a_T^t, a_T^t + t) \in T$. We consider the set

$$B_T := \bigcup_{1 \le t \le k-1} \{ (a_T^t - s, a_T^t + t - s) \mid 0 \le s \le a_T^t \}.$$

Since B_T is closed under application of f, the tolerance generated by B_T consists precisely of all pairs from B_T , all pairs from $B_T^d := \{(x, y) \in A \times A \mid (y, x) \in B_T\}$ and of all pairs from the diagonal Δ_A , i.e. $\langle B_T \rangle = B_T \cup B_T^d \cup \Delta_A$. By definition, $\langle B_T \rangle$ is the least tolerance containing B_T .

Lemma 2.4 (i) $\langle B_T \rangle = T$. (ii) If T = T(m, m+1) is the tolerance generated by (m, m+1) for $0 \le m \le n$, then $B_T = \{(0,1), (1,2), (2,3), \cdots, (m,m+1)\}.$

(iii) If T = T(a, b), then there exists the greatest integer m such that

$$B_T = \bigcup_{1 \le t \le m} \{ (a_T^t - s, a_T^t + t - s) \mid 0 \le s \le a_T^t \}.$$

(iv) $0 \le a_T^t \le n - t - 1$ for all $1 \le t \le k - 1$.

Proof. (i) We have $[0]_T = \{0, 1, \dots, k-1\}$. Clearly, $B_T \subseteq T$ and then $\langle B_T \rangle \subseteq T$. Assume that $(x, y) \in T$ with $x \neq y$. We may assume that x > y. Then there exists an element t with 0 < t < k such that |x - y| = t, i.e. $(x, y) \in \{(a_T^t - s, a_T^t + t - s) \mid 0 \le s \le a_T^t\} \subseteq B_T$ and then $T \subseteq \langle B_T \rangle$. Altogether, we have equality.

(ii) The set $\{(0,1), (1,2), \dots, (m,m+1)\}$ can be written as $B_T = \bigcup_{1 \le t \le 1} \{(a_T^1 - s, a_T^1 + a_T^1)\}$

 $(1-s) \mid 0 \leq s \leq a_T^1$ with $a_T^1 = m, [0]_T = \{0,1\}$. We show that $T(m, m+1) = \langle B_T \rangle$. Indeed, $\{(0, 1), (1, 2), \dots, (m, m+1)\} \subseteq T(m, m+1)$ implies $\langle B_T \rangle \subseteq T(m, m+1)$. Since T(m, m+1) is the least tolerance containing (m, m+1) and since $(m, m+1) \in \langle B_T \rangle$, we have $\langle B_T \rangle = T(m, m+1)$.

(iii) We may assume that a > b. Then m = a - b. (iv) $(a_T^t, a_T^t + t) \in T$ implies $a_T^t + t \in A$, i.e. $a_T^t + t \le n - 1$, i.e. $a_T^t \le n - t - 1$.

To describe the tolerance lattice of \mathcal{A} we classify all tolerances by the cardinality of $[0]_T =$ $\{0, 1, \ldots, k-1\}.$

Definition 2.5 Let $Tol_0(\mathcal{A}) = \{\Delta_A\}$ and for each $1 < k \leq n$ let $Tol_{k-1}(\mathcal{A})$ be the set of all tolerances on \mathcal{A} with $[0]_T = \{0, 1, \dots, k-1\}.$

By this definition, $Tol_1(\mathcal{A})$ is the set of all tolerances on \mathcal{A} with $[0]_T = \{0, 1\}$ and by Lemma 2.4, $Tol_1(\mathcal{A}) = \{T(m, m+1) \mid m = 0, 1, \dots, n-2\}.$

Let $n-1 := (\{0, \ldots, n-2\}; \leq)$ with the usual linear order \leq defined on A. The set $Tol_1(\mathcal{A})$ is partially ordered with respect to set inclusion.

Proposition 2.6 $(Tol_1(\mathcal{A}); \subseteq) \cong n-1.$

The mapping $g: \{0, 1, \ldots, n-2\} \to Tol_1(\mathcal{A})$ defined by g(m) = T(m, m+1)Proof. for all $0 \le m < n-1$ is order-preserving since $l \le m$ implies $T(l, l+1) \subseteq T(m, m+1)$. Conversely, from $T(l, l+1) \subseteq T(m, m+1)$ there follows $l \leq m$. This shows that g is one-to-one, i.e. an order-isomorphism. Since by definition of $Tol_1(\mathcal{A})$ any tolerance from this set has the form T(m, m+1) for $m \in \{0, 1, \ldots, n-2\}$, the mapping g is onto and thus an order embedding.

Proposition 2.7 For 0 < k < n, $Tol_k(\mathcal{A}) \cong n - k \times Tol_{k-1}(\mathcal{A})$.

Let $T \in Tol_k(A)$. Then $[0]_T = \{0, 1, ..., k-1\}$ and by Lemma 2.4 (i), $T = \langle B_T \rangle$ Proof. $\bigcup_{1 \le t \le k-1} \{ (a_T^t - s, a_T^t + t - s) \mid 0 \le s \le a_T^t \}.$ For $1 \le t \le k-1$, we consider the where $B_T =$ set $B_T^t := \{(a_T^t - s, a_T^t + t - s) \mid 0 \le s \le a_T^t\}$. We define $T_{k-1} := T \setminus (B_T^{k-1} \cup (B_T^{k-1})^d)$. Then $T_{k-1} \in Tol_{k-1}(\mathcal{A})$ and by Lemma 2.4(ii) we have $a_T^{k-1} \le n - (k-1) - 1 = n - k$, i.e. $a_T^{k-1} \in \underline{n-k} \ (= \{0, 1, \dots, n-k-1\}$. Therefore, the pair (a_T^{k-1}, T_{k-1}) belongs to the cartesian product $\underline{n-k} \times Tol_{k-1}(\mathcal{A})$. Let $c \in \underline{n-k}$ and $\alpha \in Tol_{k-1}(\mathcal{A})$. Define $\bar{\alpha} := \langle B_{\alpha} \rangle$ where $B_{\alpha} = \{(c-s,c+k-1-s) \mid 0 \leq s \leq c\}$. Then $[0]_{\bar{\alpha}} = \{0, 1, \dots, k-1\}$ and thus $\bar{\alpha} \in Tol_k(\mathcal{A})$, where $c = a_{\bar{\alpha}}^{k-1}$ and $\bar{\alpha}_{k-1} = \alpha$. Define $g : Tol_k(\mathcal{A}) \to \underline{n-k} \times Tol_{k-1}(\mathcal{A})$ by $g(T) = (a_T^{k-1}, T_{k-1})$. Since $[0]_{\alpha} = [0]_{\beta}$, we have $a_{\alpha}^{k-1} \leq a_{\beta}^{k-1}$, hence $B_{\alpha}^{k-1} \subseteq B_{\beta}^{k-1}$. Let $B_{\alpha} := B_{\alpha}^{k-1} \cup (B_{\alpha}^{k-1})^d$ and $B_{\beta} := B_{\beta}^{k-1} \cup (B_{\beta}^{k-1})^d$. Since a_{α}^{k-1} is the greatest element such that $(a_{\alpha}^{k-1}, a_{\alpha}^{k-1} + k - 1) \in \alpha$, we have $(B_{\beta} \setminus B_{\alpha}) \cap \alpha = \emptyset$ and then $\alpha_{k-1} = \alpha \setminus B_{\alpha} = \alpha \setminus B_{\beta} \subseteq \beta \setminus B_{\beta} = \beta_{k-1}$. Therefore, $g(\alpha) = (a_{\alpha}^{k-1}, \alpha_{k-1}) \leq (a_{\beta}^{k-1}, \beta_{k-1}) = g(\beta)$, where \leq is defined component-wise, using the usual order on the natural numbers for the first component and set-inclusion for the second one. Now assume that $\alpha, \beta \in Tol_k(\mathcal{A})$ such that $g(\alpha) \leq g(\beta)$, i.e. $a_{\alpha}^{k-1} \leq a_{\beta}^{k-1}$ and $\alpha \subseteq \beta$. Then we have $B_{\alpha} \subseteq B_{\beta}$ and $\alpha = \alpha_{k-1} \cup B_{\alpha} \subseteq B_{k-1} \cup B_{\beta} = \beta$. Hence, g is an order-embedding and together with surjectivity we have an order isomorphism.

Our construction has the following consequences:

Corollary 2.8 (i) $Tol_k(\mathcal{A})$ is a product of chains: $Tol_k(\mathcal{A}) \cong \prod_{t=1}^k \underline{n-t}$ for all $0 \le k \le n$, especially, $Tol_{n-1}(\mathcal{A}) \cong \underline{1} \times \dots, \underline{n-2} \times \underline{n-1}$. (ii) $Tol_k(\mathcal{A}) \cap Tol_l(\mathcal{A}) = \emptyset$ for all $0 \le k \ne l \le n-1$ and $Tol(\mathcal{A}) = \bigcup_{0 \le k \le n-1} Tol_k(\mathcal{A})$.

(iii) $Tol_k(\mathcal{A})$ is isomorphic to a sublattice of $Tol(\mathcal{A})$ for all $0 \le k \le n-1$ and $Tol_{k-1}(\mathcal{A})$ is isomorphic to a sublattice of $Tol_k(\mathcal{A})$ for all 0 < k < n.

(iv) $Tol_k(\mathcal{A}) \cong \pi_1(Tol_{k+1}(\mathcal{A}))$ where π_1 is the first projection.

The ordered sum (see e.g. [6]) of a family of partially ordered sets will be denoted by the symbol \sum and if the family consists of finitely many partially ordered sets we will also use the symbol $\stackrel{+}{\sqcup}$

Theorem 2.9 The tolerance lattice of an LT-algebra is isomorphic to an ordered sum

$$Tol(\mathcal{A}) \cong \sum_{0 \le k \le n-1} Tol_k(\mathcal{A}) \cong \sum_{0 \le k \le n-1} \prod_{t=1}^k \underline{n-t}.$$

Let $\alpha, \beta \in Tol(\mathcal{A})$. We define an equivalence relation on $Tol(\mathcal{A})$ as follows:

$$\alpha \sim \beta :\Leftrightarrow [0]_{\alpha} = [0]_{\beta}.$$

Then the quotient set $Tol(\mathcal{A})/\sim$ corresponds to the set $\{[0]_{\alpha} \mid \alpha \in Tol(\mathcal{A})\}$ which can be regarded as a linearly ordered set that is isomorphic to the congruence lattice of (A; f). Altogether we have:

Corollary 2.10 Let $\mathcal{A} = (A; f)$ be an LT-algebra. Then

$$n-1 \cong Tol_1(\mathcal{A}) \cong Tol(\mathcal{A})/\sim \cong Con(\mathcal{A}).$$

Example 2.11 Let $A = \{0, 1, 2, 3\}$ and let $f : A \to A$ be given by the following table

x	$\int f(x)$	$f^2(x)$	$\int f^3(x)$
0	0	0	0
1	0	0	0
$\frac{1}{2}$	1	0	0
3	2	1	0.

Then $Tol_0(\mathcal{A}) = \{\Delta_A\},$ $Tol_1(\mathcal{A}) = \{T(0,1), T(1,2), T(2,3)\},$ $Tol_2(\mathcal{A}) = \{T(0,2), T((0,2), (1,2)), T((0,2), (2,3)), T(1,3),$ $T((1,3), (1,2)), T((1,3), (2,3))\},$ $Tol_3(\mathcal{A}) = \{T(0,3), T((0,3), (1,3)), T((0,3), (1,2)), T((0,3), (2,3)),$ $T((0,3), (1,3), (1,2)), T((0,3), (1,3), (2,3))\}.$

Then the tolerance lattice of (A; f) is given by Figure 2.

Figure 2: Tolerance Lattice of an LT-algebra

3 Tolerances on LT_1 -algebras with $|Imf^{n-2}| = 2$

Corresponding to Theorem 1.1 (iii) we have to consider the cases that f has two fixed points and that f has no fixed point. For the first case, let $A = \{v, u, f(u), \ldots, f^{n-2}(u)\}$ where v = f(v) and $f^{n-1}(u) = f^{n-2}(u), |A| = n \ge 3$ and $\lambda(f) = n - 2$. Without restriction of the generality we may assume that $A = \{0, 0', 1, 2, \ldots, n-2\}$ and f(k) = k - 1 if $k \notin \{0, 0'\}$ and f(0) = 0, f(0') = 0'. Let $B := \{0, 1, \ldots, n-2\}$ and let f|B be the restriction of f onto B. Clearly, f|B is an *LT*-operation on B. Then, Figure 3 shows

the graph of the LT1-algebra (A; f). Let \leq be the usual order on $\{0, 1, \ldots, n-2\}$. For an LT1-operation we have $f^y(x) = x - y$ if $x \geq y$, $f^y(0') = 0'$ for all y and $f^y(x) = 0$ if $0 \leq x < y$. For $T \in Tol(\mathcal{A})$ let T_B be the restriction of T onto B. If $|[0']_T| > 1$ let denote $[0']_T$ by $[0, 0']_T$ since in the next proposition we will prove that in this case $0 \in [0']_T$.

Proposition 3.1

- (i) $[0]_T$ is convex with respect to \leq .
- (ii) $[0']_T = \{0'\}$ or $[0']_T \setminus \{0'\}$ is convex with respect to \leq and $0 \in [0']_T$.
- (iii) $T_B \in Tol(\mathcal{B})$ and $T = T_B \cup T_{[0']_T}$.
- (iv) If $0' \notin [0]_T$, then $[0]_T = [0]_{T_B}$.

(v) There exists the greatest element $k \in B$ such that $[0,0']_T = \{0'\} \cup \{x \in B \mid x < k \text{ and } (x,0') \in T\} = \{0',0,1,\ldots,k-1\}$. This k is denoted by $(0_T)'$.

(vi) For all $\alpha, \beta \in Tol(\mathcal{A})$, if $\alpha \subseteq \beta$, then $[0]_{\alpha} \subseteq [0]_{\beta}, [0']_{\alpha} \subseteq [0']_{\beta}, [0,0']_{\alpha} \subseteq [0,0']_{\beta}$ and $\alpha_B \subseteq \beta_B$.

(vii) For all $\alpha, \beta \in Tol(\mathcal{A})$ we have $(0_{\alpha})' \leq (0_{\beta})' \Leftrightarrow [0, 0']_{\alpha} \subseteq [0, 0']_{\beta}$.

Proof. (i) can be proved in the same way as Proposition 2.1(i).

(ii) Assume that $[0']_T \neq \{0'\}$. Let $x \in [0']_T, x \neq 0'$ and $0 \le y \le x$. Then $(x, 0') \in T$ implies $(f^{x-y}(x), f^{x-y}(0')) = (y, 0') \in T$ and $(f^x(x), f^x(0')) = (0, 0') \in T$.

(iii) $T_B \in Tol(\mathcal{B})$ is clear. Since $T_B \subseteq T$ and $T_{[0']_T} \subseteq T$, we have $T_B \cup T_{[0']_T} \subseteq T$. Let $(x, y) \in T$. If $\{x, y\} \subseteq B$, then $(x, y) \in T_B$. If $\{x, y\} \not\subseteq B$, we may assume that x = 0', so $x, y \in [0']_T$, hence $(x, y) \in T_{[0']_T}$.

(v) Since $(0,0') \in T$, there exists the greatest integer $k \in B$ such that $(0', k-1) \in T$. By (ii) we have $0 \le x \le k-1 \Leftrightarrow (0', x) \in T$. (vi) is clear.

(vii) We have $(0_{\alpha})' \leq (0_{\beta})' \Leftrightarrow [0, 0'] = \{0', 0, 1, \dots, (0_{\alpha})' - 1\} \subseteq \{0', 0, 1, \dots, (0_{\beta})' - 1\} = [0, 0']_{\beta}$ for all $\alpha, \beta \in Tol(\mathcal{A})$.

We define $\mathcal{C}_{0'} := \{ [0']_T \mid T \in Tol(\mathcal{A}) \}$. Then

Proposition 3.2 (i) $C_{0'} = \{\{0'\}\} \cup \{[0, 0']_T \mid T \in Tol(\mathcal{A})\}.$

(ii)
$$(\mathcal{C}_{0'}; \subseteq) \cong \underline{n-1}.$$

Proof. (i) The inclusion $\{\{0'\}\} \cup \{[0,0']_T \mid T \in Tol(\mathcal{A})\} \subseteq \mathcal{C}_{0'}$ is obvious. Let $[0']_T \in \mathcal{C}_{0'}$. We may assume that $|[0']_T| > 1$. Then $0 \in [0']_T$ and $[0']_T = [0,0']_T \in \mathcal{C}_{0'}$.

(ii) We consider the mapping $g: \mathcal{C}_{0'} \to \underline{n-1}$ defined by $\{0'\} \mapsto 0$ and $[0, 0']_T \mapsto (0_T)' + 1$. By Proposition 3.1 (vii) g is an order-embedding. We show that g is surjective. Let $k \in \underline{n-1}$. If k = 0, then $g(\{0'\}) = 0$ and if $k \in \{1, \ldots, n-1\}$, then $k-1 \in \{0, \ldots, n-2\} = B$. Let denote $T_k := \{(x, 0') \mid x < k\}$ and define $T \subseteq A \times A$ by $T := \Delta_A \cup T_k \cup T_k^d$. Then $T \in Tol(\mathcal{A})$ with $(0_T)' = k - 1$. So $g(T) = (0_T)' + 1 = k - 1 + 1 = k$. Hence, g is an order-isomorphism.

Theorem 3.3 For the tolerance lattice of an LT_1 -algebra we have

$$Tol(\mathcal{A}) \cong \underline{n-1} \times Tol(\mathcal{B}) \cong \underline{n-1} \times \sum_{0 \le k \le n-1} Tol_k(\mathcal{B}) \cong \underline{n-1} \times \sum_{0 \le k \le n-1} \prod_{t=1}^{k} \underline{n-t}.$$

Proof. We prove that $Tol(\mathcal{A}) \cong \mathcal{C}_{0'} \times Tol(\mathcal{B})$. Let $g: Tol(\mathcal{A}) \to \mathcal{C}_{0'} \times Tol(\mathcal{B})$ be defined by $T \mapsto ([0']_T, T_B)$ for all $T \in Tol(\mathcal{A})$. By Proposition 3.1 (vi), g is order-preserving. Now, let $\alpha, \beta \in Tol(\mathcal{A})$ such that $g(\alpha) \leq g(\beta)$. Then $[0']_\alpha \subseteq [0']_\beta$ and $\alpha_B \subseteq \beta_B$. By Proposition 3.1 (iii) it remains to prove that $\alpha_{[0']_\alpha} \subseteq \beta_{[0']_\beta}$. Let $(x, y) \in \alpha_{[0']_\alpha}$. Then $\{x, y\} \subseteq [0']_\alpha$ and $(x, y) \in \alpha$. Therefore, $\{x, y\} \subseteq [0']_\beta$. We will prove that $(x, y) \in \beta$. If x = y or $0' \in \{x, y\}$, then $(x, y) \in \beta$ since β is reflexive and $\{0', x\} \subseteq [0']_\beta$ or $\{0', y\} \subseteq [0']_\beta$. Thus we may assume that $x \neq y$ and $0' \notin \{x, y\}$. Then $\{x, y\} \subseteq B$. Hence $(x, y) \in \alpha$ and $\{x, y\} \subseteq B$ implies that $(x, y) \in \alpha_B \subseteq \beta_B$ and $(x, y) \in \beta$. The rest follows from Theorem 1.10, the fact that (B; f|B) is an *LT*-algebra with |B| = n - 2 and from Proposition 2.3.

Example 3.4 Let $A = \{0', 0, 1, 2\}$ and let $f : A \to A$ be given by the table

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	f(x)	$f^2(x)$	$f^3(x)$
$\begin{array}{c ccccc} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}$	0'	0'	0'	0'
1 0 0 0	0	0	0	0
	1	0	0	0
2 1 0 0.	2	1	0	0.

Then the tolerance lattice can be pictured as in Figure 4.

Figure 4: Tolerance Lattice of an LT_1 -algebra

In the second case, $\lambda(f) = n - 2$, $|Imf^{n-2}| = 2$ and f has no fixed points. Let $A = \{u, f(u), \ldots, f^{n-2}(u), f^{n-1}(u)\}, n \geq 3$ and $f^n(u) = f^{n-2}(u)$. Without restriction of the generality we may assume that $A = \{0, 1, 2, \ldots, n-2, n-1\}$ with f(k) = k - 1 if $k \neq 0$ and f(0) = 1. Then Figure 5 shows the graph of the LT_1 -algebra (A; f).

Figure 5: LT_1 -operation

Let \leq be the usual order on $\{0, 1, \ldots, n-1\}$. For an LT_1 -operation of this kind we have $f^y(x) = x - y$ if $x \geq y$ and

$$f^{y}(x) = \begin{cases} 0 & \text{if } x < y \text{ and } y - x \text{ is even} \\ 1 & \text{if } x < y \text{ and } y - x \text{ is odd} \end{cases}$$

We consider the following set of tolerances on $\mathcal{A} : Tol_0(\mathcal{A}) = \{\Delta_A\}$ and let $Tol_k(\mathcal{A})$ be the set of all tolerance relations on (A; f) such that k is the greatest integer in $A \setminus \{0\}$ with $(0, k) \in T$. Let $[\frac{n}{2}]$ be the greatest integer which is smaller than $\frac{n}{2}$. Then we have

Lemma 3.5 (i) Let 0 < k < n and $T \in Tol_k(\mathcal{A})$. Then |x - y| < k if $(x, y) \in T$ for all $x, y \in \mathcal{A}$.

(ii) For all $T \in Tol_1(\mathcal{A})$ there is the greatest integer $m \in A$ such that $T = \Delta_A \cup \{(0,1), \ldots, (m,m+1)\} \cup \{(0,1), \ldots, (m,m+1)\}^d$ and $Tol_1(\mathcal{A}) \cong \underline{n-1}$.

(iii) For $0 \leq k \leq [\frac{n}{2}]$, if $T \in Tol_{2k+1}(\mathcal{A})$, then $(0,1) \in T$ and if $T \in Tol_{2k}(\mathcal{A})$, then $(0,2) \in T$.

(iv) If $T \in Tol(\mathcal{A})$, then there exists the greatest non-negative integer k such that $T \in Tol_k(\mathcal{A})$ and for each $0 < t \le k$ there exists the greatest element $a_T^t \in A$ such that $(a_T^t, a_T^t + t) \in T$.

(v)
$$T = \langle B_T \rangle$$
 where $B_T = \bigcup_{0 \le t \le k} \{ (a_T^t - s, a_T^t + t + s) \mid 0 \le s \le a_T^t \}.$

Proof. (i) Suppose that there are x > y in A such that $(x, y) \in T$ and $x - y \ge k$. Then $(x, y) \in T$ implies $(f^y(x), f^y(y)) = (x - y, 0) \in T$. Therefore, there exists an integer t with $t \ge k$ and $(0, t) \in T$, which contradicts $T \in Tol_k(\mathcal{A})$.

(ii) This follows in a similar way as the corresponding proposition in section 1 and $Tol_1(\mathcal{A}) \cong \underline{n-1}$ can be proved by using the mapping g with $g(k) = T(k, k+1), k \in \{0, 1, \ldots, n-2\}$. (iii) By definition of $T_{2k+1}(\mathcal{A})$ we have $(0, 2k+1) \in T$ and this implies

$$(f^{2k+1}(0), f^{2k+1}(2k+1)) = (1,0).$$

If $T \in Tol_{2k}(\mathcal{A})$, then $(0, 2k) \in T$ implies

$$(f^{2k-2}(0), f^{2k-2}(2k)) = (0, 2k - (2k - 2)) = (0, 2) \in T.$$

(iv) Let $T \in Tol(\mathcal{A}) \setminus \{\Delta_A\}$. Then there are elements $x \neq y$ in A such that $(x, y) \in T$. Without restriction of the generality we may assume that y < x and x = y + m for some $m \ge 1$; hence $(x, y) \in T$ implies $(f^y(x), f^y(y)) = (x - y, 0) = (m, 0) \in T$, i.e. there exists an element $t \ge 1$ such that $(0, t) \in T$. Let $k \ge 1$ be the greatest integer in A such that $(0, k) \in T$. The second proposition is clear.

(v) This follows in the same way as Proposition 1.5.

Let $\mathcal{T}^{0} := \bigcup_{0 \le k \le [\frac{n}{2}]} \{T \in Tol_{2k}(\mathcal{A}) \mid (0,1) \notin T\},$ $\mathcal{T}^{1} := \bigcup_{0 \le k \le [\frac{n}{2}]} \{T \in Tol_{2k+1}(\mathcal{A}) \mid (0,2) \notin T\} \text{ and}$ $\mathcal{T}^{2} := (\mathcal{T}^{0} \land \mathcal{T}^{1}) \cup (\mathcal{T}^{0} \lor \mathcal{T}^{1}), \text{ where}$

 $\mathcal{T}^0 \land \mathcal{T}^1 := \{T \cap S \mid T \in \mathcal{T}^0 \text{ and } S \in \mathcal{T}^1\}, \ \mathcal{T}^0 \lor \mathcal{T}^1 := \{T \cup S \mid T \in \mathcal{T}^0, S \in \mathcal{T}^1\}.$

For each $0 \leq k \leq [\frac{n}{2}]$, let denote $\mathcal{T}_k^0 := \mathcal{T}^0 \cap Tol_{2k}(\mathcal{A})$ and $\mathcal{T}_k^1 := \mathcal{T}^1 \cap Tol_{2k+1}(\mathcal{A})$. Then we have

Proposition 3.6 (i) For each $0 < k \leq [\frac{n}{2}]$ and for each $T \in \mathcal{T}_k^0$, if $(x, y) \in T$, then |x - y| = 2m for some $0 \leq m \leq k$.

(ii) For each $0 < k \leq \lfloor \frac{n}{2} \rfloor$ and for each $T \in \mathcal{T}_k^1$, if $(x, y) \in T$, then |x - y| = 2m + 1 for some $0 \leq m \leq k$.

(iii) For $0 \le k \le [\frac{n}{2}]$, $\mathcal{T}_k^1 \cong \underline{n-k-1} \times P_k$ where $P_0 := (\{0,1\}; \le)$ and $P_k := \prod_{1 \le t \le k} \underline{n-2t-1}$ and $\mathcal{T}_k^0 \cong \underline{n-k-1} \times Q_k$ where $Q_0 := (\{0,1\}; \le)$ and $Q_k := \prod_{1 \le k \le k} \underline{n-2t-2}$.

Proof. (i) Assume that $(x, y) \in T$. If x = y, then we choose m = 0. Now we may assume that $x \neq y$. Since $\mathcal{T}_k^0 \subseteq \mathcal{T}^0$, we have $(0, 1) \notin T$. Suppose that |x - y| = 2m + 1 for some $0 \leq m \leq k$. We may assume that x = y + 2m + 1. Then $(x, y) = (y + 2m + 1, y) \in T$ implies $(f^{y+2m+1}(y+2m+1), f^{y+2m+1}(y)) = (0, 1) \in T$, a contradiction.

```
(ii) can be proved similar to (i).
```

(iii) $\mathcal{T}_1^{-1} = Tol_1(\mathcal{A}) \cong \underline{n-1} \cong \underline{n-1} \times \underline{1}$ is clear by Proposition 1.7. So, the proposition is true if k = 0. Assume that $\mathcal{T}_k^{-1} \cong \underline{n-k-1} \times P_k$ for $k \ge 0$. We notice that $T \cup \{(0, 2k+3), (2k+3, 0)\} \in \mathcal{T}_{k+1}^{-1}$ for all $T \in \mathcal{T}_k^{-1}$ and define $\varphi : \mathcal{T}_k^{-1} \to \mathcal{T}_{k+1}^{-1}$ by $\varphi(T) = T \cup \{(0, 2k+3), (2k+3, 0)\}$ for all $T \in \mathcal{T}_k^{-1}$. Clearly, φ is order-preserving. Since (0, 2k+3) implies $(f(0), f(2k+3)) = (1, 2k+2) \in T$ and this implies $(0, 2k+1) \in T$ for all $T \in \mathcal{T}_{k+1}^{-1}$, we have $\varphi(T(1, 2k+2)) = \varphi(T(0, 2k+1)) = T(0, 2k+3)$ for $T(1, 2k+2), T(0, 2k+1)) \in \mathcal{T}_k^{-1}$ and $T(0, 2k+3) \in \mathcal{T}_{k+1}^{-1}$ and hence $\varphi(\mathcal{T}_k^{-1})) \cong \mathcal{T}_k^{-1}/ker\varphi \cong \underline{n-k-2} \times P_k$. Let $T \in \mathcal{T}_{k+1}^{-1}$. Then k+1 is the greatest integer such that $k+1 \leq [\frac{n}{2}]$ and $(0, 2k+3) \in T$. We have $T = \langle B_T^{k+1} \rangle$, where $B_T^{k+1} = \bigcup_{0 \leq m \leq k+1} \{(a_T^{2m+1} - s, a_T^{2m+1} + 2m + 1 - s) \mid 0 \leq s \leq a_T^{2m+1}\}$.

Since $a_T^{2k+3} + 2(2k+1) + 1 \leq n-1$ and $a_T^{2k+3} \leq n-1-2k-3 = n-2k-4$, we get $a_T^{2k+3} \in \underline{n-2k-3}$. Let $T' := T \setminus \{(a_T^{2k+3} - s, a_T^{2k+3} + 2k+3-s) \mid 0 \leq s \leq a_t^{2k+3}\}$. Then $T' \in \mathcal{T}_k^1$.

Let $g: \mathcal{T}_{k+1}^1 \to \varphi(\mathcal{T}_k^1) \times \underline{n-2k-3}$ be defined by $g(T) := (\varphi(T'), a_T^{k+1})$ for all $T \in \mathcal{T}_{k+1}^1$. If $T_1 \subseteq T_2$ in \mathcal{T}_{k+1}^1 , then $T'_1 \subseteq T'_2$ and $a_{T_1}^{2k+3} \leq a_{T_2}^{2k+3}$. Conversely, if $g(T_1) \subseteq g(T_2)$ for $T_1, T_2 \in \mathcal{T}_{k+1}'$, then $\varphi(T'_1) \subseteq \varphi(T'_2)$ and $a_{T_1}^{2k+3} \leq a_{T_2}^{2k+3}$. Hence, $[T'_1]_{ker\varphi} \subseteq [T'_2]_{ker\varphi}$, which implies that $T'_1 \subseteq T'_2$ (using $\varphi(\mathcal{T}_k^1) \cong \mathcal{T}_k^1/ker\varphi$). Therefore, $T_1 = T'_1 \cup B_{T_1}^{k+1} \cup (B_{T_1}^{k+1})^d \subseteq T'_2 \cup B_{T_2}^{k+1} \cup (B_{T_2}^{k+1})^d = T_2$. Let $T \in \mathcal{T}_k^1$ and let $c \in \underline{n-2k-3}$ and let $T = \varphi(T) \cup B_c \cup B_c^d$ where $B_c := \{(c-s, c+2k+3-s) \mid 0 \leq s \leq c\}$. Then $\overline{T} \in \mathcal{T}_{k+1}^1$ where $a_T^{k+1} = c$ and $\varphi(T) = \overline{T}$. Then we have

$$\begin{array}{rcl} \mathcal{T}_{k+1}^1 &\cong& \varphi(\mathcal{T}_k^1)\times \underline{n-2k-3}\\ &\cong& (\underline{n-k-2}\times \prod\limits_{1\leq t\leq k}\underline{n-2t-1})\times \underline{n-2k-3}\\ &\cong& \underline{n-k-2}\times [(\prod\limits_{1\leq t\leq k}\underline{n-2t-1})\times \underline{n-2k-3}]\\ &\cong& \underline{n-(k+1)-1}\times P_{k+1} \end{array}$$

(iv) can be proved in a similar way.

On \mathcal{T}^1 , a partial order can be defined by:

$$a \le b := \Leftrightarrow \begin{cases} a, b \in \mathcal{T}_k^1 & \text{and } a \le_k b \text{ for some } 0 \le k \le \left[\frac{n}{2}\right] \text{ or} \\ a \in \mathcal{T}_k^1, b \in \mathcal{T}_{k+1}^1 & \text{ for some } 0 \le k \le \left[\frac{n}{2}\right] \end{cases}$$

On \mathcal{T}^0 a partial order can be defined in a similar way. Finally, we have the following result:

Theorem 3.7 For the tolerance lattice of an LT_1 -algebra (A; f) with $|Imf^{n-1}| = 2$ and f has no fixed point we have

$$(Tol(\mathcal{A}); \subseteq) = \mathcal{T}^0 \cup \mathcal{T}^1 \cup \mathcal{T}^2$$

with $\mathcal{T}^0 \cong \sum_{0 \le k \le [rac{n}{2}]} \mathcal{T}^0_k$ and $\mathcal{T}^1 \cong \sum_{0 \le k \le [rac{n}{2}]} \mathcal{T}^1_k$.

Proof. It remains to prove that $Tol(\mathcal{A}) \subseteq \mathcal{T}^0 \cup \mathcal{T}^1 \cup \mathcal{T}^2$. Let $T \in Tol(\mathcal{A})$ and assume that there are elements $x, y, u, v \in A$ such that $(x, y) \in T$ and $(u, v) \in T$ with |x - y| = 2t + 1, |u + v| = 2s for some $t \ge 0, s \ge 1$. Let k and m be the greatest integers with such properties, let $T_1 = \langle B_k \rangle, T_0 = \langle B_m \rangle$, where $B_k = \bigcup_{\substack{0 \le t \le k}} \{(a_T^{2t+1} - s, a_t^{2t+1} + 2t + 1 - s) \mid 0 \le s \le a_T^{2t+1}\}$ and $B_m = \bigcup_{\substack{0 \le t \le m}} \{(a_T^{2t} - s, a_T^{2t} + 2t - s) \mid 0 \le s \le a_T^{2t}\}.$ Then $T_0 \in \mathcal{T}^0$ and $T_1 \in \mathcal{T}^1$ and $T = T_0 \vee T_1$.

Example 3.8 Let $A = \{0, 1, 2, 3\}$ and let $f : A \to A$ be given by the table

x	f(x)	$f^2(x)$	$f^3(x)$	$f^4(x)$
0	1	0	1	0
1	0	1	0	1
$\frac{1}{2}$	1	0	1	0
3	2	1	0	1.

Then the tolerance lattice can be pictured by Figure 6.

Figure 6: Tolerance Lattice of an LT_1 -algebra

4 Tolerances on LT_1 -algebras with $|Imf^{n-2}| = 1$

Let A be a set with $|A| = n \ge 3$ and $A = \{v, u, f(u), \ldots, f^{n-2}(u)\}$, where $f^{n-1}(u) = f^{n-2}(u)$ and $f(v) = f^m(u)$ for some $0 \le m < n-2$. Without restriction of the generality we may assume that $A = \{0, 1, \ldots, m-1, m, m+1, \ldots, n-1\}$ and that f(t) = t-1 if $t \notin \{0, n-1\}, f(0) = 0$ and f(n-1) = m for some $0 \le m < n-2$. Then Figure 7 shows the graph of the LT_1 -algebra (A; f).

For an LT_1 -operation with $|Imf^{n-2}| = 1$ we have $f^y(x) = x - y$ if $x \ge y, x < n-1, f^y(n-1) = m - (y-1)$ and $f^y(x) = 0$ if x < y.

We introduce the following notation:

 $\mathcal{T} := \{T \in Tol(\mathcal{A}) \mid (m+1, n-1) \notin T\}$ and if m > 0, then we set $\mathcal{T}_0 := \{\Delta_A\}$, and for each $1 \leq k \leq n-2$ we define $\mathcal{T}_k := \mathcal{T} \cap Tol_k(\mathcal{A})$. Moreover, let $\mathcal{T}_k(\mathcal{A}) := \{T \in Tol(\mathcal{A}) \mid [0]_T := \{0, \ldots, k-1\}\}$. Clearly, \mathcal{T}_k is a sublattice of \mathcal{T} . The following lemma turns out to be very useful for our next considerations. **Lemma 4.1** Let $1 \leq m < n-2, k \neq m$, and assume that T(m-k+1, n-1) or T(n-1, m+k+1) are in \mathcal{T}_k . Let \mathcal{X} and \mathcal{Y} be disjoint isomorphic sublattices of \mathcal{T}_k . If $Y = \{T \cup T(m-k+1, n-1) \mid T \in X\}$ or $Y = \{T \cup T(n-1, m+k+1) \mid T \in X\}$, then $\mathcal{X} \cup \mathcal{Y} \cong 2 \times \mathcal{X}$.

Proof. Define $g: \mathcal{X} \cup \mathcal{Y} \to \underline{2} \times \mathcal{X}$ by

$$g(T) := \begin{cases} (0,T) & \text{if } T \in X\\ (0,T') & if T \in Y \text{ and } T = T' \cup T(m-k+1,n-1) \end{cases}$$

in the first case or

$$g(T) := \left\{ \begin{array}{ll} (0,T) & \text{if } T \in X \\ (0,T') & ifT \in Y \text{ and } T = T' \cup T(n-1,m+k+1) \end{array} \right.$$

in the second one. It is clear that g is an isomorphism.

For each $k \geq 1, i \geq 0$ and $T \in \mathcal{T}_k$, let $B_T^i := \{(i+t, i+t+k) \mid 0 \leq t \leq i\}$. As we have shown in section 1 we have $T(i, i+k) = \Delta_A \cup B_T^i \cup (B_T^i)^d$. Let $B := \{T(i, i+k) \mid 0 \leq i \leq n-k-2\}$. For $k \neq m$ let $C := \{T \cup T(m-k+1, n-1) \mid T \in B\}$ and $D := \{T \cup T(n-1, m+k+1) \mid T \in B \cup C\}$ and let $\overline{\mathcal{T}}_k := B \cup C \cup D$.

If k = m, one can see that $T(0, n-1) \supset T(0, m) \subset T(1, n-1)$. Moreover, we introduce the following notation:

$$\begin{array}{rcl} \bar{C} &:= & \{T \cup T(0,n-1) \mid T \in B\}, \\ \bar{D} &:= & \{T \cup T(1,n-1) \mid T \in B \cup \bar{C}\}, \\ \bar{E} &:= & \{T \cup T(n-1,2m+1) \mid T \in B \cup \bar{C} \cup \bar{D}\}, \\ \text{and let } \bar{\mathcal{T}}_m &:= B \cup \bar{C} \cup \bar{D} \cup \bar{E}. \end{array}$$

Now we consider the cases 1 < m < n - 2 and m = 0.

Proposition 4.2 Let 1 < m < n - 2.

1. If $k \neq m$, then

$$\bar{T}_{k} \cong \begin{cases} \frac{m-k \overset{+}{\sqcup} 2 \overset{+}{\sqcup} 2 \times \underline{k-1} \overset{+}{\sqcup} 2^{2}}{\text{and } k \leq n-m-3,} & \underline{m-m-k-1} \text{ if } 1 \leq k < m \\ \frac{m-k \overset{+}{\sqcup} 2 \overset{+}{\sqcup} 2 \times \underline{n-m-2}}{\underline{m} \overset{+}{\sqcup} 2 \overset{+}{\sqcup} 2 \times \underline{m-m-2}} & \text{if } 1 \leq k < m \text{ and } k > \underline{n-m-3}, \\ \underline{m} \overset{+}{\sqcup} 2 \overset{+}{\sqcup} 2 \times \underline{m-n-k-2} & \text{if } 1 < m < k \leq n-m-3, \\ \underline{n-k-1} & \text{if } 1 < m < k \\ \underline{and } k > n-m-3. \end{cases}$$

2.

$$\bar{\mathcal{T}}_m \cong \left\{ \begin{array}{ll} \frac{2^2 \times \underline{m} \overset{+}{\sqcup} 2^3 \times \underline{n-2m-1}}{\underline{2^2} \times \underline{n-m-1}} & \text{ if } 2m \leq n-3, \\ \underline{2^2} \times \underline{n-m-1} & \text{ if } 2m > n-3. \end{array} \right.$$

Proof. Let 1 < m < n - 2. We consider two cases.

1. $1 \leq k \neq m$. For each $0 \leq i \leq j \leq n-2$, let

$$\begin{array}{rcl} B_{i,j} & := & \{T(t,t+k) \mid i \leq t \leq j\}, \\ C_{i,j} & := & \{T \cup T(m-k+1,n-1) \mid T \in B_{i,j}\}, \\ D_{i,j} & := & \{T \cup T(n-1,m+k+1) \mid T \in B_{i,j} \cup C_{i,j}\} \end{array}$$

Then $B_{i,j} \subseteq B, C_{i,j} \subseteq C, D_{i,j} \subseteq D$ and $B_{i,j}$ is a sublattice of \mathcal{T}_k which is isomorphic to j - i + 1.

$$B_{m-k+1,m-1} \cup C_{m-k+1,m-1}$$

$$\stackrel{\cong}{=} \frac{2 \times B_{m-k+1,m-1}}{2 \times \underline{k-1}},$$

 $B_{m,n-k-2} \stackrel{\cdot}{\cup} C_{m,n-k-2}$ $\cong 2 \times B_{m,n-k-2}$ $\cong 2 \times \underline{n-m-k-1} \text{ and }$

$$B_{m,n-k-2} \cup C_{m,n-k-2} \cup D_{m,n-k-2}$$

$$\cong \underbrace{2 \times (B_{m,n-k-2} \cup C_{m,n-k-2})}_{\cong 2 \times 2 \times \underline{n-m-k-1}}$$

$$\cong \underbrace{2^2 \times \underline{n-m-k-1}}_{\cong 2^2 \times \underline{n-m-k-1}}.$$

Therefore, $\bar{\mathcal{T}}_k \cong \underline{m-k} \stackrel{+}{\sqcup} \underline{2} \stackrel{+}{\sqcup} \underline{2} \times \underline{k-1} \times \underline{2}^2 \times \underline{n-m-k-1}.$

<u>Case 2</u>: m < k < n-2. Then $m-k+1 \leq 0$ and then $T(m-k+1, n-1) \notin \mathcal{T}_k$; hence, $C = \emptyset$. If k > n-m-3, then n-2 < m+k+1 and then $T(n-1, m+k+1) \notin \mathcal{T}_k$; hence $D = \emptyset$. Therefore, $\overline{\mathcal{T}}_k = B = B_{0,n-k-2} \cong \underline{n-k-1}$. If $k \leq n-m-3$, then $T(n-1, m+k+1) \in \mathcal{T}_k$ and therefore, $D \neq \emptyset$. In this case,

 $\bar{\mathcal{T}}_k = B_{0,m-1} \cup \{T(m,m+k) \subset T(n-1,m+k+1)\} \cup (B_{m+1,n-k-2} \cup D_{m+1,n-k-2}).$ Since $B_{m+1,n-k-2}$ is a sublattice of \mathcal{T}_k , Lemma 4.1 implies that

$$B_{m+1,n-k-2} \cup D_{m+1,n-k-2} \cong \underline{2} \times B_{m+1,n-k-2} \cong \underline{2} \times \underline{n-m-k-2}$$

Hence, $\overline{T}_k \cong \underline{m} \stackrel{+}{\sqcup} \underline{2} \stackrel{+}{\sqcup} \underline{2} \times \underline{n-m-k-2}.$

2. $1 \le k = m < n-2$. Then $T(0, n-1) \in \mathcal{T}_m$ and $T(1, n-1) \in \mathcal{T}_m$. If 2m > n-3, then 2m+1 > n-2; so, $T(n-1, 2m+1) \notin \mathcal{T}_m$, hence, $\bar{E} = \emptyset$. Therefore, $\bar{\mathcal{T}}_m = B \cup \bar{C} \cup \bar{D} = B_{0,n-m-2} \cup C_{0,n-m-2} \cup D_{0,n-m-2}$. Since $B_{0,n-m-2}$ and $B_{0,n-m-2} \cup C_{0,n-m-2}$ are

268

sublattices of \mathcal{T}_m , Lemma 4.1 implies that

$$B_{0,n-m-2} \cup C_{0,n-m-2} \cong \underline{2} \times B_{0,n-m-2} \cong \underline{2} \times n-m-1$$

and

 $\begin{array}{rcl} (B_{0,n-m-2} \stackrel{.}{\cup} C_{0,n-m-2}) \stackrel{.}{\cup} D_{0,n-m-2} \\ &\cong & \underline{2} \times (B_{0,n-m-2} \stackrel{.}{\cup} C_{0,n-m-2}) \\ &\cong & \underline{2} \times \underline{2} \times \underline{n-m-1}. \\ \text{Therefore, } \mathcal{T}_m \cong \underline{2^2} \times \underline{n-m-1}. \\ \text{If } 2m \leq n-3, \text{ then } T(n-1,2m+1) \in \mathcal{T}_m \text{ and } \\ \bar{\mathcal{T}}_m = B \cup \bar{C} \cup \bar{D} \cup \bar{E} \\ &= & (B_{0,m-1} \stackrel{.}{\cup} \bar{C}_{0,m-1} \stackrel{.}{\cup} \bar{D}_{0,m-1}) \\ &\stackrel{.}{\cup} & (B_{n,n-m-2} \stackrel{.}{\cup} \bar{C}_{m,n-m-2} \stackrel{.}{\cup} \bar{D}_{m,n-m-2}. \end{array}$

Applying Lemma 4.1 in the same way as in the previous cases we obtain

$$B_{0,m-1} \stackrel{\cdot}{\cup} \overline{C}_{0,m-1} \stackrel{\cdot}{\cup} \overline{D}_{0,m-1}$$

$$\cong \underline{2} \times (B_{0,m-1} \stackrel{\cdot}{\cup} \overline{C}_{0,m-1})$$

$$\cong \underline{2} \times \underline{2} \times B_{0,m-1}$$

$$\cong \underline{2^2} \times \underline{m}, \text{ and}$$

$$B_{m,n-m-2} \stackrel{\cdot}{\cup} \bar{C}_{m,n-m-2} \stackrel{\cdot}{\cup} \bar{D}_{m,n-m-2} \stackrel{\cdot}{\cup} \bar{E}_{m,n-m-2}$$

$$\cong \underline{2} \times (B_{m,n-m-2} \stackrel{\cdot}{\cup} \bar{C}_{m,n-m-2} \stackrel{\cdot}{\cup} \bar{D}_{m,n-m-1})$$

$$\cong \underline{2} \times \underline{2} \times (B_{m,n-m-2} \stackrel{\cdot}{\cup} C_{m,n-m-2})$$

$$\cong \underline{2^2} \times \underline{2} \times B_{m,n-m-2}$$

$$\cong \underline{2^3} \times \underline{n-2m-1}.$$

Now we consider the case m = 0.

Proposition 4.3 If m = 0, then

$$\mathcal{T}_k \cong \left\{ \begin{array}{ll} \frac{2}{1} \times \frac{n-k-1}{n} & \text{if } 1 \leq k \leq n-3 \\ \frac{1}{2} & \text{if } k > n-3 \end{array} \right. .$$

Proof. Let m = 0 and $k \ge 1$. If $1 \le k \le n-3$, then $k+1 \le n-2$ and therefore $T(n-1,k+1) \in \overline{T}_k$. Let denote $G_{i,j} := \{T \cup T(n-1,k+1) \mid T \in B_{i,j}\}$. Then $\overline{T}_k = B_{0,n-k-2} \cup G_{0,n-k-2}$ and we have

$$\bar{\mathcal{T}}_k \cong \underline{2} \times B_{0,n-k-2} \cong \underline{2} \times \underline{n-k-1}$$

where the isomorphism is defined similar as in Lemma 4.1. If k > n-3, then $T(n-1, k+1) \notin \overline{T}_k$. So, $\overline{T}_k = B_{0,n-k-2} \cong \underline{n-k-1}$. From k > n-3 we obtain n-k-1 < 2, which shows that $\overline{T}_k \cong \underline{1}$.

Moreover, we have

Corollary 4.4 Let $0 \le m < n - 2$. Then

- 1. $T_1 = \overline{T}_1$ and
- 2. $\overline{\mathcal{T}}_k$ is a sublattice of \mathcal{T}_k for all $k \geq 1$.

Proposition 4.5

1. If $1 \le m < n-2$, then $\mathcal{T}_k \cong \overline{\mathcal{T}}_k \times \mathcal{T}_{k-1}$ for all $k \ge 1$ and $\mathcal{T}_0 = \{\Delta_A\}$.

2. For m = 0, let $\mathcal{T}_0 := \{\Delta_A, T(0, n-1)\}$ and $\overline{\mathcal{T}} := \mathcal{T}_1 \cup \{T \cup T(0, n-1) \mid T \in \mathcal{T}_1\}$. Then $\overline{\mathcal{T}} \cong \underline{2} \times \mathcal{T}_1, \mathcal{T}_2 \cong \overline{\mathcal{T}}_2 \times \overline{\mathcal{T}}$ and $\mathcal{T}_k \cong \overline{\mathcal{T}}_k \times \mathcal{T}_{k-1}$ for all k > 2.

Proof. 1. Let 1 < m < n-2 and $m \neq k > 1$ and let $T \in \mathcal{T}_k$. Since $A \setminus \{n-1\}$ is an LT-algebra with fundamental operation $f | A \setminus \{n-1\}$, we have $a_T^{k-1} \in \underline{n-k-1}$. Then $T \supseteq T(a_T^{k-1}, a_T^{k-1} + k) \in B \subseteq \overline{\mathcal{T}}_K$ or $T \supseteq T((a_T^{k-1}, a_T^{k-1} + k), (m-k+1, n-1)) \in C \subseteq \overline{\mathcal{T}}_k$ or $T \supseteq T((a_T^{k-1}, a_T^{k-1} + k), (m-k+1, n-1)) \in D \subseteq \overline{\mathcal{T}}_k$ depending on $(m-k+1, n-1) \in T$ or $(n-1, m+k+1) \in T$ or neither. In each case one can see that there exists an element $S_T \in \overline{\mathcal{T}}_k$ such that $S_T \subseteq T$; and thus $T \setminus S_T \in \mathcal{T}_{k-1}$. For the cases k = m > 1 or m = 1 one concludes in a similar way. Now we define a mapping $g: \mathcal{T}_k \to \overline{\mathcal{T}}_k \times \mathcal{T}_{k-1}$ by $g(T) = (S_T, T \setminus S_T)$ for all $T \in \overline{\mathcal{T}}_k$. Then g is an order-embedding and it is easy to prove that $T \cup S \in \mathcal{T}_k$ for all $S \in \overline{\mathcal{T}}_k$ and $T \in \overline{\mathcal{T}}_{k-1}$. Hence, g is an order-isomorphism.

2. Let m = 0. Proposition 4.3 and Corollary 4.4 imply that $\mathcal{T}_1 = \overline{\mathcal{T}}_1$ and this is isomorphic to either $\underline{2} \times \underline{n-k-1}$ or to $\underline{1}$. In the case m = 0 the set $Tol(\mathcal{A})$ of all tolerances on \mathcal{A} contains T(0, n-1). We set $H := \{T \cup T(0, n-1) \mid T \in \mathcal{T}_1\}$ for all $1 \leq i, j \leq n-2$ and $\overline{\mathcal{T}} := \mathcal{T}_1 \stackrel{\cdot}{\cup} H$. Then with an isomorphism defined similar as in Lemma 4.1 we get $\overline{\mathcal{T}} \cong \underline{2} \times \mathcal{T}_1$.] Hence, $\overline{\mathcal{T}} \cong \underline{2}$ or $\overline{\mathcal{T}} \cong \underline{2}^2 \times \underline{n-k-1}$.

Now we will show that $\mathcal{T}_2 \cong \overline{\mathcal{T}}_2 \times \overline{\mathcal{T}}$. Using an argumentation as in 1. One gets $T \supseteq T(a_T^1, a_T^1 + 2) \in B \subseteq \overline{\mathcal{T}}_2$ or $T \supseteq T((a_T^1, a_T^1 + 2), (n - 1, 3)) \in C \subseteq \overline{\mathcal{T}}_2$ for all $T \in \mathcal{T}_2$. Hence for all $T \in \mathcal{T}_2$ there exists $S_T \in \overline{\mathcal{T}}_2$ such that $S_T \subseteq T$. Since $S_T \cup \overline{T} \in T$ for all $\overline{T} \in \overline{\mathcal{T}}$, we have $T = S_T \cup \{\overline{T} \cup S_T \mid \overline{T} \in \overline{\mathcal{T}}\}$. Then the mapping defined by $T \mapsto (S_T, T \setminus S_T)$ for all $T \in \mathcal{T}_2$ is an isomorphism from \mathcal{T}_2 to $\overline{\mathcal{T}}_2 \times \overline{\mathcal{T}}$. A similar argumentation as in 1. shows $\mathcal{T}_k \cong \overline{\mathcal{T}}_k \times \mathcal{T}_{k-1}$ for all k > 2.

Our construction has the following consequences:

Corollary 4.6 1. For $m \neq 0, \mathcal{T}_k \cap \mathcal{T}_l = \emptyset$ for all $0 \le k \ne l \le n-2$ and $\mathcal{T} = \bigcup_{\substack{0 \le k \le n-2}} \mathcal{T}_k$. 2. For $m = 0, \mathcal{T}_k \cap \mathcal{T}_l = \emptyset$ for all $1 < k \ne l \le n-2, \mathcal{T}_k \cap \bar{\mathcal{T}} = \emptyset$ and $\mathcal{T}_k \cap \mathcal{T}_0 = \emptyset$ for all $k \ge 2$ and $\bar{\mathcal{T}} \cap \mathcal{T}_0 = \emptyset$. Moreover, $\mathcal{T} = \mathcal{T}_0 \cup \bar{\mathcal{T}} \cup \bigcup_{\substack{2 \le k \le n-2\\ 2 \le k \le n-2}} \mathcal{T}_k$.

- 3. For all $0 \leq k \leq n-2$, \mathcal{T}_k and $\overline{\mathcal{T}}$ are isomorphic to a sublattice of \mathcal{T} .
- 4. For all $0 < k \le n-2$, \mathcal{T}_{k-1} is isomorphic to a sublattice of \mathcal{T}_k .

Using the definition of an ordered sum we have:

Proposition 4.7 1. For $m \neq 0$, $\mathcal{T} \cong \mathcal{T}_0 \stackrel{+}{\sqcup} \mathcal{T}_1 \stackrel{+}{\sqcup} \cdots \stackrel{+}{\sqcup} \mathcal{T}_{n-2}$ and $\mathcal{T}_0 = \{\Delta_A\}$. 2. For m = 0, $\mathcal{T} \cong \underline{2} \stackrel{+}{\sqcup} \underline{2} \times \mathcal{T}_1 \stackrel{+}{\sqcup} \mathcal{T}_2 \cdots \stackrel{+}{\sqcup} \mathcal{T}_{n-2}$.

Finally we get our result:

Theorem 4.8 $Tol(\mathcal{A}) \cong \underline{2} \times \mathcal{T}.$

Proof. Let $\alpha : Tol(\mathcal{A}) \to \underline{2} \times \mathcal{T}$ be defined by

$$\alpha(T) = \begin{cases} (0,T) & \text{if } (n-1,m+1) \notin T \\ (1,T \setminus \{(n-1,m+1)\} & \text{if } (n-1,m+1) \in T \end{cases}$$

Then, clearly, α is an order-isomorphism.

We consider the following example for n = 4, m = 1:

Example 4.9

x	$\int f(x)$	$\int f^2(x)$
0	0	0
1	0	0
2	1	0
3	1	0.

Then the tolerance lattice is pictured in Figure 8.

Figure 8: Tolerance Lattice of an LT_1 -algebra

References

- K. Denecke and S. L. Wismath, Universal Algebra and Applications in Theoretical Computer Science, Chapman and Hall/CRC 2002.
- [2] K. Denecke and R. Pöschel, The characterization of Sheffer functions by hyperidentities, Semigroup Forum 37 3 (1988), 351–362.
- [3] C. Ratanaprasert and K. Denecke, Unary Operations with Long Pre-Periods, Discrete Mathematics with its Application in Information Science and Related Topics, Conference, Beibei, Chongqing, (20/10/2004) in: Discr. Math. Vol. 308 No 21 (2008), 4998–5005.
- [4] K. Denecke and C. Ratanaprasert, Partial Unary Operations with Long Pre-periods, J. Appl. Alg. Discr. Structures Vol.5 (2007), 133–145.
- [5] K. Denecke and C. Ratanaprasert, N-ary Operations with Long Pre-periods, Asian-European J. Math. Vol. 2 No. 2 (2009), 201–212.

C. RATANAPRASERT AND K. DENECKE

- [6] E. Harzheim, Ordered Sets, Springer 2005.
- [7] C. Ratanaprasert and K. Denecke, Iteration of Total and Partial Unary Operations, Southeast Asian Bulletin of Mathematics 36 (2012), 687–694.
- [8] I. Chajda, Algebraic Theory of Tolerance Relations, Univerzita Palackého Olomouc, 1991.
- [9] D. Jakubiková Studenovská and J. Pócs, Monounary Algebras, Košice 2009.
- [10] B. Zelinka, Tolerances on monounary algebras, Czech. Math. J. 34 (1984), 298–304.

C. Ratanaprasert Department of Mathematics, Faculty of Science, Silpakorn University, Nakornpathom 73000, Thailand. E-mail: ratach@su.ac.th

K. Denecke Department of Mathematics, Faculty of Science, Silpakorn University, Nakornpathom 73000, Thailand. E-mail: klausdenecke@hotmail.com