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Abstract. This paper presents a stochastic differential equation model for describing
the process of fish schooling. The model equation always possesses a unique local
solution, but global existence can be shown only in some particular cases. Some
numerical examples show that the global existence may fail in general.

1 Introduction We are interested in describing the process of fish schooling by the or-
dinary differential equations. A model written in terms of ODE is very useful. First, the
rules of behavior of individual animals can be described precisely. Second, many techniques
which have been developed in the theory of ODE can directly be available to analyse their
solutions including asymptotic behavior and numerical computations.

We will regard the fish as particles in the space Rd. The direction in which a fish
proceeds is regarded as its forward direction. As for the assumptions of modeling, we will
follow the idea presented by Camazine-Deneubourg-Franks-Sneyd-Theraulaz-Bonabeau [3]
which is also based on empirical results Aoki [1], Huth-Wissel [6] and Warburton-Lazarus
[11]. In the monograph [3, Chapter 11], they have made the following assumptions:

1. The school has no leaders and each fish follows the same behavioral rules.

2. To decide where to move, each fish uses some form of weighted average of the position
and orientation of its nearest neighbors.

3. There is a degree of uncertainty in the individual’s behavior that reflects both the
imperfect information-gathering ability of a fish and the imperfect execution of the
fish’s actions.

We remark that similar assumptions, but deterministic ones, were also introduced by
Reynolds [9].

As seen in Section 2, we formulate the motion of each individual by a system of deter-
ministic and stochastic differential equations. The weight of average is taken analogously
to the law of gravitation. That is, for the i-th fish at position xi, the interacting force with
the j-th one at xj (i 6= j) is given by

−α
[ 1
(‖xi − xj‖/r)p

− 1
(‖xi − xj‖/r)q

]
(xi − xj),
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where 1 < p < q < ∞ are some fixed exponents and r > 0 is a critical radius. This means
that if xi and xj are far enough that ‖xi − xj‖ > r, then the interaction is attractive;
conversely, if it is opposite ‖xi − xj‖ < r, then the interaction is repulsive. The exponents
p, q and the radius r may depend on the species of animal. The larger p and q are, the
shorter the relative range of interactions between two individuals.

A similar weight of average is used for the orientation matching, too, i.e.,

−β
[ 1
(‖xi − xj‖/r)p

+
1

(‖xi − xj‖/r)q

]
(vi − vj).

Here, vi and vj denote velocities of the i-th and j-th animals, respectively.

Several kinds of mathematical models have already been presented, including difference
or differential models. Vicsek et al. [10] introduced a simple difference model, assuming
that each particle is driven with a constant absolute velocity and the average direction
of motion of the particles in its neighborhood together with some random perturbation.
Oboshi et al. [7] presented another difference model in which an individual selects one basic
behavioral pattern from four based on the distance between it and its nearest neighbor.
Finally, Olfati-Saber [8] and D´Orsogna et al. [4] constructed a deterministic differential
model using a generalized Morse and attractive/repulsive potential functions, respectively.

In this paper, after introducing the model equations, we shall prove local existence
of solutions and in some particular cases global existence, too. We shall also present some
numerical examples which show robustness of the behavioral rules introduced in [3, Chapter
11] for forming a swarm against the uncertainty of individual’s information processing and
executing its actions.

In the forthcoming paper, we are going to construct a particle swarm optimization
scheme on the basis of the behavioral rules of swarming animals which can spontaneously
and successfully find their feeding stations.

The organization of the present paper is as follows. In the next section, we show our
model equations. Section 3 is devoted to proving local existence of solutions. Section 4
gives global existence for both deterministic and stochastic cases but the number of animal
is only two. Some numerical examples that suggest global existence is not true in general
are presented in Section 5.

2 Model Equations We consider motion of N fish. They are regarded as moving par-
ticles in the space Rd (d = 1, 2, 3, . . .). The position of the i-th particle is denoted by
xi = xi(t) (i = 1, 2, . . . , N). Its velocity is denoted by vi = vi(t) (i = 1, 2, . . . , N). Our
model is then given by
(2.1)

dxi = vidt + σidwi,

dvi =
{
− α

N∑
j=1, j 6=i

[ 1
(‖xi − xj‖/r)p

− 1
(‖xi − xj‖/r)q

]
(xi − xj)

− β

N∑
j=1, j 6=i

[ 1
(‖xi − xj‖/r)p

+
1

(‖xi − xj‖/r)q

]
(vi − vj) + Fi(t, xi, vi)

}
dt.

The first equation is a stochastic equation on xi, where σidwi(t) denotes a noise re-
sulting from the imperfectness of information-gathering and action of the fish. In fact,
{wi(t), t > 0}(i = 1, . . . , N) are independent d - dimensional Brownian motions defined on a
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complete probability space with filtration (Ω, F, {Ft}t>0, P) satisfying the usual conditions.
The second one is a deterministic equation on vi, where 1 < p < q < ∞ are fixed exponents,
r > 0 is a fixed radius and α, β are positive constants. Finally, Fi(t, xi, vi) denotes an
external force at time t which is a given function defined for (xi, vi) with values in Rd. It is
assumed that Fi(t, xi, vi) (i = 1, . . . , N) are locally Lipschitz continuous.

In what follows, for simplicity, we shall put α1 = αrp, β1 = βrp, γ = rq−p. Then, the
system (2.1) is rewritten in the form

(2.2)



dxi = vidt + σidwi,

dvi =
{
− α1

N∑
j=1,j 6=i

[ 1
||xi − xj ||p

− γ

||xi − xj ||q
]
(xi − xj)

− β1

N∑
j=1,j 6=i

[ 1
||xi − xj ||p

+
γ

||xi − xj ||q
]
(vi − vj) + Fi(t, xi, vi)

}
dt,

for i = 1, . . . , N.

3 Local Solution We set the phase space

R(N) = {(x1, . . . , xN , v1, . . . , vN ) ∈ RNd × RNd |xi 6= xj (1 6 i, j 6 N, i 6= j)}.

Since all the functions in the right hand side of (2.2) are locally Lipschitz continuous in R(N),
the existence and uniqueness of local solutions to (2.2) starting from points belonging to
this phase space are obvious in both deterministic and stochastic cases, see for instance
[2, 5]. Thus, we have

Theorem 3.1. For any initial value

(x1(0), . . . , xN (0), v1(0), . . . , vN (0)) ∈ R(N),

(2.2) has a unique local solution defined on an interval [0, τ) with values in R(N), where
τ ≤ ∞ and if τ < ∞ it is an explosion time.

4 Global solution in some particular cases In this section, we shall consider the
case where N = 2 and prove global existence for (2.2). First, the deterministic case (i.e.,
σ1 = σ2 = 0) is treated with null external forces F1 = F2 ≡ 0. Second, the stochastic case
(i.e., σ1 + σ2 > 0) is treated but under the restriction that d and q satisfy the relations
d > max{q − 4, 2} and q > 2 (therefore, in particular, d > 2).

4.1 Deterministic case (σ1 = σ2 = 0) The system (2.2) has the form

(4.1)


dxi

dt
=vi,

dvi

dt
= − α1(xi − xj)

||xi − xj ||p
+

α1γ(xi − xj)
||xi − xj ||q

− β1(vi − vj)
||xi − xj ||p

− β1γ(vi − vj)
||xi − xj ||q

,

where i, j = 1, 2, i 6= j.
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Theorem 4.1. Let 1 < p < q < ∞ and q > 2. Then, for any initial value (x0, v0) ∈ R(2),
(4.1) has a unique global solution (x(t), v(t)) with values in R(2).

Proof. As stated in Theorem 3.1, there is a unique solution (x1(t), x2(t), v1(t), v2(t)) to
(4.1) defined on an interval [0, τ1), where τ1 denotes the explosion time. On [0, τ1), (4.1) is
equivalent to 

d(x1 + x2)
dt

= v1 + v2,

d(v1 + v2)
dt

= 0,

d(x1 − x2)
dt

= v1 − v2,

d(v1 − v2)
dt

= −2
[

α1

||x1 − x2||p
− α1γ

||x1 − x2||q

]
(x1 − x2)

− 2
[

β1

||x1 − x2||p
+

β1γ

||x1 − x2||q

]
(v1 − v2).

Thus,

(4.2)



x1(t) + x2(t) = [v1(0) + v2(0)]t + x1(0) + x2(0),
v1(t) + v2(t) = v1(0) + v2(0),

d(x1 − x2)
dt

= v1 − v2,

d(v1 − v2)
dt

= −2
[

α1

||x1 − x2||p
− α1γ

||x1 − x2||q

]
(x1 − x2)

− 2
[

β1

||x1 − x2||p
+

β1γ

||x1 − x2||q

]
(v1 − v2).

So we put ξ = x1 − x2 and η = v1 − v2. In order to prove that τ1 = ∞, it suffices to show
that the solution starting in Rd

∗ = {ξ ∈ Rd : ξ 6= 0} of the following system

(4.3)


dξ

dt
= η,

dη

dt
= −2

(
α1

||ξ||p
− α1γ

||ξ||q

)
ξ − 2

(
β1

||ξ||p
+

β1γ

||ξ||q

)
η

is global. Obviously, τ1 is the explosion time of (4.3), too. Suppose that τ1 < ∞. On [0, τ1),
we put X = 1

||ξ|| , Y = ||η||2, Z = 〈ξ, η〉. Then, it is easy to verify that (X,Y, Z) satisfies
X(t) > 0, Y (t) > X2(t)Z2(t) and also satisfies the following equations

(4.4)



dX

dt
= −X3Z,

dY

dt
= −4α1X

pZ + 4α1γXqZ − 4(β1X
p + β1γXq)Y,

dZ

dt
= Y − 2α1X

p−2 + 2α1γXq−2 − 2(β1X
p + β1γXq)Z.

Furthermore,

(4.5) lim sup
t→τ1

[X(t) + Y (t) + |Z(t)| + X−1(t)] = ∞.
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By introducing a function

H = Xq−4 + Xq−2 + Y 2 + MZ2 + Y + X−4 + M

with a sufficiently large M > 0, we observe that

dH

dt
= − (q − 4)Xq−2Z − (q − 2)XqZ

+ 2Y [−4α1X
pZ + 4α1γXqZ − 4(β1X

p + β1γXq)Y ]

+ 2MZ[Y − 2α1X
p−2 + 2α1γXq−2 − 2(β1X

p + β1γXq)Z]

− 4α1X
pZ + 4α1γXqZ − 4(β1X

p + β1γXq)Y + 4X−2Z

= − (q − 2)XqZ − 8α1X
pY Z + 8α1γXqY Z + 2MY Z − 4Mα1X

p−2Z

+ (4Mα1γ − q + 4)Xq−2Z − 4α1X
pZ + 4α1γXqZ − 8(β1X

p + β1γXq)Y 2

− 4M(β1X
p + β1γXq)Z2 − 4(β1X

p + β1γXq)Y + 4X−2Z.

It is easily seen that, for a sufficient small ε > 0, it holds true that

εXqY + ε−3Xq−2 > εXq+2Z2 + ε−3Xq−2 > 2ε−1Xq|Z|,

εXpY 2 + Mβ1γXpZ2 > 2
√

εMβ1γXpY |Z|,

εXqY 2 + Mβ1γXqZ2 > 2
√

εMβ1γXqY |Z|,

Xq|Z| + Z2 +
1

4ε2
> (Xq + ε−1)|Z| > max{Xq|Z|, Xp|Z|, Xq−2|Z|},

X−4 + Z2 > 2X−2|Z|, Z2 + M2 > 2M |Z|,
(Xq + ε−1)|Z| > Xp−2|Z| (if p > 2),

(M2X−2 + 1)|Z| > MXp−2|Z| (if p < 2).

In addition, it is clear that MY 2 + MZ2 > 2MY Z. Then it follows that there exists
M1 > 0 such that for X > 0, Y > X2Z2, Z ∈ R, dH

dt is estimated by dH
dt 6 M1H on [0, τ1).

Therefore, by the comparison theorem, we obtain

H(t) = Xq−4(t) + Xq−2(t) + Y 2(t) + MZ2(t) + Y (t) + X−4(t) + M 6 H(0)eM1τ1

for all t ∈ [0, τ1). Thus, due to (4.5), τ1 = ∞. Therefore, the solution of (4.1) must be
global.

4.2 Stochastic case (σ1 + σ2 > 0) In this subsection, we consider the stochastic case.
The system (2.2) becomes

(4.6)



dxi = vidt + σidwi(t),

dvi =
{
−

[
α1

||xi − xj ||p
− α1γ

||xi − xj ||q

]
(xi − xj)

−
[

β1

||xi − xj ||p
+

β1γ

||xi − xj ||q

]
(vi − vj)

}
dt,

where i, j = 1, 2, i 6= j. For (4.6) the situation is not similar to that of the deterministic
case. Precisely, if d > max{q − 4, 2} and q > 2 then the global existence is shown, while if
d = 1 or 2 then some solution may explode at a finite time.
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Theorem 4.2. Let d > max{q−4, 2} and q > 2. Then, for any initial value (x0, v0) ∈ R(2),
(4.6) has a unique global solution in R(2).

Proof. From Theorem 3.1, there exists a local solution of (4.6) defined on [0, τ∗
1 ), where τ∗

1

is an explosion time. In that interval we have

v1(t) + v2(t) = v1(0) + v2(0),
x1(t) + x2(t) = [v1(0) + v2(0)]t + σ1w1(t) + σ2w2(t) + x1(0) + x2(0),

d(x1 − x2) = (v1 − v2)dt + σ1dw1(t) − σ2dw2(t),

d(v1 − v2) =
{
− 2

[
α1

||x1 − x2||p
− α1γ

||x1 − x2||q

]
(x1 − x2)

− 2
[

β1

||x1 − x2||p
+

β1γ

||x1 − x2||q

]
(v1 − v2)

}
dt.

Then τ∗
1 becomes an explosion time of the following system

(4.7)


dζ = ψdt + σdw(t),

dψ =
[
−2

(
α1

||ζ||p
− α1γ

||ζ||q

)
ζ − 2

(
β1

||ζ||p
+

β1γ

||ζ||q

)
ψ

]
dt,

too, where ζ = x1 − x2, ψ = v1 − v2, σ =
√

σ2
1 + σ2

2 and w(t) = 1
σ [σ1w1(t)− σ2w2(t)] is also

a d - dimensional Brownian motion in (Ω, F, {Ft}t>0, P). By putting

(4.8) X =
1

||ζ||
, Y = ||ψ||2, Z = 〈ζ, ψ〉

and using the Itô formula, it is easily obtained that on [0, τ∗
1 ), (X,Y, Z) with X(t) >

0, Y (t) > 0 satisfies the equations:

(4.9)


dX =

[
− X3Z − d − 3

2
σ2X3

]
dt − σX3〈ζ, dw〉,

dY =[−4α1X
pZ + 4α1γXqZ − 4(β1X

p + β1γXq)Y ]dt,

dZ =[Y − 2α1X
p−2 + 2α1γXq−2 − 2(β1X

p + β1γXq)Z]dt + σ〈ψ, dw〉.

Let us define a sequence of stopping times by putting, for each integer k > k0,

τk = inf
{

t > 0 : X(t) /∈ (
1
k

, k) or Y (t) /∈ [0, k)
}

,

where k0 > 0 is a sufficiently large number such that (X(0), Y (0)) ∈ ( 1
k0

, k0) × [0, k0). We
here use convention that the infimum of the empty set is ∞. Since τk is nondecreasing as
k → ∞, there exists a limit τ∞ = limk→∞ τk. It is clear that τ∞ 6 τ∗

1 a.s. We can in fact
show that τ∞ = ∞ a.s. Suppose the contrary, then there would exist T > 0 and ε ∈ (0, 1)
such that P{τ∞ 6 T} > ε. By denoting Ωk = {τk 6 T}, there exists k1 > k0 such that

(4.10) P(Ωk) > ε for all k > k1.

Consider the following function in C2(R2
+ × R, R+) :

(4.11) V (X,Y, Z) =Xθ + X−4 + Y 2 + MZ2 + M,
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where M > 0 is a sufficiently large number and θ is a fixed exponent such that max{q −
6, 0} < θ < min{d − 2, q − 2}. If (X(t), Y (t), Z(t)) ∈ R2

+ × R, by using the Itô formula, we
get

(4.12)
dV (X(t), Y (t), Z(t)) =f(X(t), Y (t), Z(t))dt

+ 〈g(X(t), Y (t), Z(t), ζ(t), ψ(t)), dw(t)〉.

Here,

(4.13)

f(X,Y, Z) =

θXθ−1[−X3Z − d − 3
2

σ2X3] +
1
2
θ(θ − 1)σ2Xθ+2 + 4X−2Z

+ 2(d + 2)σ2X−2 + 2Y [−4α1X
pZ + 4α1γXqZ − 4(β1X

p + β1γXq)Y ]

+ 2MZ[Y − 2α1X
p−2 + 2α1γXq−2 − 2(β1X

p + β1γXq)Z] + σ2MY

= − θXθ+2Z − 4α1MXp−2Z + 2α1γMXq−2Z − 8α1X
pY Z + 8α1γXqY Z

+ 2MY Z + Mσ2Y + 4X−2Z + 2(d + 2)σ2X−2

− (d − 2 − θ)θσ2

2
Xθ+2 − 8(β1X

p + β1γXq)Y 2 − 4M(β1X
p + β1γXq)Z2.

And g is a suitable function. As for the deterministic case, it holds true that

Mβ1γXqZ2 +
ε2

Mβ1γ
Xθ+2 > 2εX

q+θ+2
2 |Z|,

εXpY 2 + Mβ1γXpZ2 > 2
√

εMβ1γXpY |Z|,

εXqY 2 + Mβ1γXqZ2 > 2
√

εMβ1γXqY |Z|,
Y 2 + Z2 > 2Y |Z|, Z2 + 1 > 2|Z|, Y 2 + 1 > 2Y,X−4 + M2 > 2MX−2,

with a sufficiently small ε > 0. When p > 2, since q+θ+2
2 > max{q − 2, θ + 2} > p − 2 > 0,

we have

2εX
q+θ+2

2 |Z| + M1|Z| > max{M2Xθ+2|Z|,M2Xp−2|Z|,M2Xq−2|Z|}

with a sufficiently large M1 > 0. Meanwhile, when 1 < p < 2, we have

MX−4 + 2MZ2 + M3 > 2MX−2|Z| + 2M2|Z| > 2MXp−2|Z|.

Thus, whatever p is, there exists M2 > 0 such that

f(X,Y, Z) 6 M2V (X,Y, Z) for every X > 0, Y > X2Z2, Z ∈ R.

Since for every t > 0 it holds true from (4.8) and (4.12) that

(X(t ∧ τk), Y (t ∧ τk), Z(t ∧ τk)) ∈ R2
+ × R, Y (t ∧ τk) > X2(t ∧ τk)Z2(t ∧ τk),

we have ∫ s∧τk

0

dV (X(t), Y (t), Z(t)) 6
∫ s∧τk

0

M2V (X(t), Y (t), Z(t))dt

+
∫ s∧τk

0

〈g(X(t), Y (t), Z(t)), dw1(t)〉.
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Taking the expectation on both side of this inequality gives

dEV (X(s ∧ τk), Y (s ∧ τk), Z(s ∧ τk)) 6 M2EV (X(s ∧ τk), Y (s ∧ τk), Z(s ∧ τk))ds,

from which it follows that for every s > 0,

EV (X(s ∧ τk), Y (s ∧ τk), Z(s ∧ τk)) 6 V (X(0), Y (0), Z(0))eM2s.

In particular,

(4.14) EV (X(T ∧ τk), Y (T ∧ τk), Z(T ∧ τk)) 6 V (X(0), Y (0), Z(0))eM2T .

On the other hand, for every ω ∈ Ωk, X(τk)(ω) ∈ {k, 1
k} or Y (τk)(ω) = k. Then,

V (X(T ∧ τk), Y (T ∧ τk), Z(T ∧ τk)) > ak,

where ak = min
{
kθ, k4, k2

}
. Combining this with (4.10), we obtain that

EV (X(T ∧ τk), Y (T ∧ τk), Z(T ∧ τk)) > E[1Ωk
V (xT∧τk

, yT∧τk
)] > εak.

Therefore, due to (4.14), V (X(0), Y (0), Z(0))eM2T > εak. Letting k → ∞ we arrive at a
contradiction ∞ > V (X(0), Y (0), Z(0))eM2T > ∞. Thus τ∞ = ∞ a.s. and consequently,
τ∗
1 = ∞ a.s. The proof is now complete.

5 Numerical examples In this section, we present some numerical results. First, we
give examples which shows robustness of fish schooling; second, examples which suggest
possibility of collision.

5.1 Robustness Let us first observe examples that show that, if σi are all sufficiently
small, then the schooling is strongly robust.

Set α = 1, β = 0.5, r = 1, p = 3, q = 4, σi = 0.015, and Fi(t, xi, vi) = −5vi. We consider
100(= N) particles in the d-dimensional space, where d = 2, 3. An initial value x(0) is
generated randomly in [0, 10]100d and v(0) ≡ 0. Figure 1 illustrates positions of particles
and their velocity vectors at t = 0, 5, 10, 15 in R2. Figure 2 does the same at t = 0, 10, 20, 30
in R3.

5.2 Collision Let us next observe examples suggesting collision of two particles in the
d-dimensional space, where d = 1, 2, with sufficiently small initial distance when σi are not
so small.

For the case d = 1, we set α = 5, β = 1, r = 0.5, p = 3, q = 4, σi = σ, and Fi(t, xi, vi) =
−vi. An initial value x(0) is generated randomly in [0, 1]2 and v(0) ≡ 0. Figure 3 illustrates
trajectories of two particles when σ = 0, 0.15, 5. If σ is small (i.e., σ = 0, 0.15), collision
does not take place. Meanwhile if σ is large (σ = 5), we observe that collision takes place.

For the case d = 2, we set α = 7, β = 19, r = 1, p = 3, q = 4, σi = 9, and Fi(t, xi, vi) =
−5vi. An initial value x(0) is generated randomly in [0, 5]4 and v(0) ≡ 0. Figure 4 illustrates
behavior of the distance of the two particles x1 and x2.
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Figure 1: Schooling in 2-dim. space
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Figure 3: Collision in 1-dim. space
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Figure 4: Collision in 2-dim. space


