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ABSTRACT. The present paper studies new properties of the concept of
fuzzy points in the sense of Pu Pao-Ming and Liu Ying-Ming (Defini-
tion 2.3 , Theorem 3.1). We first prove that, for an arbitrary Chang’s
fuzzy topological space (Y, 7y), every fuzzy set A in Y with X # Oy is de-
composed by at most three fuzzy sets: A = A1V A2 V A3 with \; AX; = Oy
for each distinct integers 7 and j(1 < 4,5 < 3) (Theorem 2.10); moreover
A1 is fuzzy preopen in (Y, 7y) (Theorem 2.9(i)). Especially, if 7y is a fuzzy
topology, say of (cf. Example II in Section 3) which is induced from an
ordinary topology o of Y, then every fuzzy set A in Y is decomposed by
at most two fuzzy sets: A = A1 V A2 with A1 A A2 = Oy (Corollary 3.7(i));
and ) is fuzzy preopen in the fuzzy topological space (Y, o) (Corollary
3.7(ii)). Moreover, every fuzzy point (in the sense of Pu Pao-Ming and Lin
Ying-Ming) is fuzzy open or fuzzy nowhere dense in (Y, ') (Theorem 3.1).
As applications, the results are applied to the case where Y := Z? and
o = k? (=the Khalimsky topology), i.e., (Y,0) = (Z? x?) is the digital
plane. So, every digital image(# 0) on Z? is decomposed by at most two
digital images and they have such fuzzy topological properties (Theorem
3.9 in Section 3(III-5)).

1 Introduction and preliminaries In 1965, L.A. Zadeh [29] introduced
and investigated the fundamental notion of fuzzy sets and fuzzy sets operations.
Subsequently several authors applied various basic concepts from general topol-
ogy to fuzzy sets and developed the theory of Fuzzy topological spaces. In
1968, C.L. Chang [6] introduced and investigated the concept of fuzzy topolog-
ical spaces (cf. Definition 1.1 below). In 1974, K.K. Wong [27, Definition 3.1]
introduced and investigated the notion of fuzzy points (cf.[27, Theorem 3.1 and
p.319]). In 1980, Pu Pao-Ming and Liu Ying-Ming [24, Definition 2.1] redefined
the concept of fuzzy points; it takes a crisp singleton, equivalentely, an ordinary
point as a special case. In the present paper, we adopte and use the definition
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of fuzzy points in the sense of Pu Pao-Ming and Lin Ying-Ming [24] (cf. Defi-
nition 1.3 below). For a fuzzy set in a fuzzy topological space, the concept of
fuzzy preopen sets and fuzzy preclosed sets were introduced by A.S. Bin Shahna
[2] in 1991.

We recall some terminologies on fuzzy sets: throughout the present paper,
let Y be a nonempty set and I be the unit interval [0, 1]. For Y, I¥ denotes
the collection of all functions from Y into I; the equality A = g in I'Y if and
only if A(z) = u(x) for every point € Y. A member )\ of I'Y is called a fuzzy
set in Y [29]. For A € IV and p € IY, X is contained in u, denoted by \ < p,
if A(z) < p(zx) for every point z € Y. Let A\, u € IY, the following fuzzy sets
AVpeIY and AA p € IV are defined by (A V u)(z) :=max{\(z), u(z)} for
every point z € Y and (A A p)(z) :=min{\(z), u(z)} for every point z € Y,
respectively. The fuzzy sets Oy is defined by Oy (z) = 0 for every point z € Y.

The purpose of the present paper is to study decomposition of a given fuzzy
set in Y by at most three fuzzy sets using an arbitrary fuzzy topology on Y
for A € IV with X # 0, A is equal to )\]-"pO(Y’TY) \% )\]:fpo(y’.,.y) \ )\'RSST(Y,-ry)
and Arpo(y,ry) is a fuzzy preopen set of the arbitrary fuzzy topological space
(Y, 7v); and Arpo(y,ry) A Arpo(v,ry) = Oy etc. hold, (cf. Theorem 2.10 and
Theorem 2.9 below). In Section 2 we prove the main results (Theorem 2.9 and
Theorem 2.10); some fuzzy topological propertirs on fuzzy points are used fot
their proofs. In Section 3, we give three kinds of examples of the decomposition
of a fuzzy set; Example I shows the decomposition of a fuzzy set in a finite fuzzy
topological space; Example II shows the decomposition of an arbtrary fuzzy set
in a specified fuzzy topological space induced from an arbitrary topological
space (cf. Theorem 3.1, Corollary 3.7 below); in Example III we apply the
results of Section 2 and Example II to decomposition of an arbitrary fuzzy set
in a specified fuzzy topological space induced from the digital plane and so we
investigate deomposition problem of grey pictures (digital images) on the digital
planes (cf. Theorem 3.9 in (III-5), three figures in (III-6, 7) below). We need
some concepts and notation in the digital planes (resp. digital line) (cf. (III-9)
(resp. (III-10)) to prove Theorem 3.9 in (III-13) below.

In the end of this section, we need more detail and fundamental concepts as
follows. For a family of fuzzy sets, {\;|7 € J}, the union \/{\;| j € J}, and the
intersection, \{\;| j € J}, are defined by

V{X;l j € J}H(z):=sup{A;(z)| j € J}, z €Y

ANAjli € THa):=inf{\;(z)|j € J}, z € Y;
where J denotes arbitrary index set [6]. The fuzzy set 1y is defined by 1y (z) = 1
for every point x € Y. The complement A\° of a fuzzy set A is defined by
A%(z) :=1— A(z) for every point z € Y.

Definition 1.1 (C.L. Chang [6, Defimition 2.2]) A fuzzy topological space [6] is
a pair (Y, 7y ), where Y is a non-empty set and 7y is a fuzzy topology on it, i.e.,
a family 7y of fuzzy sets satisfying the following three axioms:

(1) Oy,ly € 1y;
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(2) If \,u € Ty, then A A p € Ty

(3) Let J be an index set. If \; € 7y for each j € J, then \/{\;]j € J} € 1v.
The elements of v are called fuzzy open sets of (X, 7y). A fuzzy set A is called
a fuzzy closed set of (Y, 7y) if the fuzzy complement \¢ € 7y.

Sometimes, the fuzzy topological space of Definiton 1.1 is called Chang’s fuzzy
topological space. For a fuzzy set A € IY and a fuzzy topological space (Y, 7y ),
“the fuzzy closure and fuzzy interior of \ are defined by CI(\) := A{u € IY| A <
w1 € Ty} and Int()\) == \/{v € IV | v < \,v € 7y}, respectively.

Definition 1.2 Let (Y, 7y) be a fuzzy topological space.

(i) ([26]) A fuzzy set A is called fuzzy preopen (resp. fuzzy preclosed) in (Y, 1y ),
if A <Int(Cl(7y)) (resp. A® is fuzzy preopen in (Y, 7y )).

(ii) A fuzzy set A is called fuzzy nowhere dense in (Y, 7y) if Int(CI(\)) = Oy
holds.

(iii) ([1, Definition 4.1, Theorem 4.2]) A fuzzy set A € IV is called fuzzy
semi-open (resp. fuzzy semi-closed) in (Y,7y), if A <Cl(Int()\)) (resp. A¢ is
fuzzy semi-open in (Y, 7y)).

Moreover, we recall the following well known definition of fuzzy pointsin Y [24,
Definition 2.1] (e.g.,[11, p.120]).

Definition 1.3 ([24, Definition 2.1]) A fuzzy set in Y is said to be fuzzy point
if it takes the value 0 for all y € Y except one, say z € Y. If its value at z is
a (0 < a < 1), we denote this fuzzy point by x,, where this point z is called its
support. Namely, for a point x € Y and a real number a € I such that 0 < a < 1,
a fuzzy point x4 € IV is a fuzzy set defined as, for any point y € Y, z, (y) =aif
Yy=a;2.(y) =0if y # .

We recall the following concepts on fuzzy set A € IY: The set {y € X|\(y) > 0}
is called the support of A and it is denoted by supp(A) (e.g.,[24, Definition 1.1]).
For examples, for a point z € Y and a subset A of Y, we have supp(z,) = {z}
and supp(xa) = A, where x4 is the characteristic function of A defined by
Xa(y) := 1 for every point y € A and x4(y) := 0 for every point y ¢ A.

2 A decomposition of fuzzy sets from a fuzzy topological space point
of view In the present section, we investigate a decomposition theorem of a
given fuzzy set A by three specified fuzzy sets Arpo(y,ry), AFAD(Y,ry) and
AREST (v,ry)» Where (Y,7y) is an arbitrary fuzzy topological space (cf. Theo-
rem 2.9, Theorem 2.10, Definition 2.6 below). First we show that, in the fol-
lowing example (Y, 7y) of Chang’s fuzzy topological space, there exists a fuzzy
point z, such that z, is not fuzzy preopen in (Y, 7y) and also z, is not fuzzy
nowhere dense in (Y, 7y).

Example 2.1 The following (Y, 7y) is an example of a fuzzy topological space
(cf. this space (Y,7y) is given in [25, Example 3.1]). Let Y := I (the unit
interval [0, 1]) and 7v := {Oy,p,v,pu V v, 1y}, where u(y):=0 for every y € Y
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with 0 < y < 1/2,p(y) := 2y — 1 for every y € Y with 1/2 <y < 1; and
v(y):=1foreveryy € Y with0 <y <1/4,v(y) == -4y +2foreveryy € Y
with 1/4 <y <1/2,v(y) :==0forevery y € Y with 1/2 <y < 1.

(i) For a point z := 3/4 € Y and a real number a € I with 1/2 < a < 1,
we take a fuzzy point z,; then z, is not fuzzy preopen in (Y, 7y ), because
Int(Cl(z,))(3/4) =Int(r°)(3/4) = u(3/4)=1/2 # a = 2,(3/4). And so the fuzzy
point z, is not fuzzy nowhere dense.

(ii) For a point z := 3/4 € Y and a real number b € T with 0 < b < 1/2, we
have z} is not fuzzy preopen in (Y, 7y ); but zp is fuzzy nowhere dense, because
Int(Cl(zp))= Int((p V v)¢) = Oy.

(iii) For a point « := 1/4 € Y and a real number d € I with 0 < d <1, we
have x4 is fuzzy preopen in (Y, 7y ); but x4 is not fuzzy nowhere dense, because
Int(Cl(zg)) = Int(u®) = v.

Remark 2.2 Example 2.1(i) above shows that it is not true that every fuzzy
topological space satisfies the following property:

(x) every fuzzy point is fuzzy preopen or fuzzy nowhere dense in the fuzzy topo-
logical space.

However, it is well known that in an arbitrary topological space (Y, o) every sin-
gleton {z} is preopen (i.e., {x} CInt(Cl({z})) or nowhere dense (i.e.,Int(Cl({z}))
0 ) in (Y,0) (Jankovié-Reilly’s lemma [14, Lemma 2], e.g., [5, Lemma 2.4], [4,
Observation 3.1(b)]). Thus, by Example 2.1 above, it is shown that a fuzzy
version of Jankovié-Reilly’s lemma does not hold for arbitrary fuzzy topological
space.

It follows from Remark 2.2 that we can define the following concept of a
fuzzy topological space which satisfies the above property (x).

Definition 2.3 A fuzzy topological space (Y, 7y) is said to satisfy the Jankovié-
Reilly condition, if every fuzzy point z, in Y is fuzzy preopen or fuzzy nowhere
dense in (Y,7y), where the point x € Y and the real number a € I with
0<a<l.

Lemma 2.4 For an arbitrary fuzzy topological space (Y, 1v) and a fuzzy point
x, € IV, we have the following properties.
(i) If z, is fuzzy preopen in (Y, 7y), then x, is not fuzzy nowhere dense.
(i) If T4 is fuzzy nowhere dense in (Y, 7y ), then x, is not fuzzy preopen.

Proof. (i) Since z, <Int(Cl(z,)) holds and z, # Oy, we have Int(Cl(z,)) # Oy,
i.e., x4 is not fuzzy nowhere dense.

(ii) Suppose the fuzzy point z, is fuzzy preopen in (Y, 7y ). Then, we have
2, <Int(Cl(z,)) and so z, = Oy, because z, is fuzzy nowhere dense. This
contradicts the definition of fuzzy points. O

We need a lemma and some notation below.
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Lemma 2.5 Let A € IV be a fuzzy set with A # Oy and A and B two subsets
of supp(A). Then, the following properties hold.

(i) (cf. [24, Definition 2.2], e.g., [19, Lemma 2.2]) A = \/{zx@) € [¥| z €
supp(\)} holds.

(ii) V{zr@) € IY| 7 € AUBY=(V{zr@@) € I¥| 2 € ANV (V{zr@) €IV |z €
B}) holds.

(iii) Further to (ii), suppose AN B = 0, then (\{zr@m) € I¥| z € A}) A
(V{zr@) € IV| z € B}) = 0y. O

(Notation I): For an arbitrary fuzzy topological space (Y, 7y), we denote the
following three families of fuzzy sets as follows (cf. Definition 1.2):

(1) FPO(Y, 1y) := {\ € IY| X is fuzzy preopen in (Y, 7y)};

(2) FND(Y,7y) := {\ € I¥| X is fuzzy nowhere dense in (Y,7y)};

(3) FSO(Y, 1y) := {\ € IY]| X is fuzzy semi-open in (Y, 7y)}.

(Notation II): For an arbitrary fuzzy topological space (Y,7y) and a fuzzy
set A € IY with X # Oy (i.e., supp()\) # 0), we define three subsets of supp()):
(1) supp(A\)FPO := {x esupp())] Tr) € FPO(Y, v)}

(2) supp(M)FNP := {z € supp(N)| zr@z) € FND(Y,7v)};

(3) supp(\)EPST = {z € supp(N)| () & FPO(Y,7y) U FND(Y, 7v)}.

Definition 2.6 Let (Y, 7y) be an arbitrary fuzzy topological space and A € I Y
be a fuzzy set with X # Oy . The following fuzzy sets are well defined:

(i) Arpowry) = V{Za@ € I¥| 2a@) € FPO(Y,7y),z €supp(A)} if
supp(N)FPO £ 0; Arpo(v,ry) = Oy if supp(A)FF9 = 0;

(i) Arapviry) = Vi{Za@ € IY| 2y € FND(Y,7y),z €supp(\)} if
supp(\) NP £ 0 Apprp(v,ry) = Oy if supp(\)FNP = 0;

(iii) ARgST/}Y,Ty) = \/{:v,\(m) € IYI Tx(z) ¢ FPO(Y,7v)UFND(Y,1v),x esupp(M)}
if supp(\)BFST 2 0; Arest(vry) = Oy if supp(A)FFST = 0.

Remark 2.7 Let (Y, 7y) be an arbitrary fuzzy topological space (cf. Notaions
I, I above).

(i) Arpo(y,ry) = 0 if and only if supp(A)77° = 0.

(i) AraD(v,ry) = 0 if and only if supp(\)FND = ().

(iii) AresT(v,ry) = 0 if and only if supp(\) ST = 0.
Proof of (i): (Necessity) Suppose that supp(\)fFC # 0, i.e., there exists a
point z €supp(A) such that zy;) € FPO(Y,7y). For the point z we set
A, = {z\)(2) € I| Tr@) € FPO(Y,7y),z € supp(\)}. By Definition 2.6
(i), sup A, = Azrpo(y,ry)(2). For any element a € A, a0 < sup A,. Then, we
have z)(;)(2) < sup A, because z)(;)(2) € A,. Since 0 < Az) = za2)(2),
we have 0 < sup. A, = Arpo(v,ry)(2). We conclude that Arpo(y,ry) # Oy in
(Y, Ty).
(Sufficiency) The proof is obtained directly by Definition 2.6 (i).
Proof of (ii) (resp. (iii)): this is proved by the same argument as that in (i)
(resp. (iii)) using Definition 2.6 (ii) (resp. (iii)).

The following theorem is a characterization of Arpo(y,ry) and AraD(y,ry)-
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Theorem 2.8 Let (Y, 7y) be an arbitrary fuzzy topological space and X € 1 Y be
a fuzzy point with A # Oy .

(-1) IfA= /\FND(Y,fy) holds, then Arpo(v,7y) = Oy and AREST(Y,ry) = Ov-

(i-2) Conwversely, if Arpoy,r) = Ov and AresT(v,ry) = Oy, then A =
)‘fND(Y,Ty) holds.

(ii-1) If X = Arpo(y,ry) holds, then Axap(v,ry) = Oy and Arest(v,ry) =
Oy.

(ii-2) Conversely, if Arnp(v,ry) = Ov and AresT(v,ry) = Oy, then A =
)\]:fp(f)(y’,-y) holds.

(iii) Especially, suppose that (Y,7y) satisfies the Jankovié-Reilly condition
(cf. Definition 2.3).

(111-1) If )\]:’po(yﬂ-y) = Oy, then A = )‘fND(Y,Ty) holds.

(iii-2) If AFND(Y,ry) = Oy, then A = )\;;:p@(y’.,.y) holds.

Proof. (i-1) Assume A = Agnp(v,ry) holdsin (Y, 7y). Werecall that Axyp(y,ry) =
\/ B, where B := {2 (4)| #(z) € FND(Y,7y),z € supp(\)} and Arnrp(v,ry) (2) =
supB,, where z € Y and B, = {2Zx@)(2) € I| Trxo) € FND(Y,7v),z €
supp(A)}. We claim that

(*) wx@) € FND(Y,1y) for each point w esupp(N).

Proof of (). Let w €supp(\). Then, by assumption, A(w) = Arnp(v,ry) (W) =
sup B,,. For any positive real number £ with 0 < sup B,, — €, there exists a real
number y € By, such that 0 < supB,, — ¢ < y < supB,,. Hence, y = () (w)
for some z €supp(\) and zy(,) € FND(Y,7y). Since y = zy()(w) > 0,
we have zy;)(w) = A(z) and so # = w. Thus, we show (x) above, i.e.,
wx(w) € FND(Y, 7y) for each point w €supp(A). ¢

Namely, wy(w) is fuzzy nowhere dense in (Y, 7y) for each point w €supp(A).
Using Lemma 2.4 (ii) for each point w €supp()), wx(w) is not fuzzy preopen
in (Y,7y). By Remark 2.7(i) (resp. (iii)), it is shown that Arpo(y,ry) = Oy
(resp. AresT(v,ry) = Oy because wy) € FPO(Y, Ty) U FND(Y, 1y) for each
w €supp(})) in (Y, 7y).

(i-2) Assume Arpo(y,ry) = Oy and )\Rggq’(y’ﬂl,:) = 0y. By Remark 2.7(i)
and (iii), respectively, it is obtained that supp(A\)FFO := {2 esupp(N)| zx@) €
FPO(Y,7y)} = 0 and supp(\)BEST = {z esupp(N)| zx@) ¢ FPO(Y,7v) U
FND(Y,75)} = 0. Thus, we have supp(\) = {z €supp(\)| zxrx) € FND(Y,7v)}
and so A = \{zx@w)| Zrx) € FND(Y,7y),z € supp(A)} = Apapv,ry) (cf.
Lemma 2.5(1)).

(ii-1) (ii-2) Their proofs are similar to that of (i-1) and (i-2) above, respec-
tively.

(iif) (iii-1) Assume Arpo(y,ry) = Oy. By Remark 2.7(i), it is obtained that
every fuzzy point () is not fuzzy preopen in (Y, Ty ) for each point x €supp(X).
Since (Y, 7y) satisfies the Jankovié-Reilly condition (cf. Definition 2.3), every
fuzzy point z(,) is fuzzy nowhere dense in (Y, 7y) for each point z esupp(A);
and 50 {Zx(z)| © €supp(A\)}= {Zx(2)| Ta(x) € FND(Y,7v), 2 esupp(A)}. There-
fore, using Lemma 2.5(i), we have A = \/{z(z)|  €supp(N)} =V{zxz)| Zax) €
FND(Y,1y),

z €supp(A)} = AFND(v,ry)-
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(iii-2) The proof is similar to that of (iii-1) above. : O

In the end of this section we shall prove two theorems of main results (cf.
Theorem 2.9, Theorem 2.10 below).

Theorem 2.9 For an arbitrary fuzzy topological space (Y,7y) and A € IY a
fuzzy set with A # Oy, we have the following properties on Arpo(y,ry) and
AFND(Y,ry), Tespectively.

(i) Arpo(y,ry) 8 fuzzy preopen.

(ii) If the characteristc function xp is fuzzy nowhere dense in (Y, 7y), then
AFEND(Y,ry) 8 fuzzy nowhere dense in (Y, 7y), where B := {x € supp(\)|zx(y) €
FND(Y, 1y)}.

PTOOf. (i) If /\f'PO(Y,Ty) 7& Oy, then

/\]:'po(y’.,-y) = \/{:E)\(m) € IY| Tr(z) € FPO(Y, Ty),.%' esupp()\)} is the fuzzy
union of fuzzy preopen fuzzy points ;) for some points x €supp(A) (cf. Defini-
tion 2.6(1)). Then, Arpo(y,ry) is fuzzy preopen in (Y, 7y ), because FPO(Y, 1y)
is closed under an arbitrary fuzzy union. If Arpo(y,r,) = Oy, then it is obviously
fuzzy preopen in (Y, 7y ).

(if) We recall B =supp(A)*NP := {z € supp(\)|zr) € FND(Y,7v)}
(cf. (Notation IT)). For the case where B # (), it follows from assumption
and Definition 2.6(2) that Int(ClAznp(v,ry)))= Int(Cl(\/{zr@m)lz € B})) <
Int(CL(V{x{z}le € B}))=Int(Cl(xu{{z}|zeB}))= Int(Cl(xp)) = Oy. Namely,
we have Int(Cl(Ararp(y,ry))) = Oy; and 80 Ararp(y,ry) is fuzzy nowhere dense
in (Y,7y). For the case where B = ), we have Arnp(v,ry) := Oy; and so
AFND(Y,ry) I8 also fuzzy nowhere dense for the case where B = (. O

Theorem 2.10 Let (Y, 7y) be an arbitrary fuzzy topological space and A € IY
a fuzzy set with A # Oy. We have the following properties on .

(1) A= Arpory) VAFND(Y,ry) V AREST (v,7y) holds.

(1) AFPoy,m ) ANFND(Yiry) = 0¥ 5 AFPO(Y,ry ) ANREST (Yiry) = 0¥ 5 AFND(Y,7y) A
AREST (Y,ry) = Oy.

(iii) Especially, if (Y,7y) satisfies the Jankovié-Reilly condition (cf. Defi-
nition 2.3), then A has a decomposition: A\ = AFPOY,ry) Y AFND(Y,ry) With
AFPO(Y,7y) N AFND(Y,7y) = Oy

Proof. (i) First, we claim that for an arbitrary fuzzy topological space (Y, 7y)
() supp(X) =supp(\)FFOUsupp(A) IV PUsupp(A) #F5T holds.

Let = € supp()) and x)(;) a fuzzy point. We consider the following all cases on
the values on (Int(Cl(zx(y))))(x) € I and z5(;)(z) € 1.

Case 1. z)(g)(7) < (Int(Cl(zx())))(z) in I: for this case we have z(5) <Int(Cl(zx(z)))
in I'Y, because Ta(z)(y) = 0 for every point y €supp()) with y # x. Thus, for
this case, we have z,(,) € FPO(Y, 7y) and so z €supp(A)FFO.

Case 2. (Int(Cl(zx(g))))(z) = 0 in I: for this case for a point y € ¥ with
y # x, we consider the following two cases:

Case (2-1). (Int(Cl(zx(z))))(y) = 0 for every point y € Y with y # z: for this
case we have Int(Cl(zx())) = Oy, i.e., Zx(z) € FND(Y, 7y) and so z €supp(\)FNVP.
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Case (2-2). (Int(Cl(za(z))))(y) # O for some point y € Y with y # x: for this
case, we have Int(Cl(zx(y))) # Oy in IY: and so T(z) Is not fuzzy nowhere
dense in (Y,7y), i.e., Tx(z) € FND(Y,7y). Moreover, at the point y, we have
Tr)(y) = 0 < (Int(Cl(xx(z))))(y); however at the point x for the Case 2, we
have z)(q)(z) £ (Int(Cl(zx(x))))(z) = 0, because 0 < Ta(z)(z) = AMx). Thus,
for this Case (2-2), )(s) is not fuzzy preopen in (Y, 7y), Le., z ¢ FPO(Y,1y).
Namely, for the point z where the Case (2-2), we have z ¢ FND(Y,7y) U
FPO(Y,1y). ie.,  €supp(A)FEST.

Thus, for the point z in this Case 2, we show that x €supp(\) "V PUsupp(A) FEST.

Case 3. 0 <(Int(Cl(zx())))(x) < Tam(z) in I: for this case, we have
Int(Cl(z5())) # 0 and Tx(z) £ Int(Cl(zx(r))). Namely, zy(o) & FND(Y,7y)U
FPO(Y,1y), i.e., z € supp(\)FEST.

By all possible cases above, it is shown that
z esupp(A\)FPOUsupp(A) FNPUsupp(A) BEST holds for any point 2 €supp(\).
Namely, we show one of the inequalities of (*):
supp(\) Csupp(A)FFOUsupp(A) FVPUsupp(A)RPST. Since the converse impli-
cation is obvious, we conclude the proof of the equality () for the arbitrary
fuzzy topological space (Y, 7y).

Therefore, by Lemma 2.5 and (*) above, it is concluded that
A = V{zr@)|z €supp(N)}

— (V{@ao) [ €supp (N FONV(Y (x| Esupp(N) V)
V(V{z @)z €supp(N) EES T =X rpo(vry) V AFND(Y;ry) V AREST(V,7v)-

(ii) By Lemma 2.4 and definitions, it is shown that
supp(A)FPOnsupp(\)FNP = (; and so, by Lemma 2.5(iii), it is obtained that
AFPO(Y,rv) N AFND(Y,ry) = Oy It is similarly shown that the other equalities
hold, because supp(A)F£ON supp(A)FEST = () and supp(\) FFST Nsupp(A)FVP =
(), respectively.

(iii) Let = €supp(\). Then, it follow from assumption that every fuzzy point
T(z) is fuzzy preopen or fuzzy nowhere dense in (Y, 7y),ie., € supp(A)FFPOU
supp(A)FNP. Namely, we have supp(\)=supp(\)FFOUsupp(A)FNP.

By Lemma 2.5(ii)(iii) and definitions, it is shown that A = Arpo(v,7y) VAFND(Y,7v)
and Arpo(y,ry) A AFND(Y,ry) = Oy u

3 Examples and applications In the present section, we give some ex-
amples on results (cf. Theorem 2.10) of Section 2 above. With respect to the
decomposition of a fuzzy set, Example I below shows one for the finite fuzzy
topological space of Example 2.1; Example II below shows detailly one for a spe-
cific fuzzy topological space (Y,of) which is induced from a topological space
(Y, 0); in Example I1I below, some applications for a digital image A with grey
scale \(x) are given; they are done for a fuzzy set on the digital planes and
the decomposition of the images is given exactly for the simple fuzzy topologi-
cal space (Z?, (k%)) (cf. Theorem 3.9 in (III-5), (III-10) below). The proof of
Theorem 3.9 is done in (ITI-13) after recalling properties on the digital planes
(cf. (II1-8,9) below). In (II1-6) and (III-7) below, simple illustrations of a de-
composition of image A on Z2 with grey scale A(z), where z € Z?, are illustrated.
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(Example I).

We consider the fuzzy topological space (Y, 7y) in Example 2.1; Y := I and
Ty = {0y, u,v,u V v,1y} (cf. Example 2.1). By Theorem 2.10, it is obtained
that any fuzzy set A on Y has a decomposition: A = Arpo(y,ry) V AFAD(Y,ry) V
AREST(v,ry)- For this fuzzy topological space (Y, 7y ), we can see the precise
forms of them. First, in order to investigate fuzzy topological properties of
any fuzzy point on (Y, 7y), we should decompose (Y x I) \' Y x {0} as follows:
(Y xD\Y x {0}=U{(Y x I);] i € {1,2,3,4,5}},
where (Y x I); := {(,t)[0 <2 <3/8,0 <t < —dx+2,4z -1 <t < 1};

(Y xI)g:={(z,0)|1/4 <2 <1/2,-dz - 1<t<1,—-dz+2<t< 1}
(Y x I)g:={(z,8)]1/4 <2< 1,0 < t < 220 +2,0 < t < 4z — 1};
(Y x Dy i={(z,8)[1/2 <2 <1,-20+2<t<1,20—-1<t<1};
(Y x D)5 :={(,8)[3/4<z<1,0<t<2zx—1-20+2<t<1}

Secondly, we have the following properties on a fuzzy point z, on Y: for a
pair (z,a) € Y x I'\'Y x {0},

-if (z,a) € (Y x I)1 U (Y x I)5, then z, is fuzzy preopen in (Y, 7y) and so, by
Lemma 2.4(i), z, is not fuzzy nowhere dense;

“if (z,a) € (Y x I)oU(Y x I)4, then z, is not fuzzy preopen and z, is not fuzzy
nowhere dense in (Y, 7y);

- if (x,a) € (Y x I)3, then z, is fuzzy nowhere dense in (Y, 7y); and so, by
Lemma 2.4(ii), z, is not fuzzy preopen in (Y, 1y ).

Finally, let A be a fuzzy set on Y. Then, A has a decomposition as follows (cf.
Theorem 210(1)(11)) A= )\]:79(9(}/,7-,,) \Y A]:ND(Y,Ty) \ /\REST(Y,Ty)- The precise
forms are obtained by using above decopmpstion of Y x I'\' Y x {0}:
Arpo(yry) = V{Zal(z,a) € G N (Y x 1)1 U (Y X I)5)}; Arap(viry) =
V{zal(z,a) € GA) N (Y x I)3}; Arerr(viry) = ViZal(z,a) € GA) N ((Y x
N U(Y x I)a)};
where G(\) denotes the graph of A (i.e., G(\) :={(z,A(z)) € Y x I|z € Y}).

In additions, we give two simple examples of fuzzy sets on Y to see the more
exact decompositions.

e For exmaple, let A € IY be a fuzzy set defined by A(z) := 3/4 for every
point x € Y. Then, we have G(A) N (Y x I); # 0 for each integer ¢ with
1 <4 <5 and supp(A\) PO = [0,5/16] U [7/8,1], supp(\)FNP = [7/16,5/8] and
supp(A)BEST = (5/16,7/16) U (5/8,7/8), where [a, b] and (c,d) denote a closed
interval and an open interval in I for real numbers a,b,c,d € I with a < b and
¢ < d, respectively; and so

Arpo(y,ry) = Viza/a € IV |z € [0,5/16] U [7/8,1]}; Arap(vry) = V{zs/ €
I"|z € [7/16,5/8]}; Arest(viry) = V{zs/a € IV |x € (5/16,7/16) U (5/8,7/8)}.
This example shows that this fuzzy space (Y, 7y) does not satisfy the Jankovi¢-
Reilly condition.

e For the following example ), we shows that Args7(v,ry) = Oy: let A€ Y be
a fuzzy set on Y defined by A(x) := 1/2 for every point € Y; Arpo(v,ry) =
V{.’El/g S IY|Z' S [0,3/8) U (3/4, 1]} and )‘TND(Y,Ty) = V{$1/2 S IYI:E €
[3/8,3/4]}. This example shows that the converse of Therorem 2.10(iii) is not
true.
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(Example IT).

The following fuzzy topological space (Y, o) is a typical example of a fuzzy
toplogical space satisfying the Jankovié-Reilly condition (cf. Definition 2.3, The-
orem 2.10(ii), Theorem 3.1 and its proof below). In the present Example II, for
a nonempty set Y, we assume that Y has an ordinary topology, say o, and on
Y we define an induced fuzzy topology, say o7, as follows: of := {xy|U € o}.
Then, it is obviously shown that o/ forms a fuzzy topology on Y and follow-
ing fuzzy topological properties are shown straigtforwardly except Theorem 3.1
below. Since o is crisp, there is a bijection between the topology ¢ and the
fuzzy topology of, say f : ¢ — of, which is defined by f(U) := xy for every
set U € 0. However, the fuzzy topology o/ has some interesting properties (cf.
Theorem 3.1, (3.3) and (3.5) below). Throughout the present Example 11, Cl(e)
(resp. Int(e)) denotes the fuzzy closure (resp. fuzzy interior) in this example
(¥,a%).

Theorem 3.1 This example, say (Y,o7), of a fuzzy topological space, satisfies
the Jankovié-Reilly condition (cf. Definition 2.3; the proof is shown in the end
of this (Example II)).

(8.2) For a fuzzy set A on'Y', CI(A) = Xci(supp(n)) holds in (Y,o7); and
Int(A) = Xme(r—1({1})) holds in (Y,07).

A family PO(Y,0) denotes the family of all preopen subsets of (Y,0), i.e.,
PO(Y,o) :={V C Y|V C Int(CI(V)) holds in (Y, 0)}.

(8.3) The following property shows that the function f : 0 — o is extended
to the family PO(Y,0) by f,(E) := xg for every E € PO(Y,0), say fp :
PO(Y,0) — FPO(Y,0%). And, in spite of the bijection of f : ¢ — of above, we
note that the function f, is not bijective; indeed it is not surjective in general
(cf. (II1-11) in (Example III) below for the digital plane (Y, o) = (Z2, x2)).

(3.4) (i) A subset E is preopen in (Y,0) if and only if xg is fuzzy preopen
in (Y, 7).
(ii) For a subset E of (Y,0) and a fuzzy set A\g € I¥ with E =supp(\g),
E is nowhere dense (resp. preopen) in (Y, o) if and only if g is fuzzy nowhere
dense (resp. fuzzy preopen) in (Y, o7).
(ili) Let A1 and g be fuzzy sets such that supp(A1)=supp(A2). Then, A is fuzzy
nowhere dense (resp. fuzzy preopen) in (Y, o) if and only if Ap is fuzzy nowhere
dense (resp. fuzzy preopen) in (Y,o7).

(3.5) Also, an extended function f; : SO(Y,0) — FSO(Y,o7) is well defined
by fs(E) := xg for every set E € SO(Y,0), where SO(Y,0) := {U C Y| U
is semi-open in (Y, o), i.e., V. C Cl(Int(V)) holds}. The function fs is not
surjective in general (cf. (I1I-4), (I1I-12) in (Example III) for the digital plane
(Y,0) = (Z?%, k?) below).
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(3.6) For a fuzzy point x,, where z € Y and a € I(a # 0), the following
properties holds in (Y,a7).

(i) Buvery fuzzy point x4 is fuzzy open or fuzzy preclosed in (Y, o).

(ii) A fuzzy point x4 is fuzzy open in (Y,of) if and only if a = 1 and {z} is
open in (Y, 0).

(iii) (a) If a = 1 and {z} is preclosed in (Y, o), then x4 is fuzzy preclosed in
(Y,of). '

(b) If0<a <1 or {x} & o, then x, is fuzzy preclosed in (Y,ol).

(iv) Suppose that z, is fuzzy preclosed in (Y, o7).

(a) If (Cl(Int(z,)))(x) = 1 holds, then a =1 and {z} is preclosed in (Y, o).

(b) If (Cl(Int(xq)))(z) # 1 holds, then 0 <a <1 or {z} & 0.

Proof of Theorem 3.1. We should prove that every fuzzy point in Y
is fuzzy preopen or fuzzy nowhere dense in this example (Y, 0f) of the fuzzy
topological space. Let z, be a fuzzy set on Y. We have the following two cases
on a subset Int(Cl(z,)) in (Y, o).

Case 1. Int(Cl(z,)) = Oy: for this case, z, is fuzzy nowhere dense in (Y, o).

Case 2. Int(Cl(z,)) # Oy: since Int(Cl(z4)) = Xms(ci({z})) (cf. (3.2)), for
this case, we have: (x) there exists a point y € Y such that Int(Cl(z,))(y) = 1.

We recall definitions in general as follows: for a fuzzy set v € IV, Int(v) :=
V{u € I¥|u < v, p is fuzzy open in (Y,0f)}; for a point y € Y, Int(v)(y) :=
sup{u(y) € Ilp € P}, where P, := {u € IV |u < v, p is fuzzy open in (Y, c7)}.
Then, for the fuzzy set Cl(xq), put Poi(a,) := {1 € IV |p < Cl(zq), p is fuzzy
open in (Y,0f)}. Tt follows from () that Int(Cl(z4))(y) = sup{u(y) € I|u €
Pci(z,)} = 1. For any positive real number € such that 0 < ¢ < 1, there exists a
fuzzy set po € Pcy(z,) such that 1—e < po(y) < 1. Namely, there exists an open
set U € o such that up = xv < Cl(z,), po < Int(Cl(z,)) and 1 —¢ < xp(y) < 1.
Then, we have that xy(y) = 1 because 1 — ¢ is any positive real number and
xu(y) € {0,1}. Thus, we conclude that puy = xv < Cl(zs) = Xci({z}) hold in
(Y,07) (cf. (3.2)) and y € U € o in (Y, 0). Thus, we have that, in (Y, 07), x(,; <
xv < Xci({z})- Namely, y € Cl({z}) holds in (Y,0) and so U N {z} # 0, ie.,
z € U. Tt is shown that z, < x{z3 < xv = po < Int(Cl(z4)). Therefore, we
have that z, < Int(Cl(z,)), i.e., z, is fuzzy preopen in (Y, 7).

Therefore, (Y, o7) satisfies the Jankovié-Reilly condition. O

Using Theorem 3.1, Theorem 2.10(iii) and Theorem 2.9, we prove the following
corollary.

Corollary 3.7 For this ezample (Y,0f) of a fuzzy topological space, we have
the following properties.

(i) Every fuzzy set A € IY with A # Oy has a decomposition: A = AFpPo(x,05)V
AFND(X,08) With AFpo(x,0f) N AFND(X,07) = Oy

(i) The fuzzy set Arpo(x,o5) in (i) is fuzzy preopen in (Y, af).

Remark 3.8 By using Theorem 3.1 for the fuzzy point x(,}, where z € Y, it is
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proved that every singleton is preopen or nowhere dense in a topological space
(Y, o). This result was showned by Jankovi¢ and Reilly [14, Lemma 2] and it is
called the Jankovié-Reilly lemma ([14, Lemma 2], eg., [3, p.40]).

(Example III and applications).

We apply results in Section 2 to decompositions of a fuzzy set (grey picture)
on the digital plane (Z2, k?) (cf. Theorem 3.9 in (III-5) below).

(ITI-1) The 2-dimensional images on a nonempty set Y are investigated
mathematically or digitally by regarding Y as Z? or a subset of Z2. In 1990
a topology on Z? convenient for the study of digital images was introduced by
Khalimsky, Kopperman and Meyer in [16]. That topology, called the Khalimsky
Topology, is one of the most importante concepts of the theory called digital
topology. It has been studied and used by many persons (cf. (III-8) and (III-9)
below) ; a topological space (Z2,k?) is called Khalimsky plane or the digital
plane.

(I11-2) On the other hand, the concept of grey pictures relates to the concept
of fuzzy sets. We recall the concept of grey pictures (e.g., [28]). Let F : Z? — R
be a function and F(i,7) := fi; > 0(f;; € R) for each (i,j) € Z*. The
function F is called a digital grey picture with a grey scale {f;;} and it is
denoted by F = {f;;} (e.g., 28, Definition 1]). Conveniently, it is assumed
that f;; # 0 only for finite numbers of pairs (i,j) and f;; = 0 for other
pairs. We set Y := Z?2 and \((4,5)) := fi,j/M for each pair (,5) € Z*, where
M := Maz{f;|fi; #0,(i,j) € Z*}. Thus, we have a fuzzy set on Y, A € I",
where Y = Z2. Conversely, with the grey level A(z), the points x € Z? forms a
grey picture; they form an image on Y = Z? (cf. a figure in (III-6) below).

(ITI-3) When we can introduce an arbitrary fuzzy topology Ty on Y = Z2,
by Theorem 2.10 in Section 2, it is obtained that every fuzzy set A on YV := Z?
has a decomposition using at most three fuzzy sets Arpo(y,ry)s AFND(Y,7y) and
AREST(v,ry)- As an application, we have that: for an arbitrary fuzzy topology
Ty onY := 72,

(*1) every 2-dimensional digital image (or so called, grey picture) A has been
decomposed by at most three digital images : A = Arpo(v,ry) V AZND(Y,ry) V
)\'Rggq'(y’fy) (cf. Theorem 2.10(i)); and

(+2) the digital image Azpo(y,ry) is really a fuzzy preopen set in the fuzzy
topological space (Y, 7y) := (Z%, 1y) (cf. Theorem 2.9(i)); and moreover,

(x3) each two digital images of them are fuzzy disjoint in I¥ = IZ" (cf. Theo-
rem 2.10(ii)); and so even if we do not know the content of the original digital
image A and we receive separatedly these three digital images from any ones,
we collect them and put together them as one sheet along the z-axis, y-axis
and the origin (0,0) on each three digital images; then we can get the fuzzy set
AFPOY,ry) V AFND(Y,ry) V AREST (v,ry)- By Theorem 2.10(i), it is shown that
this fuzzy set is equal to the original digital image A.

Therefore, using Theorem 2.10 in Section 2, we find a method of decompo-
sition of 2-dimensional digital image using a fuzzy topology and we explain the
reasons of the decomposition by purely fuzzy topological tools and we have an
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application above on digital images.

(ITI-4) For a most simple example, as the fuzzy topology 7v on Y := Z2,
now we consider an induced fuzzy topology (k2)/ from the Khalimsky topology
k* on Y := Z2. Even though there exists a bijection f : k2 — (k?)f, the
extended function fs : SO(Z?, k?) — FSO(Z?,(k?)f) is not bijective; indeed,
it is not surjective (cf. (III-12) below and also (III-11) for PO(Z?, k?)). Thus,
(22, (k*)!) can not be identified to the digital plane (Z2, x2); and (Z2, (x®)7) is a
simple example of fuzzy topological space and also the topological properties of
(Z?, K?) influences fuzzy topological ones of (Z2, (k2)7); that are nice influences
for their studies (cf. (III-5, 6, 7) below). By Theorem 3.1 of (Example IT), we
have the following property: an arbitrary fuzzy set A € I Z* with A # 072, has a
decomposition by at most two fuzzy sets Arpo2 (x2)f) and Ararp(z2,(x2)7) (cf.
Theorem 3.9(iii) in (III-5) below); and they have exactly the following forms of
Theorem 3.9(i)(ii) in (III-5) below.

(III-5) The proof of the following theorem shall be done in (III-13) below,
after observing an example of the decomposition of a digital image (fuzzy set)
on Z? (cf. (I11-6,7) below) and preparing some new terminologies and notation
(cf. (III-8,9,10) below).

Theorem 3.9 Let A € IZ be a fuzzy set with \ # Ogz. Let (Z2%,(k%)7) be
a special fuzzy topological space induced by the digital plane (Z2,x?).

(i) (a) If supp(AN(Z?) w2 # 0, then Azpozz (x2)r) = V@) € 17|  €supp(A)N

(Z%)w2}; if supp(A) N (Z2)e2 = 0, then Arpo(z2 (n2yr) = Ozz.

(b) The fuzzy set Appo(zz,(x2)ry s fuzzy preopen in (Z2, (k%)f).

(i) (a) If supp(\)N((Z?) 72 U(Z?)miz) # 0, then Appp(ze, (s 5) = V{Za@) €

2

1| @ €supp(A) N ((Z%) 52 U (Z%)miz)}- If supp(A) N ((Z2) 52 U (Z2)miz) = 0,
then )‘}'J\/"D(Z2,(le2)f) = 0g2.

(b) The fuzzy set Aparp(ze,(w2)s) s fuzzy nowhere dense in (Z2, (k2)7).

(iil) A fuzzy set X has a decomposition: \ = AFpo(2,(x2)f) VY AFND(Z2,(x2)7)
with /\}"PO(Zz,(nZ)f) A /\fND(Z2,(n2)f) = Op2 (Cf (1) and (11) above )

(III-6) For a simple example of digital images, we consider the following
one which illustrated by the fuzzy set (image) A on Z? with some grey scale
A(z). With the grey level A(z), the points z € Z? forms a grey picture; they
form an image on X. In the figure, the grey levels are illustrated by @, @, e or e.

Z

T
. . . . ® . o
e O o o ° e o o . ° [ J
[ [ ° ® o
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323



324

H. MAKI, T. FUKUTAKE, M.KOJIMA, F. TAMARI et al.

(III-7) (1) For the example of digital image of (II[-6), say A, the first fuzzy
preopen set Apo(z2,(x2)r) in Theorem 3.9(i) above is illustrated as follows:
7

(2) And, the other fuzzy nowhere dense set (image) Arpp(z2,(x2)s) in The-
orem 3.9(ii) is illustrated as follows:

Z
T
. . [ [
e . o . . )
[ ] - e . [ e i —
e . e . .
o e o o e o o e o © [ ]

From now we recall the concept of the digital plane and related notation etc
(cf. (III-8), (III-9) below); and after them we mention the proof of Theorem 3.9
(cf. (II-12) below).

(ITI-8) We should first recall the concept of the digital line or so-called
Khalimsky line; it was originally introduced by Khalimsky (see Khalimsky et
al.[16] and references there; [15]; e.g., [17, p.905]). We shall recall the following
definition of the digital line, or so called the Khalimsky line (cf. [17, p.908] [18,
Definition 2] [13, line —5 - —1 in page 1034] [12, line +1 - +13 after Proposition
2.1in p.926] [22, Example 4 in Section 2.3] [8, line +2 in p.123] [20, Section 3]);
the definition is more direct than the original definition given [16] etc.

e The digital line or so-called Khalimsky line (Z, k) is the set of the integers,
Z, equipped with the topology k, having {{2m — 1,2m,2m + 1}|m € Z} as a
subbase. The topology  is called the digital topology or the Khalimsky topology
on Z. For a point 2m € Z, {2m} is closed and not open in (Z, ) and for a point
2m+1 € Z,{2m+1} is open and not closed in (Z, k), where m € Z. For any open
subset V of (Z,x) and a point x € V, if £ = 2m then there exists the smallest
open set {2m —1,2m, 2m+ 1} containing z such that {2m—1,2m,2m+1} C V,
and if z = 2m + 1 then there exists the smallest open set {2m + 1} containing z
such that {2m + 1} C V, where m € Z. We recall : a subset A of a topological
space (X, 7) is called the smallest open set containing x if x € A, A € k and
G = A holds for any open sets G such that z € G and G C A. By [7, Example
4.6], it is shown that (Z, ) is a T /o-topological space; but an induced fuzzy
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topological space (Z, k¥) is not fuzzy T /2 ([10, Example 4.8]).

(II1-9) Next we recall definitions, fundamental properties and notations on
the digital plane. In the present paper,
o the digital plane (Z2, k?) is the topological product of two copies of the digital
line (Z, x) (cf. (ITI-8) above), where Z? = Z x Z and k? = k X k (e.g., [17, p.907 -
p-909] [16, p.10 - p.12] [12, line +14 - +16 after Proposition 2.1] {13, p.1035] [21,
Section 3] [20, Section 3]). Because of the topology 2, for each point z € Z2,
there exists the open set U(x) containing z, it is called, in the present paper,
the smallest open set U(x) containing z (e.g.,[9]; in [9, line —7 in p.38], the set
U(z) is called the basic open neighbourhood of x); let m,s € Z,
- U@)={2m+1,2s+1)}ifz=(2m+ 1,25+ 1);
- Ulz) ={2m —1,2m,2m + 1} x {2s — 1,2s,2s + 1} if = (2m, 2s);
- U(z) ={2m+1} x {25 —1,25,2s + 1} if x = (2m + 1, 2s);
- U@)={2m—-1,2m,2m+ 1} x {2s + 1} if z = (2m, 2s + 1).
It is well known that z € U(z) C V for a point z € Z and any open set V
containing x. Every singleton {(2m,2s)} is closed in (Z?, k?) and it is not open,
where m, s € Z. Every singleton {(2m’ + 1,2s' + 1)} is open in (Z?% «?) and it
is not closed, where m’, s’ € Z. We have the explicite forms on the closures and
interiors of singletons as follows: let m, s € Z,
- Cl{(2m,2m)}) = {(2m,2m)}; - Cl{(2m+1,2s+1)}) = {2m,2m +1,2m +
2} x {25,254+ 1,25+ 2}; - Cl{{(2m +1,2s)}) = {2m,2m + 1,2m + 2} x {2s}; -
Cl({(2m,2s+1)}) = {2m} x {25,25+1,25+2}; and - Int({(2m+1,2s+1)}) =
{(2m+1,2s+1)}; - Int({(2m+1,2s)})=Int({(2m, 2s+1)})=Int({(2m, 2s)}) = 0.
We use the following notation:
- (Z2) 52 == {x € Z2|{x} is closed in (Z2, K2)} = {(2m, 25)|m,s € Z};
« (Z*) 2 := {z € Z*|{z} is open in (Z2,k2)} = {(2m + 1,25 + 1)|m,s € Z};
(Z2) mizi=T2\((Z?) 2U(Z?) £2) = {(2m~+1,2s)|m, s € Z}U{(2m,2s+1)|m,s €
Z2}.
(x) For a point z € Z2,z € (Z*)miz U (Z?) 52 if and only if Int(Cl({z})) = 0
in (Z% k?) (i-e., {x} is nowhere dense in (Z?, k?)); moreover, a singleton {z}
is preopen if and only if {x} is open if and only if z € (Z?2).:. We have a
decomposition of Z? as follows:
« Z2 = (Z%) 2 U (Z?) 72 U (Z?)miz (a disjoint union); and
- (Z*) 52 U (Z?)miz is a nowhere dense subset of (Z2, k?) (e.g., [20, Lemma 3.1
for n = 2 and B = Z?], [23, Lemma 6.1 (i)(ii)]); these facts are used in Proof of
Theorem 3.9.

(III-10) We define a special fuzzy topology (x2)/ from k2 as follows (cf.
(Example II) for of, where o is a topology):
o Let (k2)f := {xy| U € w?}; we have a special fuzzy topological space
(22, (k%)) induced by (Z?, ?) in the sense of (Example IT) above. The fuzzy
closures and fuzzy interiors of fuzzy sets are well known by (3.2) in (Example
1I).

(I11-11) (cf. (3.3) in (Example II)) We note that the extended function
fp : PO(Z% k*) — FPO(Z?, (k?)7) of f: k? — (k)7 is not surjective. For a
singleton {y} C Z2, where y := (2m + 1,2s + 1) for some integers s-and m, we
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consider the following fuzzy set A € I%” defined by Ay) :=1/2,\(z) := 0 for ev-
ery point € Z* with = # y. Then, it is shown that Int(CI())) =Int(xci(fy})) =
XInt(Cl({y})) = X{y} = A (cf. (3.2) in (Example II) and (II1-9)). Namely, ) is
fuzzy preopen in (Z2%, (k?)7), i.e., A € FPO(Z?, (k?)f). However, we can not
find any preopen set V' of (Z2, k?) such that f,(V) = \. Indeed, suppose that
there exists a preopen set V' with f,(V)) = ); then we have xy = . We have a
contradiction, because xv (y) € {0,1} and A(y) = 1/2 ¢ {0, 1}.

(ITII-12) (cf. (3.5) in (Example II), (ITI-4)) We note that the extended func-
tion fs : SO(Z?% k?) — FSO(Z?, (k*)) of f : k? — (k?)7 is not surjective. For
a subset A := {(2m,2s),(2m + 1,2s + 1)} C Z2, where s,m € Z, we consider
the following fuzzy set A4 € IZ” : Aa((2m+1,25+1)) := 1, 4((2m, 2s)) :=1/2
and Ag(z) := 0 for every point z € Z2 with x ¢ A. Then, it is shown
that Cl(Int(Aa)) =Cl(x{@2m+1,.2s4+1)}) = XCl({(2m+1,2541)}) = Aa (cf. (3.2) in
(Example IT) and (III-9)). Namely, A4 is fuzzy semi-open in (Z2, (k?)7), i.e.,
Aa € FSO(Z2,(k*)7). However, we can not find any semi-open set U of (Z2, k2)
such that fs(U) = Aa. Indeed, xy # Aa, because xv((2m,2s)) C {0,1} but
Aa((2m, 25)) = 1/2.

(I11-13) (Proof of Theorem 3.9 (cf. (I1I-5) above)):

(i) (a) Suppose supp(A) N (Z?%).2 # 0. We put A := {z)(y) € IZz|:vA(x) €
FPO(Z?, (k*)7),x esupp(A)} and B := {wy) € IZ |z esupp(A) N (Z2),2}.
We claim that A = B. Let x);) € B; then = € supp(\) N (Z2?).2. Then,
{z} € k? and so {z} € PO(Z?,&?). By (3.4)(ii) of (Example II) above, {z} €
PO(Z?, k%) if and only if x5, € FPO(Z?, (xk?)f). Thus, we have B C A.
Conversely, suppose xy(;) € A; then A(z) > 0 and {z} € PO(Z? k?) (cf.
(3.4)(ii) of (Example II) above). Since every preopen singleton {z} is open
in (Z2,K?), i.e., * € (Z?)42, we have & €supp(A) N (Z2),:; and so Trg) € B.
Thus, we show A C B. Hence, if supp(A) N (Z?).2 # 0, we have A = B
and s0 Arpo(ze,(x2)r) = VA = VB = \{z)u) € IZ| z esupp(A) N (Z2),2}.
Suppose supp(A) N (Z2?).2 = @. Then, for each point = €supp()), we have
T &€ FPO(Z?, (k%)7), because a singleton of (Z2, k?) is open if and ony if it
is preopen. Thus, we have supp(A\)FF9 = {§ (cf. Notation II in Section 2). By
Remark 2.7(i), it is obtained that )\}-po(zz’(nz)f) = Oge.

(b) In general, Arpo(y,ry) is fuzzy preopen in arbitrary fuzzy topological
space (Y, 7y) (cf. Theorem 2.9(i)).

(i) We put E := (Z?)z2 U (Z*)miz. (a) Suppose supp(A) N E # (.
We put A := {5, € IZz|x/\($) € FND(Z? (k*)7)} and B = {z)) €
IZQ‘LE €supp(A)NE}. We claim that A = B. Let Tr(z) € B; then z esupp(A\)NE.
Then, {z} is nowhere dense in (Z?, *), because x € E and so Int(Cl({z})) =
0 (cf. (II1-9) above). Since {z} is nowhere dense in (Z2,x2) if and only if
Tx) € FND(Z?,(k?)7) (cf. (3.4)(ii) of (Example II) above), we have the fol-
lowing implication: B C A. By similar argument, it is shown that A C B;
and so B = A. Thus, if supp(A\) N E # 0, then Apnpzz,(s2)yry = VA =
V{za@) € Isz x esupp(A) N E}. If supp(A\) N E = 0, then for each point
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z €supp()),z & E and 0 )(q) & FND(Z2 (k2)f) (cf. (3.4)(ii) of (Example II)
above). Namely, we have supp(A\)FNP = 0. By Remark 2.7(ii), it is shown that
AFEND(22,(x2)F) = Oz2.

(b) We put B :=supp(\)FVP. We first claim that B is nowhere dense in
(Z?,K?). Indeed, using (3.4)(ii) of (Example IT) above and the property (x)
on singletons in (III-9), we have B = {z esupp(A)| {z} is nowhere dense
in (Z2,k*)} C (Z*) 52 U (Z?)miz; and so Int(Cl(B)) C Int(Int(Cl((Z?)x2)U
Cl((Z2)miz))) CInt[Tnt(CL((Z2) 2))U

CI((Z?) miz)] =Int(CHOUCL((Z?)miz))) = 0, because it is shown that Int(C1((Z?)2))

0 and Int(Cl((Z?)miz)) = 0. Thus, B is nowhere dense in (Z?, k%) and so x5 is
fuzzy nowhere dense in (Z2, (k?)f). By using Theorem 2.9(ii) in Section 2, it is
shown that Azpp(z2,(x2)s) is fuzzy nowhere dense in (Z2,(x2)7).
(iii) The proof follows from Theorem 2.10(iii) and Theorem 3.1 .

An alternative proof of (iii): By (i), (ii) above, Lemma 2.5(i)(ii) and a decompo-
sition of Z? (cf. (III-9) above), it is shown that A = \/{z ) € IZ2|x esupp(A)}
=(V{aa@) € I* o €supp(NN(Z2),2 1)V (V{2aw) € I |z €supp(N)N((Z%) 52U
(2% mie)}) = (V{Za@) € I% |wa@) € FPO(Z2, (k) )V (V{zr@w) € I% [2a@) €
FND(Z?,(k%)7)}). Thus, we conclude that A = Arpoz2,(x2)7) VAER D22, (52)7)-
Theorem 2.10(ii) shows }vp@(zzy(nfz)f) A /\ND(Z2,<K2)f) = 0g2. O

Remark 3.10. When we choice an alternative and convenient topology o
on Z? such that o # k2, then using result (Theorem 2.10) of Section 2 and
Example II (Corollary 3.7) of Section 3 we can have an alternative decom-
position of a given fuzzy set A on Z% : A\ = AFpo(z2,0f) ¥V AFND(Z2,0f) With
AFPo@2,07) N AFND(22,05) = 0. Moreover, we choice an alternative and com-
putable fuzzy topology 772 on Z? such that 72 # ¢f and of # (k?)/ and, using
result Theorem 2.10 of Section 2, we have an alternative decomposition of a
given fuzzy set on Z2. Thus, as applications, we shall have a lot of decomposi-
tions of a given 2-dimensional digital image.
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