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Abstract.

This paper focuses on a new kind of fuzzy hyperfilter of a hyperlattice
called (∈,∈ ⊔q)−fuzzy hyperfilter. These fuzzy hyperfilters are character-
ized by their level hyperfilters. Also the concept and properties of a fuzzy
hyperfilter with thresholds are discussed.

1 Introduction Since the inception of the notion of a fuzzy set in 1965 [25]
which laid the foundations of fuzzy set theory, the literature on fuzzy set theory
and its applications has been growing rapidly amounting by now to several papers
(see [1-5], [9-14], [16], [19], [20], [23] and [24]). These are widely scattered over
many disciplines such as artificial intelligence, computer science, control engineer-
ing, expert systems, management science, operations research, pattern recogni-
tion, robotics, and others. The studies on fuzzy lattices ([1-3], [19] and [20]) can
be grouped into two classes: fuzzifying the subsethood relation and maintain-
ing ordering relations, meet operations and join operations over nonempty sets
[1,20] and fuzzifying ordering relations, meet operations and join operations over
nonempty sets by means of many valued equalities [3]. Because of the fact that
the former class disregards the notion of many-valued equivalence relation, it does
not contribute to the required theory of fuzzy lattices. Although the latter pro-
vides a useful way for developing the required theory of fuzzy lattices, it involves
only many-valued equalities (separated many-valued equivalence relations) and
establishes only the fuzzy counterpart to complete lattices based on many-valued
equalities. In order to research the logical system whose propositional value is
given in a lattice from the semantic viewpoint, Xu [21] proposed the concept of
lattice implication algebras, and discussed some of their properties. Xu and Qin
[22] introduced the notion of implicative filters in a lattice implication algebra,
and investigated some of their properties. In [23], they applied the concept of
fuzzy sets to lattice implication algebras and proposed the notions of fuzzy fil-
ters and fuzzy implicative filters. Recently, a great deal of literature has been
produced on the theory of implicative filters and fuzzy implicative filters. A
new type of fuzzy algebraic structures as (∈,∈ ∨q)−fuzzy subgroups was intro-
duced in an earlier paper of Bhakat and Das [5] by using the combined notions
of 荘 belongingness鋳 and 荘 quasi-coincidence鋳 of fuzzy points and fuzzy sets.
In fact, (∈,∈ ∨q)−fuzzy subgroup is an important and useful generalization of
Rosenfeld’s fuzzy subgroup. This concept has been studied further in [4].
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The theory of algebraic hyperstructures which is a generalization of the con-
cept of ordinary algebraic structures was first introduced by Marty [15]. Since
then many researchers have worked on algebraic hyperstructures and developed
it. A short review of this theory appears in [6]. A recent book [7] contains
a wealth of applications. Via this book, Corsini and Leoreanu presented some
of the numerous applications of algebraic hyperstructures, especially those from
the last fifteen years, to the following subjects: geometry, hypergraphs, binary
relations, lattices, fuzzy sets and rough sets, automata, cryptography, codes,
median algebras, relation algebras, artificial intelligence and probabilities. Also
A. Rahnamai-Barghi in [17] and [18] investigated on prime ideal theorem and
semiprime ideals in hyperlattices and meethyperlattices. Fuzzy sets and alge-
braic hyperstructures introduced by Zadeh and Marty, respectively, are now used
extensively from both the theoretical point of view and their many applications.
The relations between fuzzy sets and hyperstructures have been already consid-
ered by Ameri, Hedayati, Koguep, Nkuimi, Lele, Corsini, Leoreanu and others,
for instance see [11], [12] and [14]. This paper focuses on a new kind of fuzzy
hyperfilters of a hyperlattice. The combined notions of 荘 belongingness鋳 and
荘 quasi-coincidence鋳 of fuzzy points and fuzzy sets are used to introduce this
kind of fuzzy hyperfilters.

2 Fuzzy hyperfilters of hyperlattices Definition 2.1. [14] Let (L,≤) be
a non empty partial ordered set and ∨ : L × L −→ ρ(L)∗ be a hyperoperation,
where ρ(L) is a power set of L and ρ(L)∗ = ρ(L) \ {∅} and ∧ : L × L −→ L be
an operation. Then (L,∨,∧) is a hyperlattice if for all a, b, c ∈ L,

(i) a ∈ a ∨ a, a ∧ a = a;

(ii) a ∨ b = b ∨ a, a ∧ b = b ∧ a;

(iii) (a ∨ b) ∨ c = a ∨ (b ∨ c); (a ∧ b) ∧ c = a ∧ (b ∧ c);

(iv) a ∈ [a ∧ (a ∨ b)] ∩ [a ∨ (a ∧ b)];

(v) a ∈ a ∨ b ⇒ a ∧ b = b;

where for all non empty subsets A and B of L, A ∧B = {a ∧ b|a ∈ A, b ∈ B}
and A ∨B =

∪
{a ∨ b|a ∈ A, b ∈ B}.

Definition 2.2. [14] Let (L,∨,∧) be a hyperlattice. A nonempty subset F
of L is called a hyperfilter of L if for all x, y ∈ L,

(i) x, y ∈ F implies x ∧ y ∈ F.

(ii) If x ∈ F and x ≤ y, then y ∈ F.

Definition 2.3. [14] Let µ be a fuzzy set of a hyperlattice L. Then µ is a
fuzzy hyperfilter of L, if for all x, y ∈ L,

(i) µ(x ∧ y) ≥ min(µ(x), µ(y)),

(ii) x ≤ y implies µ(x) ≤ µ(y).

Proposition 2.4. [14] Let µ be a fuzzy subset of a hyperlattice L. Then µ
is a fuzzy hyperfilter of L, if and only if, for any α ∈ [0, 1], such that µα ̸= ∅, µα

is a hyperfilter of L.

Definition 2.5. Let L1 and L2 be two hyperlattices. A map f : L1 −→ L2

is called a homomorphism if for all x, y ∈ L1 the following conditions hold:

(i) f(x ∧ y) = f(x) ∧ f(y),



On fuzzy hyperfilters of hyperlattices 171

(ii) f(x ∨ y) = f(x) ∨ f(y),
(iii) x ≤ y implies that f(x) ≤ f(y).

Example 2.6. Let L = {0, a, b, 1}. Then (L,∨,∧) is a hyperlattice, where ∨
and ∧ are defined by the following tables:

∧ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1

0 {0} {a} {b} {1}
a {a} {0, a} {1} {b, 1}
b {b} {1} {0, b} {a, 1}
1 {1} {b, 1} {a, 1} L

Also {{1}, {a, 1}, {b, 1},L} is the set of all hyperfilters of L. Now if µ(a) =
1 = µ(1) and µ(0) = 0 = µ(b), then it is easy to verify that µ is a fuzzy hyperfilter
of L.

3 (∈,∈ ⊔q)−fuzzy hyperfilters In what follows, let L denote a hyperlattice
unless otherwise specified.

A fuzzy subset µ of L of the form

µ(y) =

{
t( ̸= 0), if y = x
0, if y ̸= x

is said to be a fuzzy point with support x and value t and is denoted by xt. A
fuzzy point xt is said to be belong to (resp. be quasi-coincident with) a fuzzy set
µ, written as xt ∈ µ (resp. xtqµ) if µ(x) ≥ t (resp. µ(x) + t > 1). If xt ∈ µ
or xtqµ, then we write xt ∈ ⊔qµ. The symbol ∈ (resp. q) means ∈ (resp. q)
dose not hold. The symbol ∈ ⊔q means neither ∈ nor q hold. The symbol ∈ ⊓q
means either ∈ or q holds. Now we introduce the concept of (∈,∈ ⊔q)−fuzzy
hyperfilters of hyperlattices.

Definition 3.1. A fuzzy subset µ of L is called an (∈,∈ ⊔q)−fuzzy hyperfilter
of L if for all t, r ∈ (0, 1] and x, y ∈ L,

(i) xt, yr ∈ µ implies (x ∧ y)min(t,r) ∈ ⊔qµ,
(ii) xt ∈ µ and x ≤ y imply yt ∈ ⊔qµ.
Clearly every fuzzy hyperfilter according to the Definition 2.3, is an (∈,∈

⊔q)−fuzzy hyperfilter of L, but the following example shows that the converse is
not true in general case.

Example 3.2. Let L = {0, a, b, 1}. Then (L,∨,∧) is a hyperlattice, where ∨
and ∧ are defined by the following tables:

∧ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1

0 L {a, 1} {b, 1} {1}
a {a, 1} {a, 1} {1} {1}
b {b, 1} {1} {b, 1} {1}
1 {1} {1} {1} {1}

Now if µ(a) = µ(b) = µ(1) = 0.9 and µ(0) = 0.8, then it is easy to verify
that µ is an (∈,∈ ⊔q)−fuzzy hyperfilter of L. However µ0.9 = {a, b, 1} is not a
hyperfilter of L since a∧ b = 0 ̸∈ µ0.9. Therefore µ is not a fuzzy hyperfilter of L.
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Theorem 3.3. Conditions (i) and (ii) in Definition 3.1, are equivalent to
the following conditions respectively.

(1) min(µ(x), µ(y), 0.5) ≤ µ(x ∧ y), for all x, y ∈ L,
(2) min(µ(x), 0.5) ≤ µ(y) for all x, y ∈ L with x ≤ y.

Proof . (i) −→ (1) : Suppose that x, y ∈ L. We can consider the following
cases:

(a) min(µ(x), µ(y)) < 0.5. Assume that µ(x ∧ y) < min(µ(x), µ(y), 0.5),
which implies that µ(x ∧ y) < min(µ(x), µ(y)). Choose t such that µ(x ∧ y) <
t < min(µ(x), µ(y)). Then xt, yt ∈ µ, but (x ∧ y)t∈ ⊔qµ, which contradicts (i).

(b) min(µ(x), µ(y)) ≥ 0.5. Assume that µ(x ∧ y) < 0.5. Then x0.5, y0.5 ∈ µ,
but (x ∧ y)0.5∈ ⊔qµ, which is a contradiction. Hence (1) holds.

(ii) −→ (2) : Suppose that x, y ∈ L and x ≤ y. We can consider the following
cases:

(a) µ(x) < 0.5. Assume that µ(y) < min(µ(x), 0.5), which implies that µ(y) <
µ(x). Choose t such that µ(y) < t < µ(x). Then xt ∈ µ, but yt∈ ⊔qµ, which is a
contradiction by (ii).

(b) µ(x) ≥ 0.5. Suppose that µ(y) < 0.5. Then x0.5 ∈ µ, but y0.5∈ ⊔qµ, which
is a contradiction. Therefore (2) is valid.

(1) −→ (i) : Let xt, yr ∈ µ, then µ(x) ≥ t and µ(y) ≥ r. We have µ(x ∧ y) ≥
min(µ(x), µ(y), 0.5) ≥ min(t, r, 0.5). There are two cases:

(a) min(t, r) > 0.5, then µ(x ∧ y) ≥ 0.5, which implies that µ(x ∧ y) +
min(t, r) > 1 and so (x ∧ y)min(t,r)qµ. Therefore (x ∧ y)min(t,r) ∈ ⊔qµ.

(b) min(t, r) ≤ 0.5, then µ(x ∧ y) ≥ min(t, r) and so (x ∧ y)min(t,r) ∈ µ.
Therefore (x ∧ y)min(t,r) ∈ ⊔qµ.

(2) −→ (ii) : Let xt ∈ µ and x ≤ y, then µ(x) ≥ t. We have µ(y) ≥
min(µ(x), 0.5) ≥ min(t, 0.5). Two following cases can be considered:

(a) t > 0.5, then µ(y) ≥ 0.5, which implies that µ(y) + t > 1 and so ytqµ.
Therefore yt ∈ ⊔qµ.

(b) t ≤ 0.5, then µ(y) ≥ t and so yt ∈ µ. Therefore yt ∈ ⊔qµ. □

Corollary 3.4. A fuzzy subset µ of L is an (∈,∈ ⊔q)−fuzzy hyperfilter of L
if and only if the conditions (1) and (2) in Theorem 3.3 hold.

Proof. It is a consequence of Definition 3.1 and Theorem 3.2. □

Theorem 3.5. Let µ be a fuzzy subset of L. If µ is an (∈,∈ ⊔q)−fuzzy
hyperfilter of L, then for all 0 < t ≤ 0.5, µt = ∅ or µt is a hyperfilter of L.
Conversely, if µt(̸= ∅) is a hyperfilter of L for all 0 < t ≤ 0.5, then µ is an
(∈,∈ ⊔q)−fuzzy hyperfilter of L.

Proof. Let µ be an (∈,∈ ⊔q)−fuzzy hyperfilter of L and 0 < t ≤ 0.5. If
x, y ∈ µt, then µ(x) ≥ t and µ(y) ≥ t. Thus we have

µ(x ∧ y) ≥ min(µ(x), µ(y), 0.5) ≥ min(t, 0.5) = t,

that is x ∧ y ∈ µt. Now let x ∈ µt and x ≤ y. Thus µ(x) ≥ t, and so we have

µ(y) ≥ min(µ(x), 0.5) ≥ min(t, 0.5) = t,
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that is y ∈ µt. Therefore µt is a hyperfilter of L. Conversely, let µ be a fuzzy
subset of L such that µt(̸= ∅) is a hyperfilter of L for all 0 < t ≤ 0.5. If x, y ∈ L,
we can say that

µ(x) ≥ min(µ(x), µ(y), 0.5) = t0, µ(y) ≥ min(µ(x), µ(y), 0.5) = t0,

then x, y ∈ µt0 , and so x ∧ y ∈ µt0 , which implies that µ(x ∧ y) ≥ t0 =
min(µ(x), µ(y), 0.5). Thus condition (1) of the Theorem 3.3 is verified. Now
if x ∈ L, we can write that µ(x) ≥ min(µ(x), 0.5) = t′0, then x ∈ µt′0

, so if x ≤ y
then y ∈ µt′0

. Hence we can say that µ(y) ≥ t′0 = min(µ(x), 0.5). This shows
that condition (2) of the Theorem 3.3 is hold. Therefore µ is an (∈,∈ ⊔q)−fuzzy
hyperfilter of L. □

Let µ be a fuzzy subset of L and J be the set of t ∈ (0, 1] such that µt = ∅
or µt is a hyperfilter of L. If J = (0, 1], then by Proposition 2.4, µ is a fuzzy
hyperfilter of L. If J = (0, 0.5] then by Theorem 3.5, µ is an (∈,∈ ⊔q)−fuzzy
hyperfilter of L. Naturally, a corresponding result should be considered when
J = (0.5, 1].

Definition 3.6. A fuzzy subset µ of L is called (∈,∈ ⊓q)−fuzzy hyperfilter
of L if for all t, r ∈ (0, 1] and x, y ∈ L the following conditions hold:

(i) (x ∧ y)min(t,r)∈µ implies xt∈ ⊓qµ or yr∈ ⊓qµ,
(ii) yt∈µ and x ≤ y imply xt∈ ⊓qµ.

Theorem 3.7. Let µ be a fuzzy subset of L. Then µ is an (∈,∈ ⊓q)−fuzzy
hyperfilter of L if and only if for all x, y ∈ L the following conditions hold:

(1) max(µ(x ∧ y), 0.5) ≥ min(µ(x), µ(y)),
(2) x ≤ y implies max(µ(y), 0.5) ≥ µ(x).

Proof. Let µ be an (∈,∈ ⊓q)−fuzzy hyperfilter of L. If there exist x, y ∈ L
such that max(µ(x ∧ y), 0.5) < min(µ(x), µ(y)) = t, then t ∈ (0.5, 1], (x ∧ y)t∈µ
and xt, yt ∈ µ. By Definition 3.6, it follows that xtqµ or ytqµ. Then (µ(x) ≥ t and
µ(x) + t ≤ 1) or (µ(y) ≥ t and µ(y) + t ≤ 1). It follows that t ≤ 0.5, which is a
contradiction. Hence (1) holds. Also if there exist x, y ∈ L and x ≤ y such that
max(µ(y), 0.5) < µ(x) = t, then t ∈ (0.5, 1], yt∈µ and xt ∈ µ. By Definition 3.6,
it follows that xtqµ. Then µ(x) ≥ t and µ(x) + t ≤ 1. It concludes that t ≤ 0.5,
which is a contradiction. Hence (2) holds. Conversely, Let conditions (1) and (2)
be hold. Also let x, y ∈ L such that (x ∧ y)min(t,r)∈µ, then µ(x ∧ y) < min(t, r).
We can consider the following cases:

(a) If µ(x ∧ y) ≥ min(µ(x), µ(y)), then min(µ(x), µ(y)) < min(t, r) and so
µ(x) < t or µ(y) < r. It follows that xt∈µ or yr∈µ which implies that xt∈ ⊓qµ or
yr∈ ⊓qµ.

(b) If µ(x∧ y) < min(µ(x), µ(y)), then by (1) we have 0.5 ≥ min(µ(x), µ(y)).
Hence max(µ(x ∧ y), 0.5) ≥ min(µ(x), µ(y)). Now if xt, yr ∈ µ, then t ≤ µ(x) ≤
0.5 or r ≤ µ(y) ≤ 0.5. It follows that xtqµ or yrqµ, which implies that xt∈ ⊓qµ
or yr∈ ⊓qµ.

Now let x, y ∈ L and x ≤ y such that yt∈µ, then µ(y) < t. We can consider
the following cases:

(a) If µ(y) ≥ µ(x), then µ(x) < t. It follows that xt∈µ, which implies that
xt∈ ⊓qµ.
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(b) If µ(y) < µ(x), then by (2) we have 0.5 ≥ µ(x). Hence max(µ(y), 0.5) ≥
µ(x). Now if xt ∈ µ, then t ≤ µ(x) ≤ 0.5. It follows xtqµ, which implies that
xt∈ ⊓qµ. □

Theorem 3.8. A fuzzy subset µ of L is an (∈,∈ ⊓q)−fuzzy hyperfilter of L
if and only if the set µt(̸= ∅) is hyperfilter of L for all t ∈ (0.5, 1].

Proof. It is immediately followed by Theorem 3.7 and the similar proof of
Theorem 3.5. □

Example 3.9. Let L = {0, a, b, 1}. Then (L,∨,∧) is a hyperlattice, where ∨
and ∧ are defined by the following tables

∧ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1

0 {0} {a} {b} {1}
a {a} L \ {b} {0, 1} L \ {a}
b {b} {0, 1} L \ {a} L \ {b}
1 {1} L \ {a} L \ {b} L

Now if µ(0) = 0.2, µ(a) = µ(b) = 0.1 and µ(1) = 0.3, then it is easy to verify
that µ is an (∈,∈ ⊓q)−fuzzy hyperfilter of L.

4 Basic properties Theorem 4.1. Let µ be a nonzero (∈,∈ ⊔q)−fuzzy hy-
perfilter of L. Then the set supp(µ) = {x ∈ L| µ(x) > 0} is a hyperfilter of
L.

Proof. Straightforward. □

Theorem 4.2. A nonempty subset F of L is a hyperfilter of L if and only if
χF is an (∈,∈ ⊔q)−fuzzy hyperfilter of L.

Proof. Let F be a hyperfilter of L and x, y ∈ L. We can consider the
following cases:

(1) x ̸∈ F or y ̸∈ F , so χF (x) = 0 or χF (y) = 0, which implies that

min(χF (x), χF (y), 0.5) = 0 ≤ χF (x ∧ y).

(2) x, y ∈ F , so χF (x) = 1 = χF (y) and x ∧ y ∈ F , which implies that

min(χF (x), χI(y), 0.5) = 0.5 ≤ 1 = χF (x ∧ y).

Also if x ∈ L and x ≤ y we can consider the following cases:
(1) x ̸∈ F , so χF (x) = 0, which implies that min(χF (x), 0.5) = 0 ≤ χF (y).
(2) x ∈ F , so χF (x) = 1 and y ∈ F , which implies that min(χF (x), 0.5) =

0.5 ≤ 1 = χF (y).
Therefore χF is an (∈,∈ ⊔q)−fuzzy hyperfilter of L. Conversely, let χF be

an (∈,∈ ⊔q)−fuzzy hyperfilter of L and x, y ∈ F . So χF (x) = 1 = χI(y), which
implies that

min(χF (x), χF (y), 0.5) = 0.5 ≤ χF (x ∧ y).

Thus x ∧ y ∈ F . Also if x ∈ F and x ≤ y, then χF (x) = 1, which implies that

min(χF (x), 0.5) = 0.5 ≤ χF (y).
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Thus y ∈ F . Therefore F is a hyperfilter of L. □

Theorem 4.3. Let {µi}i∈I be a family of (∈,∈ ⊔q)−fuzzy hyperfilters of L.
Then

∩
i∈I

µi is an (∈,∈ ⊔q)−fuzzy hyperfilter of L, where (
∩
i∈I

µi)(x) = inf
i∈I

µi(x).

Proof. Straightforward. □

Theorem 4.4. Let {µi}i∈I be a family of (∈,∈ ⊔q)−fuzzy hyperfilters of L
such that µi ⊆ µj or µj ⊆ µi for all i, j ∈ I. Then

∪
i∈I

µi is an (∈,∈ ⊔q)−fuzzy

hyperfilter of L, where (
∪
i∈I

µi)(x) = sup
i∈I

µi(x).

Proof. For all x, y ∈ L, we have

(
∪
i∈I

µi)(x ∧ y) = sup
i∈I

µi(x ∧ y) ≥ sup
i∈I

min(µi(x), µi(y), 0.5) =

sup
i∈I

min(min(µi(x), µi(y)), 0.5) = min((
∪
i∈I

µi)(x), (
∪
i∈I

µi)(y), 0.5).

It is clear that sup
i∈I

min(µi(x), µi(y), 0.5) ≤ min((
∪
i∈I

µi)(x), (
∪
i∈I

µi)(y), 0.5).

Assume that sup
i∈I

min(µi(x), µi(y), 0.5) ̸= min((
∪
i∈I

µi)(x), (
∪
i∈I

µi)(y), 0.5). Then

there exists r such that sup
i∈I

min(µi(x), µi(y), 0.5) < r < min((
∪
i∈I

µi)(x), (
∪
i∈I

µi)(y), 0.5).

Since µi ⊆ µj or µj ⊆ µi for all i, j ∈ I, there exists k ∈ I such that r <
min(µk(x), µk(y), 0.5). On the other hand, min(µi(x), µi(y), 0.5) < r for all i ∈ I,
which is a contradiction. Hence

sup
i∈I

min(µi(x), µi(y), 0.5) = min((
∪
i∈I

µi)(x), (
∪
i∈I

µi)(y), 0.5).

Let x, y ∈ L and x ≤ y, we obtain

(
∪
i∈I

µi)(y) = sup
i∈I

µi(y) ≥ sup
i∈I

min(µi(x), 0.5) =

min(sup
i∈I

µi(x), 0.5) = min((
∪
i∈I

µi)(x), 0.5).

It is clear that sup
i∈I

min(µi(x), 0.5) ≤ min((
∪
i∈I

µi)(x), 0.5). Assume that

sup
i∈I

min(µi(x), 0.5) ̸= min((
∪
i∈I

µi)(x), 0.5).

Then there exists r such that

sup
i∈I

min(µi(x), 0.5) < r < min((
∪
i∈I

µi)(x), 0.5).
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Since µi ⊆ µj or µj ⊆ µi for all i, j ∈ I, there exists k ∈ I such that r <
min(µk(x), 0.5). On the other hand, min(µi(x), 0.5) < r for all i ∈ I, which is a

contradiction. Hence sup
i∈I

min(µi(x), 0.5) = min((
∪
i∈I

µi)(x), 0.5). Therefore
∪
i∈I

µi

is an (∈,∈ ⊔q)−fuzzy hyperfilter of L. □

Theorem 4.5. Let f : L1 −→ L2 be a homomorphism of hyperlattices and µ
and ν be (∈,∈ ⊔q)−fuzzy hyperfilters of L1 and L2 respectively.

(i) Then f−1(ν) is an (∈,∈ ⊔q)−fuzzy hyperfilter of L1.
(ii) If µ satisfies the sup property, that is, for any subset T of L1 there exists

x0 ∈ T such that µ(x0) = sup{µ(x) | x ∈ T}, then f(µ) is an (∈,∈ ⊔q)−fuzzy
hyperfilter of L2, when f is onto.

Proof. (i) Let x, y ∈ L1 and t, r ∈ (0, 1] be such that xt ∈ f−1(ν) and
yr ∈ f−1(ν). Then (f(x))t ∈ ν and (f(y))r ∈ ν. Since ν is an (∈,∈ ⊔q)−fuzzy
hyperfilter of L2, it follows that (f(x ∧ y))min(t,r) = (f(x) ∧ f(y))min(t,r) ∈ ⊔qν,
so that (x∧ y)min(t,r) ∈ ⊔qf−1(ν). Now let x, y ∈ L1, t ∈ (0, 1] and x ≤ y be such
that xt ∈ f−1(ν). Then (f(x))t ∈ ν, which implies that (f(y))t ∈ ⊔qν since ν is
an (∈,∈ ⊔q)−fuzzy hyperfilter of L2. Hence yt ∈ ⊔qf−1(ν). Therefore f−1(ν) is
an (∈,∈ ⊔q)−fuzzy hyperfilter of L1.

(ii) Let a, b ∈ L2 and t, r ∈ (0, 1] be such that at ∈ f(µ) and br ∈ f(µ).
Then (f(µ))(a) ≥ t and (f(µ))(b) ≥ r. Since µ has the sup property, there
exists x ∈ f−1(a) and y ∈ f−1(b) such that µ(x) = sup{µ(z) | z ∈ f−1(a)}
and µ(y) = sup{µ(w) | w ∈ f−1(b)}. Then xt ∈ µ and yt ∈ µ. Since µ is an
(∈,∈ ⊔q)−fuzzy hyperfilter of L1, we have (x ∧ y)min(t,r) ∈ ⊔qµ. Now x ∧ y ∈
f−1(a ∧ b) and so (f(µ))(a ∧ b) ≥ µ(x ∧ y). Thus (f(µ))(a ∧ b) ≥ min(t, r) or
(f(µ))(a ∧ b) + min(t, r) > 1, which means that (a ∧ b)min(t,r) ∈ ⊔qf(µ). Now
let x, y ∈ L2, x ≤ y and t ∈ (0, 1] be such that xt ∈ f(µ). Then (f(µ))(x) ≥ t.
Since µ has the sup property, µ(z) = {µ(w) | w ∈ f−1(x)} for some z ∈ f−1(x).
Then zt ∈ µ and hence ut ∈ ⊔qµ for every u ∈ f−1(y). Since u ∈ f−1(y), we
get f(µ)(y) ≥ µ(u). It follows that (f(µ))(y) ≥ t or (f(µ))(y) + t > 1 so that
yt ∈ ⊔qf(µ). Therefore f(µ) is an (∈,∈ ⊔q)−fuzzy hyperfilter of L2. □

Definition 4.6. Let α, β ∈ [0, 1], α < β and µ be a fuzzy subset of L. Then
µ is said to be a fuzzy hyperfilter with thresholds (α, β) of L if the following
conditions hold:

(1) min(µ(x), µ(y), β) ≤ max(µ(x ∧ y), α) for all x, y ∈ L,
(2) min(µ(x), β) ≤ max(µ(y), α) for all x, y ∈ L with x ≤ y.
Clearly every fuzzy hyperfilter with thresholds (α, β) of L is an ordinary

fuzzy hyperfilter when α = 0 and β = 1. Also it is an (∈,∈ ⊔q)−fuzzy (resp.
(∈,∈ ⊓q)−fuzzy) hyperfilter when α = 0 and β = 0.5 (resp. α = 0.5 and β = 1)
(see Theorems 3.3 and 3.7).

Theorem 4.7. A fuzzy subset µ of L is a fuzzy hyperfilter with thresholds
(α, β) of L if and only if µt( ̸= ∅) is an hyperfilter of L for all t ∈ (α, β].

Proof. Suppose that µ is a fuzzy hyperfilter with thresholds (α, β) of L and
t ∈ (α, β]. If x, y ∈ µt, then µ(x) ≥ t and µ(y) ≥ t. Thus we can write that

max(µ(x ∧ y), α) ≥ min(µ(x), µ(y), β) ≥ min(t, β) = t > α,



On fuzzy hyperfilters of hyperlattices 177

which implies that µ(x∧y) ≥ t, and then x∧y ∈ µt. Now if x ∈ µt and x ≤ y, then
µ(x) ≥ t. Thus max(µ(y), α) ≥ min(µ(x), β) ≥ min(t, β) = t > α, which implies
that µ(y) ≥ t, and then y ∈ µt. Therefore µt is a hyperfilter of L. Conversely, let
µ be a fuzzy subset of L such that µt(̸= ∅) is a hyperfilter of L for all t ∈ (α, β].
If there exist x, y ∈ L such that

max(µ(x ∧ y), α) < min(µ(x), µ(y), β) = t,

then we can conclude that t ∈ (α, β], µ(x ∧ y) < t and x, y ∈ µt. Since µt is a
hyperfilter of L, we have x∧ y ∈ µt. Hence µ(x∧ y) ≥ t, which is a contradiction.
Therefore for all x, y ∈ L we have min(µ(x), µ(y), β) ≤ max(µ(x ∧ y), α). Also if
there exist x, y ∈ L and x ≤ y such that max(µ(y), α) < min(µ(x), β) = t, then
it concludes that t ∈ (α, β], µ(y) < t and x ∈ µt. Since µt is a hyperfilter of L
and x ∈ µt, then y ∈ µt. Hence µ(y) ≥ t, which is a contradiction. So for all
x, y ∈ L and x ≤ y we have min(µ(x), β) ≤ max(µ(y), α). Therefore µ is a fuzzy
hyperfilter with thresholds (α, β) of L. □
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