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Admissibility under the LINEX loss function in non-regular case
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Abstract. In the statistical estimation theory, sufficient conditions for admissibility
of estimators have been discussed mostly under quadratic loss function. Recently,
under the LINEX loss function, sufficient conditions were developed in some families
of distributions. However, they do not include some typical non-regular distributions
so that the dimension of the minimal sufficient statistic is two. The purpose of this
paper is to give sufficient conditions for admissibility of estimators in such non-regular
distributions under the LINEX loss function. Some examples are also given.

1 Introduction We consider an estimation problem of a real-valued function of unknown
parameter θ based on samples obtained from a probability distribution with unknown pa-
rameter. Under quadratic loss function, sufficient conditions for linear estimators to be ad-
missible has been investigated by many authors (Karlin [3], Ghosh and Meeden [1], Ralescu
and Ralescu [10], Hoffmann [2]). Further, the general theory for admissibility was derived
by Pulskamp and Ralescu [9] for regular case, and Sinha and Gupta [15], Kim and Mee-
den [4] for non-regular case.

On the other hand, under the LINEX loss function, admissibility results were limited to
whether linear estimator is admissible or not (Rojo [11], Sadooghi-Alvandi and Nematol-
lahi [14], Kuo and Dey [5], Sadooghi-Alvandi [13], Pandey [6], Parsian and Farsipour [7]).
Here, the LINEX loss function is defined by

(1) L(θ, δ) = b
{

ea(δ−g(θ)) − a(δ − g(θ)) − 1
}

,

for an estimator δ of function g(θ) to be estimated, where a 6= 0 and b > 0 (Varian [18],
Zellner [19]). It should be noted that the LINEX loss function is regarded as an extension of
quadratic loss function. Recently, sufficient conditions for admissibility has been developed
for regular case by Tanaka [16]. Similar result was obtained by Tanaka [17] for the non-
regular case when the dimension of the minimal sufficient statistic is one, which includes a
uniform distribution U(0, θ). However, it does not include some typical distributions such as
U(θ, θ+1), which will be treated in Section 4. The purpose of this paper is to give sufficient
conditions for generalized Bayes estimator (GBE) to be admissible under the LINEX loss
function when the dimension of the minimal sufficient statistic is two.

This paper is organized as follow. In Section 2, we give preliminaries. In Section 3, we
give sufficient conditions for GBE to be admissible under the LINEX loss function and its
corollaries. In Section 4, we give some examples. Finally, we give proof of the theorem in
Section 5.
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2 Preliminaries Suppose that a random vector X := (X1, X2) is distributed according
to a probability distribution, and its probability density function (p.d.f.) with respect to
the Lebesgue measure is given by

(2) f(x, θ) =
{

q(θ)r(x) (x ∈ Xθ),
0 (otherwise),

where x := (x1, x2), q(θ) > 0, r(x) > 0 and Xθ := {x ∈ R2|α(θ) < x1 < x2 < β(θ)} for some
functions α(θ) and β(θ). Here, we assume that both α(θ) and β(θ) are strictly increasing.
This setup is motivated by the case when the dimension of sufficient statistic is two. Then
we consider the admissibilities of estimators of function g(θ) based on X under the LINEX
loss function (1). We can assume b = 1 without loss of generality. By the general theory
about admissibility (Sacks [12]), it is enough to focus on GBE w.r.t. improper priors. Let
π(θ) be an improper prior density of θ. Here, we assume π(θ) > 0 for all θ ∈ Θ. We further
restrict estimators to the class

(3) ∆ := {δ|(A1) and (A2) are satisfied},

where

(A1) Eθ|δ(X)| < ∞ and Eθ[eaδ(X)] < ∞ for all θ ∈ Θ,

(A2)
∫ v

u
Eθ|δ(X) − g(θ)|π(θ)dθ < ∞ and

∫ v

u
Eθ[ea(δ(X)−g(θ))]π(θ)dθ < ∞ for all u < v

(u, v ∈ Θ).

Under these conditions, the GBE of g(θ) w.r.t. π(θ) is given by δπ(X), where

(4) δπ(x) = −1
a

log

∫
Θ

e−ag(θ)q(θ)π(θ)IΘx(θ)dθ∫
Θ

q(θ)π(θ)IΘx(θ)dθ

for all x ∈ X := {x ∈ R2|x1 < x2}, provided that the integrals exist and are finite, where
Θx := {θ ∈ Θ|β−1(x2) < θ < α−1(x1)}.

3 Sufficient conditions for generalized Bayes estimator to be admissible In this
section, we give sufficient conditions for GBE (4) to be admissible under the LINEX loss
function. The following is the main result.

Theorem 1 Suppose that δπ(X) ∈ ∆ which is defined in (3). For θ ∈ Θ and x ∈ Xθ, put

F (x, θ) :=
∫ θ

θ

(e−aδπ(x) − e−ag(t))q(t)π(t)IΘx(t)dt,

and

γ(θ) :=
eag(θ)

q(θ)π(θ)

∫
R2

F 2(x, θ)eaδπ(x)r(x)IXθ
(x)dx,

where IA(x) is the indicator function of set A. If γ(θ) < ∞ for all θ ∈ Θ and there exists
d ∈ Θ such that

(5) lim
c→θ

∫ c

d

dθ

γ(θ)
= lim

c→θ

∫ d

c

dθ

γ(θ)
= ∞,

then δπ(X) is ∆-admissible for g(θ) under the LINEX loss function.
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The proof is given in Section 5.

The sufficient condition (5) in Theorem 1 is somewhat complicated. By adding some
conditions on g(θ), we give two corollaries. Now we note from (4) that F (x, θ) is expressed
as

F (x, θ) =
1∫ θ

θ
q(u)π(u)IΘx(u)du

∫ θ

θ

∫ θ

θ

(e−ag(s) − e−ag(t))q(s)π(s)IΘx(s)q(t)π(t)IΘx(t)dtds.

Corollary 1 Suppose that g(θ) is bounded and δπ(X) ∈ ∆. For θ ∈ Θ and x ∈ Xθ, put

F̃ (x, θ) :=
1∫ θ

θ
q(u)π(u)IΘx(u)du

∫ θ

θ

q(s)π(s)IΘx(s)ds

∫ θ

θ

q(t)π(t)IΘx(t)dt,

and
γ̃(θ) :=

1
q(θ)π(θ)

∫
R2

F̃ 2(x, θ)r(x)IXθ
(x)dx.

If γ̃(θ) < ∞ for all θ ∈ Θ and there exists d ∈ Θ such that

lim
c→θ

∫ c

d

dθ

γ̃(θ)
= lim

c→θ

∫ d

c

dθ

γ̃(θ)
= ∞,

then δπ(X) is ∆-admissible for g(θ) under the LINEX loss function.

The proof is omitted since it can be easily obtained.

Next, we consider the class of prior density functions treated by Sinha and Gupta [15]
and Kim and Meeden [4]. Suppose that g(θ) is strictly increasing and differentiable. Then,
put

(6) πh(θ) =
g′(θ)
q(θ)

h(g(θ))

for positive function h(·). In this case, the GBE of g(θ) w.r.t. πh(θ) is given by δπh
(X),

where

δπh
(x) = −1

a
log

∫
g(Θ)

e−azh(z)Ig(Θx)(z)dz∫
g(Θ)

h(z)Ig(Θx)(z)dz
.

The next corollary is immediately obtained from Theorem 1.

Corollary 2 Suppose that g(θ) is strictly increasing and differentiable, and δπh
(X) ∈ ∆.

For θ ∈ Θ and x ∈ Xθ, put

Fh(x, θ) :=
∫ g(θ)

g(θ)

(e−aδπh
(x) − e−az)h(z)Ig(Θx)(z)dz,

and

γh(θ) :=
eag(θ)

g′(θ)h(g(θ))

∫
R2

F 2
h (x, θ)eaδπh

(x)r(x)IXθ
(x)dx.

If γh(θ) < ∞ for all θ ∈ Θ and there exists d ∈ Θ such that

lim
c→θ

∫ c

d

dθ

γh(θ)
= lim

c→θ

∫ d

c

dθ

γh(θ)
= ∞,

then δπh
(X) is ∆-admissible for g(θ) under the LINEX loss function.
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Of course, same discussion for strictly decreasing function g(θ) is possible. But we omit
it since it is obtained by similar argument. Also, it can be shown that these results are
essentially regarded as extensions of Kim and Meeden [4] under suitable conditions (see
Tanaka [16]). In this paper, we do not discuss the detail of the relation.

4 Examples In this section, we give some typical examples. In Examples 1,2 and 3, we
treat a location parameter family of distributions. In Example 4, we treat a scale parameter
family of distributions.

Example 1 Suppose that Y1, . . . , Yn are i.i.d. random variables according to a uniform
distribution U(θ, θ + 1), where θ(∈ R) is unknown. Then, the p.d.f. of the sufficient
statistic (X1, X2) = (min1≤i≤n Yi, max1≤i≤n Yi) is given by (2), where q(θ) = 1, r(x) =
n(n − 1)(x2 − x1)n−2 and Xθ = {x ∈ R2|θ < x1 < x2 < θ + 1}. The GBE of θ w.r.t.
πη(θ) = eηθ (η ∈ R) is given by

δπη (x) =


− 1

a log
[

e−ax1−e−a(x2−1)

a(x2−x1−1)

]
(η = 0),

− 1
a log

[
a(x1−x2+1)

eax1−ea(x2−1)

]
(η = a),

− 1
a log

[
η

η−a
e(η−a)x1−e(η−a)(x2−1)

eηx1−eη(x2−1)

]
(η 6= 0, a).

Here, we note that these estimators are location invariant, that is, δπη (x1 + θ, x2 + θ) =
δπη (x1, x2) for all (x1, x2) ∈ R2 and for all θ ∈ R. Further, we can easily obtain

r(x1 + θ, x2 + θ) = r(x1, x2), F (x1 + θ, x2 + θ, θ) = e(η−a)θF (x1, x2, 0).

Hence, we see that

γ(θ) = eηθ

∫
R2

F 2(x, 0)eaδπη (x)r(x)IX0(x)dx < ∞,

and consequently, δπη (X) is ∆-admissible for η = 0 from Theorem 1. We remark that for
η 6= 0 Theorem 1 can not tell whether δπη (X) is ∆-admissible or not. However, we see that
δπ0(X) dominates δπη (X) for η 6= 0, since δπ0(X) is the best invariant estimator (Parsian,
Farsipour and Nematollahi [8], page 103).

Example 2 In Example 1, consider the estimation problem of

g(θ) = Pθ(Y1 ≤ 1) =

 1 (θ < 0),
1 − θ (0 < θ < 1),
0 (1 < θ).

Suppose that the prior distribution of θ is given by πη(θ) = eηθ (η ∈ R). Of course, in this
case, g(θ) is bounded. So, we use Corollary 1. It is easy to derive that

γ̃(θ) =
{ ∫

X0
F̃ 2(x, 0)r(x)dx (η = 0),

η−2e−ηθ (η 6= 0).

¿From Corollary 1, we see that δπ0(X) is ∆-admissible under the LINEX loss function.
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Example 3 Suppose that Y1, . . . , Yn are i.i.d. random variables according to the p.d.f.

p(y, θ) =
{

C0e
y−θ (θ < y < θ + 1),

0 (otherwise),

where θ(∈ R) is unknown and C0 := 1/(e − 1) is the normalizing factor. Then the p.d.f.
of the sufficient statistic (X1, X2) = (min1≤i≤n Yi, max1≤i≤n Yi) is given by (2), where
q(θ) = Cn

0 e−nθ, r(x) = n(n−1)ex1+x2(ex2−ex1)n−2 and Xθ = {x ∈ R2|θ < x1 < x2 < θ+1}.
The GBE of θ w.r.t. πη(θ) = eηθ (η ∈ R) is given by

δπη (x) =


− 1

a log
{

n−η
n−η+a

e−(n−η+a)x1−e−(n−η+a)(x2−1)

e−(n−η)x1−e−(n−η)(x2−1)

}
(η 6= n, n + a),

− 1
a log

{
a(x1−x2+1)

eax1−ea(x2−1)

}
(η = n + a),

− 1
a log

{
− 1

a
e−ax1−e−a(x2−1)

x1−x2+1

}
(η = n).

Of course, these estimators are location invariant. Further, by using the facts

r(x1 + θ, x2 + θ) = enθr(x1, x2), F (x1 + θ, x2 + θ, θ) = e−(n−η+a)θF (x1, x2, 0),

we get

γ(θ) =
eηθ

Cn
0

∫
R2

F 2(x, 0)eaδπη (x)r(x)IX0(x)dx < ∞.

Therefore, Theorem 1 shows that δπη (X) is ∆-admissible when η = 0. By the same reason
as Example 1, δπ0(X) dominates δπη (X) for η 6= 0.

Example 4 Suppose that Y1, . . . , Yn are i.i.d. random variables according to the p.d.f.

p(y, θ) =
{

1
θ (ξθ < y < (ξ + 1)θ),
0 (otherwise),

where ξ ∈ (0,∞) is known and θ ∈ (0,∞) is unknown. In this case, the p.d.f. of the
sufficient statistic (X1, X2) = (min1≤i≤n Yi,max1≤i≤n Yi) is given by (2), where q(θ) = θ−n,
r(x) = n(n − 1)(x2 − x1)n−2 and Xθ = {x ∈ R2|ξθ < x1 < x2 < (ξ + 1)θ}. Consider the
estimation problem of g(θ) = log θ. Let the prior density of θ be πh(θ) in (6) for h(z) = eεz

(ε ∈ R). Then, the GBE of log θ is given by

δπh
(x) =


− 1

a log
[
{x2/(ξ+1)}−a−(x1/ξ)−a

a log{(ξ+1)x1/(ξx2)}

]
(ε = 0),

− 1
a log

[
a log{(ξ+1)x1/(ξx2)}
(x1/ξ)a−{x2/(ξ+1)}a

]
(ε = a),

− 1
a log

[
ε

ε−a
(x1/ξ)ε−a−{x2/(ξ+1)}ε−a

(x1/ξ)ε−{x2/(ξ+1)}ε

]
(ε 6= 0, a).

By a direct calculation, we get δπh
(θx1, θx2) = δπh

(x1, x2) + log θ. Further, we can easily
obtain

r(θx1, θx2) = θn−2r(x1, x2), Fh(θx1, θx2, θ) = θε−aFh(x1, x2, 1).

These imply that

γh(θ) =
θn+ε+1

n(n − 1)

∫
R2

F 2
h (x, 1)eaδπh

(x)r(x)IX1(x)dx < ∞.

Therefore, we see that δπh
(X) is ∆-admissible for ε = −n from Corollary 2. By considering

the logarithmic transformations of y1, . . . , yn and θ, the problem is essentially same as
Example 3. So, we see that δπh

(X) is not ∆-admissible for ε 6= −n.
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5 Appendix In this section, we give the proof of Theorem 1. The proof is resemble to
Tanaka [16].

Proof of Theorem 1. Suppose that there exists an estimator δ(X) ∈ ∆ such that

Eθ[L(θ, δ(X))] ≤ Eθ[L(θ, δπ(X))]

for all θ ∈ Θ. ¿From the condition (A1), we see that this is equivalent to

e−ag(θ)Eθ

[
(eaδ(X)/2 − eaδπ(X)/2)2

]
(7)

≤ Eθ

[
a (δ(X) − δπ(X)) − 2e−ag(θ)eaδπ(X)/2(eaδ(X)/2 − eaδπ(X)/2)

]
.

Multiplying both sides of (7) by π(θ), and integrating w.r.t. θ over the finite interval
[u, v] ⊂ Θ, we obtain∫ v

u

Eθ

[
(eaδ(X)/2 − eaδπ(X)/2)2

]
e−ag(θ)π(θ)dθ

≤
∫ v

u

Eθ

[
a (δ(X) − δπ(X)) − 2e−ag(θ)eaδπ(X)/2(eaδ(X)/2 − eaδπ(X)/2)

]
π(θ)dθ.

An application of the Fubini theorem gives∫ v

u

∫
R2

(eaδ(x)/2 − eaδπ(x)/2)2r(x)IXθ
(x)dxe−ag(θ)π(θ)q(θ)dθ(8)

≤
∫

R2
r(x)IX (x)

∫ v

u

{
a(δ(x) − δπ(x))

−2e−ag(θ)eaδπ(x)/2(eaδ(x)/2 − eaδπ(x)/2)
}
q(θ)π(θ)IΘx(θ)dθdx,

which is guaranteed by (A2). Using the inequality

x − y ≤ e−y(ex − ey)

for all x, y ∈ R, the right hand side in (8) is dominated by

2
∫

R2
r(x)IX (x)(eaδ(x)/2 − eaδπ(x)/2)eaδπ(x)/2(9)

×
∫ v

u

(e−aδπ(x) − e−ag(θ))q(θ)π(θ)IΘx(θ)dθdx.

Clearly, we see that F (x, v) = 0 for β−1(x2) > v. Also, it follows from (4) that

F (x, v) =
∫ θ

θ

(e−aδπ(x) − e−ag(t))q(t)π(t)IΘx(t)dt = 0

for α−1(x1) < v. Thus, we get F (x, v) = F (x, v)IXv (x), consequently, (9) is rewritten by

2
∫

R2
r(x)(eaδ(x)/2 − eaδπ(x)/2)eaδπ(x)/2F (x, v)IXv (x)dx(10)

−2
∫

R2
r(x)(eaδ(x)/2 − eaδπ(x)/2)eaδπ(x)/2F (x, u)IXu

(x)dx.
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Put
T (θ) :=

∫
R2

(eaδ(x)/2 − eaδπ(x)/2)2r(x)IXθ
(x)dx.

Then, by applying the Schwarz inequality to (10) and combining (8), we have∫ v

u

e−ag(θ)π(θ)q(θ)T (θ)dθ

≤ 2
{

T (v)e−ag(v)q(v)π(v)
}1/2

γ1/2(v) + 2
{

T (u)e−ag(u)q(u)π(u)
}1/2

γ1/2(u).

By the same argument in Tanaka [16], the proof is completed. ¤
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