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ABSTRACT. We describe weak BCC-algebras (called also BZ-algebras) in which the
condition (zy)z = (zz)y is satisfied only in the case when elements x,y belong to
the same branch. We also characterize quasi-commutative weak BCC-algebras various
types.

1 Introduction BCK-algebras which are a generalization of the notion of algebra of sets
with the set subtraction as the only fundamental non-nullary operation, and on the other
hand, the notion of implication algebra (cf. [17]) were defined by Imai and Iséki in [15].
The class of all BCK-algebras does not form a variety. To prove this fact Y.Komori intro-
duced in [18] the new class of algebras called BCC-algebras. In view of strongly connections
with a BIK'-logic, BCC-algebras also are called BIK'-algebras (cf. [22] or [23]). Nowa-
days, the mathematicians especially from China, Japan and Korea, have been studying
various generalizations of BCC-algebras such as, for example, B-algebras, difference alge-
bras, implication algebras, G B-algebras, Hilbert algebras, d-algebras and many others. All
these algebras have one distinguished element and satisfy some common identities playing
a crucial role in these algebras.

One of very important identities is the identity (zy)z = (zz)y. It holds in BCK-algebras
and in some generalizations of BCK-algebras, but not in BCC-algebras. BCC-algebras
satisfying this identity are BCK-algebras (cf. [6] or [7]). Therefore, it makes sense to
consider such BCC-algebras and some their generalizations for which this identity is satisfied
only by elements belonging to some subsets. Such study has been initiated by W.A. Dudek
in [9].

On the other hand, many mathematicians investigate BCI-algebras in which some basic
properties are restricted to some subset called branches. For example, branchwise commu-
tative BCl-algebras were described in [2], branchwise implicative and branchwise positive
implicative BCl-algebras in [3] and [4]. But, as it was observed many years ago, results
obtained for BCI-algebras can not be transferred to weak BCC-algebras.

Below we begin the study of weak BCC-algebras in which the condition (zy)z = (z2)y
is satisfied only in the case when elements x,y belong to the same branch.

2 Basic definitions and facts The BCC-operation will be denoted by juxtaposition.

Dots will be used only to avoid repetitions of brackets. For example, the formula ((xy)(zy))(zz)

0 will be written in the abbreviated form as (zy - zy) - zz = 0.

Definition 2.1. A weak BCC-algebra is a system (G;-,0) of type (2,0) satisfying the
following axioms:

(1) (zy-zy) 2z=0,

(i) zx =0,
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(#i7) 20 ==z,
() zy=yr=0= 2 =y.
A weak BCC-algebra satisfying the identity
(v) 0z=0
is called a BCC-algebra. A BCC-algebra with the condition

(vi) (z-2y)y =0

is called a BCK-algebra.
One can prove (see [6]) that a BCC-algebra is a BCK-algebra if and only if it satisfies
the identity

(vit) ay-z=2xz-y.

An algebra (G;-,0) of type (2,0) satisfying the axioms (i), (i7), (i47), (iv) and (vi) is
called a BCI-algebra. A BCl-algebra satisfies also (vii). A weak BCC-algebra is a BCI-
algebra if and only if it satisfies (vii).

A BCC-algebra which is not BCK-algebra is called proper. Similarly, a weak BCC-
algebra which is not a BCC-algebra is called proper if it is not a BCI-algebra. A proper
BCC-algebra has at least four elements (see [7]). Direct computation shows that there exist
45 distinct proper BCC-algebras of order four. Each of these BCC-algebras is isomorphic
to one of eight proper BCC-algebras mentioned in [7]. One can prove (see [6]) that for
every natural n > 4 there exists at least one proper BCC-algebra containing n elements.
Proper weak BCC-algebras also have at least four elements (see [8]). But there are only
two non-isomorphic weak BCC-algebras of order four:

* ‘ 01 2 3 * ‘ 01 2 3
0/0 0 2 2 0|0 0 2 2
1/{1 0 2 2 1/1 0 3 3
212 2 0 0 212 2 0 0
313 3 1 0 313 3 1 0
Table 2.1. Table 2.2.

They are proper, because in both cases (3%2) %1 # (3% 1) % 2.

The methods of construction of weak BCC-algebras proposed in [8] show that for every
n > 4 there exist at least two non-isomorphic proper weak BCC-algebras of order n.

Any weak BCC-algebra can be considered as a partially ordered set. In any weak BCC-
algebra we can define a natural partial order < putting

rLy<=zy=0. (1)

This means that a weak BCC-algebra can be considered as a partially ordered set with
some additional properties.

Proposition 2.2. An algebra (G;-,0) of type (2,0) with a relation < defined by (1) is a
weak BCC-algebra if and only if for all x,y,z € G the following conditions are satisfied:

(i") wy-zy <z,

(i) x <z,
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(#it") 20 =z,
(') x<yandy < ximply z=y. O

Since two non-isomorphic weak BCC-algebras may have the same partial order, they
cannot be investigated as partially ordered sets only. For example, weak BCC-algebras
defined by Tables 2.1 and 2.2 have the same partial order but they are not isomorphic.

JFrom (i) it follows that in weak BCC-algebras implications

r<y= 2z <Yz (2)

r<y=— 2y <zx (3)

are satisfied by all z,y, 2z € G.

In the investigations of algebras connected with various types of logics an important role
plays the so-called Dudek’s map ¢ defined as ¢(x) = 0z. The main properties of this map
in the case of weak BCC-algebras are collected in the following theorem proved in [12].

Theorem 2.3. Let G be a weak BCC-algebra. Then

1) @*(@) <=,

(2) »<y= p(z) =),
(3) ¢*(z) = (),
4) ¢*(zy) = P*(2)¢*(y),
(5) ¢*(zy) = p(ya),
(6) »(@)(yz) = ¢(y)
forallz,y € G. O
The set

Bla) ={r e G:a<uz},

where a € G is fixed, is called a branch of G initiated by a. A branch B(a) is proper if
B(b) = B(a) for every b < a. The set of initial elements of all proper branches of a weak
BCC-algebra G is denoted by I(G). Elements of I(G) are called initial. A branch containing
only initial element is called trivial.

Theorem 2.4. I(G) = {a € G : p?(a) = a}. O

The proof of this theorem is given in [10]. Comparing this result with Theorem 2.3 (4)
we obtain

Corollary 2.5. I(G) is a subalgebra of G. g

Corollary 2.6. I(G) = ¢(G) for any weak BCC-algebra G.

)
(G) =
Proof. Indeed, if z € ©(G), then © = ¢(y) for some y € G. Thus, by Theorem 2.3,
©?(x) = ©*(y) = ¢(y) = z. Hence ¢?*(z) = x, i.e., € I(G). So, ¢(G) C I(G).

Conversely, for x € I(G) we have z = ¢?(x) = ¢(p(x)) = p(y), where y = p(z) € G.
Thus I(G) C ¢(G), which completes the proof. O

Corollary 2.7. An element a of a weak BCC-algebra G is its initial element if and only if
there exists an element x € G such that a = ¢(x). O
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This means that the first row of the multiplication table determining a weak BCC-algebra
contains only initial elements.

According to Corollary 2.7 each element satisfying the condition ¢(a) = a is initial, but
this condition is not characteristic for initial elements, i.e., there are initial elements for
which ¢(a) # a.

Example 2.8. By computer we can check that the following table defines a weak BCC-
algebra.

*x10 a b ¢ d e

00 0 0 d ¢ d a b e

ala 0 a d ¢ d

blb b 0 d ¢ d

cle ¢ ¢ 0 d O

dild d d ¢ 0 ¢ Y
ele ¢c e a d 0 0 c d

Table 2.3.
able 2.3 Diagram 2.3.

This weak BCC-algebra has three initial elements: 0, ¢, d. But ¢(c) # ¢ and ¢(d) # d.
O

Corollary 2.9. ¢(a) = a if and only if (x) < x for every x € B(a).

Proof. Let ¢(a) = a for some a € G. Then p?(a) = a, so a € I(G). Hence for every
x € B(a) we have a < z. From this, applying Theorem 2.3, we obtain ¢(z) = ¢(a) = a < z.

Conversely, ¢(x) < z for every z € B(a) means that also ¢(a) < a. Since a is a minimal
element in B(a), the last implies ¢(a) = a. O

The branch initiated by 0, i.e., the set
B0)={zeG:0< 1}

is called a BCC-part of a weak BCC-algebra G.
One can show (cf. [10]) that B(0) is the greatest BCC-algebra contained in a weak
BCC-algebra G.

3 Congruences and ideals In many algebras congruences are uniquely determined by
some subsets. For example, congruences of groups are determined by normal subgroups,
congruences of rings — by ideals.

In weak BCC-algebras the situation is more complicated. Indeed, as it was observed
many years ago (cf. for example [14] or [19]) the kernel

p(0) ={z € G : zp0}

of a congruence p on a BCK-algebra G has the following property: y € p(0), zy € p(0) imply
x € p(0). Moreover, if A is an ideal of BCK-algebra G, then A determines some congruence
of G, but there are congruences which are not determined by such subsets (cf. [21]).

According to [14] and [17], we say that a subset A of a BCK-algebra G is an ideal of G
if

(1) 0e A,

(2) ye Aand zy € A imply z € A.
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Such defined ideal is an ideal in the sense of ordered sets. The relation
20y <= xy,yr € A (4)

is a congruence on a BCK-algebra G. Unfortunately it is not true for weak BCC-algebras
(cf. [11]). In connection with this fact, W. A. Dudek and X. H. Zhang introduced in [11]
the new concept of ideals. Now, in the literature these new ideals are called BCC-ideals,
old ideals are called ideals or BCK-ideals.

Definition 3.1. A non-empty subset A of a weak BCC-algebra G is called a BCC-ideal if
(1) 0eA,
(2) ye Aand zy-z € A imply zz € A.

By putting z = 0 we can see that a BCC-ideal is a BCK-ideal. In a BCK-algebra
any BCK-ideal is a BCC-ideal, but there are BCC-algebras with BCC-ideals which are not
BCK-ideals (cf. [11]).

Proposition 3.2. B(0) is a BCC-ideal of each weak BCC-algebra.

Proof. Obviously 0 € B(0). Let zy - z, y € B(0). Then 0 < 2y - z and 0 < y. From the last
inequality, by (2) and (3) we obtain zy - z < xz, which implies 0 < zz and consequently
xz € B(0). O

Each BCC-ideal of a BCC-algebra G is a kernel of some congruence on G, and conversely,
each BCC-ideal of G determines some congruence on G. Similarly to BCK-algebras in
infinite BCC-algebras there are congruences which are not determined by BCC-ideals. In
finite BCC-algebras all congruences are determined by BCC-ideals (cf. [11]).

For a congruence # an equivalence class containing an element z is denoted by C?. The
quotient algebra G/ = {C? : x € G} satisfies all axioms of a weak BCC-algebra except
(iv). This axiom is satisfied only in some cases.

Definition 3.3. The congruence 6 defined on a weak BCC-algebra G is called regular if
and only if C? - C’g = CZ -CY% = Cf implies CY = C’Z.

Regular congruences are characterized by BCC-ideals.

Proposition 3.4. A congruence of a weak BCC-algebra is regular if and only if it is defined
by some BCC-ideal.

Proof. The proof of this proposition is identical with the proof given in [11] for BCC-
algebras. O

Example 3.5. The relation ~ defined on a weak BCC-algebra G by
z o~y <= o(z) = o(y)

is an equivalence on G. Moreover, if z ~ y and u ~ v, then p(z) = ¢(y), p(u) = @(v).
Hence, by Theorem 2.3, we obtain

o(uz) = ¢*(zu) = ©* () (u) = P> (Y)P*(v) = > (yv) = P(yv),

which implies ux ~ vy. Thus ~ is a congruence. It is clear that the corresponding quotient
algebra G/~= {C, : = € G} satisfies the first three conditions of Definition 2.1. Moreover,
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if ¢, -Cy = Cy - Cy = C for some C,,Cyy € G/~, then ¢(zy) = ¢(yz) = ¢(0) = 0. This by
Theorem 2.3 implies

Q*(y)e*(x) = ¢*(yz) = o(zy) = 0 = P(yz) = ©*(xy) = ¢* ()" (y).

Therefore ¢?(z) = ¢*(y), and consequently ¢(z) = ¢*(z) = ¢*(y) = p(y). Thus, C, = C,,.
Hence G/~ is a weak BCC-algebra and ~ is a regular congruence. O

Proposition 3.6. The congruence ~ coincides with the congruence induced by B(0).

Proof. Indeed, if x ~ y, then ¢(z) = ¢(y) and, by Theorem 2.3,

o(zy) = ¢*(yz) = *(y)*(x) = 0,

ie., 0 < zy. Hence zy € B(0). Similarly, yz € B(0). Thus zfy, where 0 is defined by (4)
with A = B(0).

Conversely, let 20y, where 6 is defined by (4) with A = B(0). Then xy,yx € B(0) and
consequently ¢(xy) = ¢(xy) = 0. Thus

0=¢*(zy) = ©*(x)° ().

Analogously, 0 = ¢?(z)¢?(y). This implies ¢?(z) = ¢*(y). Therefore

which proves x ~ y. O
Proposition 3.7. The class C, coincides with the branch containing x.

Proof. Let € G and y € C,. Then by Corollary 2.6 ¢(y) = ¢(x) = a € I(G) and so by
Theorems 2.4 and 2.3, we obtain a = p2(a) = p?(y) < y, which implies y € B(a). Thus
C, C B(a).
Now let z € B(a). Then a < z and, by Theorem 2.4, p(a) = ¢(z). Thus
p(2) = p(a) = ¢*(a) = p(¢*(a)) = 9(¥* (V) = ¥’ (y) = o(y)
for any y € C. Hence z € Cy, i.e., B(a) C C,. Consequently, C, = B(a) for a = p(z). O

Corollary 3.8. Branches of a weak BCC-algebra coincide with the equivalence classes of a
congruence induced by its BCC-part B(0), i.e., B(a) = C, for any a € I(G). O

Corollary 3.9. Let G be a weak BCC-algebra and a,b € I(G). Then
B(a)B(b) = B(ab). O

As a simple consequence of the above results we obtain the following characterization of
elements belonging to the same branch. This characterization was firstly presented in [10]
with another proof.

Corollary 3.10. Elements x,y € G are in the same branch if and only if zy € B(0).

Proof. If x,y € B(a), then x,y € C,, so xy,yx € B(0). Conversely, if zy € B(0), then, by
(i"), we have 0 = 0 - zy = yy - xy < yx, which means that yz € B(0). Thus z,y € C, for
some a € I(G). Corollary 3.8 completes the proof. O

Corollary 3.11. Comparable elements are in the same branch. O
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Proposition 3.12. If z,y € B(a), then also z - xy and y - yx are in B(a).

Proof. Let x,y € B(a). Then zy,yxz € B(0). Thus 0 < zy and 0 < yx. From this, using
(3), we obtain z - zy <  and y - yx < y. Corollary 3.11 completes the proof. O

Proposition 3.13. Let G be a weak BCC-algebra. The sum of all branches B(a) of G such
that a € A C I(G) is a subalgebra of G if and only if A is a subalgebra of G.

Proof. Let S be the sum of all branches B(a) of G such that a € A. Obviously a € S.
If S is a subalgebra of G, then 0 € B(a) for some a € A. Since 0 € B(a) only in the
case when a = 0, we obtain 0 € A. Now let a,b € A. Then a,b € S, and consequently
ab € SNI(G) = A (Corollary 2.5). Hence A is a subalgebra of G.

Conversely, if A is a subalgebra of G, then 0 € A C S. Moreover, for any z,y € S there
are a,b € A such that € B(a) and y € B(b). Thus zy € B(a)B(b) = B(ab). But ab € A,
so B(ab) C S. Hence zy € S. O

4 Group-like weak BCC-algebras One of important classes of weak BCC-algebras is
the class of the so-called group-like weak BC'C-algebras called also anti-grouped BZ-algebras
[24]. It is a subclass of group-like BCI-algebras described in [5] and [20].

Definition 4.1. A weak BCC-algebra is group-like if all its branches are trivial.

This means that a group-like weak BCC-algebra contains only incomparable elements.
From results proved in [5] it follows that such BCC-algebras are strongly connected with
groups (see also [24]). The connection between group-like weak BCC-algebras and groups
is given in the theorem presented below.

Theorem 4.2. A weak BCC-algebra (G;+,0) is group-like if and only if (G;*,e), where
e=0 and xxy=x -0y, is a group. Moreover, in this case xy =z *y . ]

It is not difficult to see that if in the above theorem a group (Gj; *, €) is abelian then the
corresponding weak BCC-algebra is a BCl-algebra. Thus, a group-like weak BCC-algebra
is proper if and only if it is induced by a non-abelian group.

The conditions under which a weak BCC-algebra is group-like are found in [10]. These
conditions are presented below.

Theorem 4.3. A weak BCC-algebra G is group-like if and only if at least one of the
following conditions is satisfied:

1) ¢*(x) =2 forallz € G,

2) o(zy) = yx for all z,y € G,

(1)

(2)

(3) ay-zy=uwxz foralx,y,z€q,
(1) Kerp = {0},

(5) wy = zy implies x = z for all z,y,z € G,
(6) xy =0 implies x =y for all z,y € G. O
As a consequence of Theorems 2.4 and 4.3 we obtain

Corollary 4.4. A weak BCC-algebra G is group-like if and only if G = I(G), or equiva-
lently, if and only if G = ¢(G). O
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Corollary 4.5. ¢(G) is a mazimal group-like subalgebra of each weak BCC-algebra G.

Proof. By Corollaries 2.5 and 2.6 ¢(G) = I(G) is a subalgebra. By Corollary 4.4 it is
group-like. To prove it is maximal, let us consider an arbitrary group-like subalgebra A of
G. Then, by Theorem 4.3, for any = € A we have x = ¢*(z), i.e., ¥ = ¢(p(z)) which means
that € ¢(G). Thus A C ¢(Q) for any group-like subalgebra A of G. Hence ¢(G) is a
maximal group-like subalgebra of G. O

As a simple consequence of Theorem 4.2 we obtain

Corollary 4.6. p is a congruence of a group-like weak BCC-algebra if and only if it is a
congruence of the corresponding group. a

5 Solid weak BCC-algebras

Definition 5.1. A weak BCC-algebra (G;-,0) is called solid, if for all x and y belonging
to the same branch the identity

(vit) ay-z=2az-y

is satisfied. If this identity is satisfied also in the case when y, z are in the same branch,
then we say such a weak BCC-algebra is super solid.

All BCI-algebras and all BCK-algebras are solid weak BCC-algebras. A solid weak
BCC-algebra containing only one branch is a BCK-algebra. But there are solid weak BCC-
algebras which are not BCl-algebras. For example, a proper weak BCC-algebra defined by
Table 2.1 is solid but it is not super solid. A weak BCC-algebra defined by Table 2.2 is not
solid because in this algebra we have (3 % 2) %3 # (3% 3) * 2.

Theorem 5.2. In solid weak BCC-algebras the map ¢ is a homomorphism.

Proof. Indeed,
p(x)p(y) = 0z - 0y = ((zy - wy)x) - 0y = ((wy - @) - vy) - Oy
= ((zx - y) - wy) - 0y = (Oy - zy) - Oy = (Oy - Oy) - wy
=02y = p(zy)
for all z,y € G. O

Lemma 5.3. In any solid weak BCC-algebra
axr = ab
for all a,b € I(G) and x € B(b).

Proof. Let a,b € I(G). Then for any x € B(b) we have b < z, which, by (3), implies
ax < ab. Since I(G) is a subalgebra of G (Corollary 2.5), hence ab € I(G). This means
that ab is a minimal element of G. Thus ax = ab. O

Lemma 5.4. If in a solid weak BCC-algebra ax = ab holds for some a,x € G and b € 1(G),
then x € B(b).

Proof. If ax = ab holds for some a,x € G and b € I(G), then, according to (7), we have
0= (ab-xb)-ax = (ab-ax) -zb=0-xb.

Thus 0 < xb. This, by Corollary 3.10, means that « and b are in the same branch. O
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Corollary 5.5. Elements x, y of a solid weak BCC-algebra G are in the same branch if
and only if ax = ay for some a € I(QG).

Proof. If elements x, y belong to the branch B(b), where b € I(G), then from Lemma 5.3
it follows ax = ab = ay for all a € I(G).
Conversely, if ax = ay for some a € I(G), then

0= (ax-yz) ay = (axz - ay) -yr =0 - yx.
Thus yz € B(0). Corollary 3.10 completes the proof. O

Definition 5.6. For z,y € G and non-negative integers n we define

zy’ =z, zy"t! = (zy")y.

Lemma 5.7. In solid weak BCC-algebras we have
0-02" =0-(0z)"
for every x € G and every natural n.

Proof. For n =1 this identity is obvious. If it is valid for n = k, then for n = k + 1, using
Theorem 5.2, we obtain

0-0zFt =0.(0zF - ) = (0-0zF) - 02 = (0- (02)*) - 02 = 0 - (0z)**+1,
which completes the proof. O
Lemma 5.8. ([9], Lemma 2). In a solid weak BCC-algebra
z(z - zy) = zy
for x,y belonging to the same branch. (|
We present some generalizations of the above result.

Proposition 5.9. In a solid weak BCC-algebra

x(x - zy)? = xy?

for x,y belonging to the same branch.

Proof. Indeed, using Lemma 5.8, we obtain
w(@-ay)? =a(z-wy) (v ay) =ay- (v ay) =z(v oy) y=ay y=ay’ O
Theorem 5.10. In a super solid weak BCC-algebra

n

a(a-ay)" =y
for all natural n and x,y belonging to the same branch.

Proof. For n =1 this theorem coincides with Lemma 5.8, for n = 2 with Proposition 5.9.
For n > 3, by Lemma 5.8, we have

a(@-ay)" =x(r-zy)- (v ay)" ' =2y (z- 2y

= (zy - (z-2y)) - (z-2y)" % = (z(x - 2y))y - (x - 2y)

=(ay-y) - (@ ay)" = ((ay ) - (x-2y)) - (x - 2y)

)nfl
n—2

n—3
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Since, by the assumption, x,y belong to the same branch B(a), then, by Proposition
3.12, also = - zy € B(a). Thus

((xy-y) - (x-2y)) - (x-2y)" > = (xy - (z-2Y))y - (2 - 2Y)
r(z-xy)-y)y- (z- vy)
xy-y)y - (z-xy) 3

n—3

n—3

= oy (2 ay)"
= ay - (z - ay)
=...=zy"
This completes the proof. O

Theorem 5.11. Any (solid) weak BCC-algebra can be extended to a (solid) weak BCC-
algebra containing one element more.

Proof. Let (G;-,0) be a (solid) weak BCC-algebra and let § ¢ G. Then the set G’ = GU{6}
with the operation
xy for xz,y €@,
z for ze€G, y=20,
zxy=+< 0y for z=0, yeG-{0},
0 for z=60, y=0,
0 for z=y=40

is a (solid) weak BCC-algebra.

The axioms (i) — (iv) are obvious. Since by the assumption the axiom (i) is satisfied
for all x,y, 2z € G, we must verify it only in the case when at least one of x,y, z is equal to
6. But this is a routine calculation. Also it is not difficult to verify that (G';*,0) is solid
it (G;-,0) is solid. O

It can be noticed that the above construction saves the number of branches. Indeed,
0 € B(0) since 0 < 6 < y for every y € B(0). So, (G;-,0) and (G';*,0) have the same initial
elements and the same branches determined by non-zero initial elements. The branch B(0)
has in (G'; %, 0) one element more than in (Gj-,0).

Theorem 5.12. Any BCK-algebra can be embedded into a solid weak BCC-algebra as its
B(0) branch.

Proof. Let (G;-,0) be a BCK-algebra and let 6 ¢ G be a fixed element. Then, as it is not
difficult to see, (G';*,0) with the operation

xy for xz,y €@,
e — 0 for ze€G, y=2>0,
Y=Y 0 for =0, yeq,
0

for z=y=20

is a solid weak BCC-algebra containing (Gj -, 0) as its subalgebra. This weak BCC-algebra
contains two branches: B(0) = G and B(#) = {6}. O

Proposition 5.13. Any BCK-algebra can be embedded into a solid weak BCC-algebra with-
out trivial branches.
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Proof. Let (G;+,0) be a BCK-algebra and (H; *,0) a solid weak BCC-algebra without trivial
branches such that GN H = {0}. On G U H we define a common operation x by putting

zy if x,y € G,

zxy if x,y€ H,

Oxy if zeG, ye H—{0},
x if zeH, yed.

THhY =

Then long but simple calculations show that (GU H;x,0) is a solid weak BCC-algebra. The
natural order of (G U H;x,0) coincides on G with the natural order of (G;-,0), and on H
with the natural order of (H;*,0). Each element of G is smaller than each non-zero element
of the branch B(0) of a weak BCC-algebra (H;#,0). Elements of G and elements of other
branches of H are incomparable. O

Corollary 5.14. Any BCC-algebra can be embedded into a weak BCC-algebra without trivial
branches.

Proof. We can use the same construction. Obtained weak BCC-algebra will be solid only
in the case when the starting BCC-algebra will be a BCK-algebra. O

The idea of the above construction is based on gluing graphs presented in the following
example.

Example 5.15. Consider a BCK-algebra (G; -, 0):

3
-]0 1 2 3
0(0 0 0 O
1{1 0 1 0 1
212 2 0 0
313 3 3 0
Table 5.1.

Diagra(%n 5.1.

and a solid weak BCC-algebra (H;*,0):

*10 a b ¢ d “ ¢ d
0/0 O b b b
ala 0 b b b
blb b 0 0 0
cle b a 0 a
dild b a a 0 0 b
Table 5.2. )
Diagram 5.2.

The above construction gives the following solid weak BCC-algebra:
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QL O QW NN~ O | X
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QA O TQ|ooc oo |w
T OO OO O |
Q Q OT|IoToToTo|o
Q oo S| O
O Q OS> S oA

0 b
Diagram 5.3. (|

Table 5.3.

Theorem 5.16. Any weak BCC-algebra can be embedded into a BCC-algebra.

Proof. Let (G;-,0) be a weak BCC-algebra and let G’ = G U {6}, where § ¢ G. Then, as
it is not difficult to see, (G’;*, 6) with the operation

xzy if axy #0,
ey — 0 if zy=0,
Y=Y 0 if 2=0, yed,
if zeG,y=20
is a BCC-algebra. O

Example 5.17. Using the last construction we can extend the weak BCC-algebra defined
by Table 2.1.2 (Example 5.15) into the following BCC-algebra:

a c d

|10 a b ¢ d|0 °
01606 6 b b b0
ala 6 b b bla
blb b 60 0 6|0b
cle b a 6 alc ® 0 b
dld b a a 0|d
6106 6 606 66 0160

Table 5.4. 0

Diagram 5.4. O

Corollary 5.18. Any BCl-algebra can be embedded into a BCK-algebra.

Proof. According to the definition, any BCl-algebra is a solid weak BCC-algebra. So,
starting from a BCl-algebra (G;-,0) and using the construction proposed in the proof of
Theorem 5.16 we obtain a BCC-algebra (G'; *,0) which is a BCK-algebra. Indeed, (G';x,0)
is a BCC-algebra and, by the assumption, the condition (z xy) x z = (z x z) * y is satisfied
by all z,y,z € G. It is not difficult to verify that it is also satisfied in the case when at
least one element of z,y, z is equal to #. Thus, it is satisfied for all x,y,z € G'. Therefore,
(G’;%,0) is a BCK-algebra. O
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Corollary 5.19. Any group-like weak BCC-algebra can be embedded into a BCK-algebra
containing only atoms.

Proof. Let G be a group-like weak BCC-algebra. Using the construction from the proof of
Theorem 5.16 we obtain a BCC-algebra G/ in which elements of G' are comparable only
with 6 since in this construction we have 8 xx = 6 for all z € G’. Also z x 6 = z. Thus
the condition (z *y) x z = (x % z) * y is satisfied if at least one of z,y, z is equal to 6.
Let z,y,z € G. Then by definition of x , § < y and so by (3), x xy < z x 6. Since x is
comparable only with 6 and x, then we have x xy = 0 or z xy = x. In the first case x =y
and (xxx)*z = 0%z = 0 = (x*z)*x. In the second (xxy)*z = xx2 = = x*2 = (T*2)*Y.
This proves that this BCC-algebra is a BCK-algebra. O

6 Quasi-commutative weak BCC-algebras As it is widely known (cf. for example
[19]), commutative BCC-algebras, i.e., BCC-algebras satisfying the identity « - zy = y - yx,
form a variety, but the class of all BCC-algebras is not a variety (cf. [18]). Also the class of
all weak BCC-algebras is not a variety. Similarly, the class of all BCI-algebras. However,
the so-called quasi-commutative BCI-algebras form a variety (cf. [13]). In this section we
prove that analogous result is valid for quasi-commutative weak BCC-algebras.

In a weak BCC-algebra G for non-negative integers m, n we define a polynomial Q,, »(x,y)
by putting:

Qmmn(z,y) = (z - zy)(ay)™ - (yx)".

Definition 6.1. A weak BCC-algebra G is called quasi-commutative of type (m,n;i,7) if
there exist two pairs of non-negative integers i, j and m,n such that

Qm,n (Ia y) = Qi,j (y7 ‘T)a

or equivalently . .
(@ - zy)(zy)™ - (y2)" = (y - yo)(yz)" - (2y)’,

holds for all z,y € G. If the above identity holds only for all z,y belonging to the same
branch, then we say that this weak BCC-algebra is branchwise quasi-commautative (shortly:
b-quasi-commutative).

Exchanging x and y in Q. »(x,y) = Qi ;(y, x), we see that a weak BCC-algebra is quasi-
commutative of type (i,7;m,n) if and only if it is quasi-commutative of type (m,n;i, 7).

Example 6.2.

(1) A group-like weak BCC-algebra is b-quasi-commutative of any type since each its
branch has only one element.

(2) A medial weak BCC-algebra is quasi-commutative of type (0, 1;0,0) because it satisfies
the identity = - xy = y.

(3) A weak BCC-algebra is branchwise commutative (commutative) if and only if it b-
quasi-commutative (quasi-commutative) of type (0,0;0,0). |

Proposition 6.3. A b-quasi-commutative solid weak BCC-algebra G of type (0,k;0,0) is
branchwise commutative.

Proof. Let G be a weak BCC-algebra satisfying the assumption. Then
Qok(w,y) = (x - 2y)(y2)" =y yz = Qooly, z)

for z,y belonging to the same branch. For k = 0 it is obviously branchwise commutative.
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Let k£ > 0. Then yz € B(0). Hence 0 < yx, and consequently (z - 2y)(yx) < = - zy, by
(3). Thus

y-yr = (z-ay)(yz)" < (zv-ay)(ya)* ' <. < (2 2y)(ye) <o -y,
ie,y -yr < - Y.

Interchanging x and y we get x - xy = y - yx. O

Proposition 6.4. In solid weak BCC-algebras the following inequalities
(1) Qn-1n(r,y) > Qn,n(xay) 2 Qnn+1(7,y) 2 Qn+1,n+1($vy);

(2) anl,n(xay) = Qn,n(yaf) = Qn,n+1($ay) = Qn+1,n+1(ya$)
are valid for all natural n and x,y belonging to the same branch.

Proof. (1) Observe that -zy € B(a) and (z-zy)(zy)* € B(a) for every k and x,y € B(a).
The first is a consequence of Proposition 3.12, the second follows from the fact that 0 < zy
implies a - vy < a, i.e., a-xy = a because a € I(G). Therefore a = a - (zy)* < (v - vy)(wvy)*.
Thus using (i) and (2) we obtain

Qun(2,Y) - Qu-1.n(x,y) = ((z - zy)(xy)™ - (yx)") - ((x - zy)(zy)" " - (yz)")
((z - zy)(@y)™ - (y2)" 1) -((x - wy)(zy)" " - (y2)" )
< ((z - zy)(zy)™ - (y2)"2)- (2 - 2y) (zy)" " - (yz)"7?)

<< (@eay)(ay) - (2 2y)

N

= (z-zy)(z-ay) -2y =0-2y =0.
Thus

Qn,n(xvy) : anl,n(ma y) = Oa

which proves
Qn,n(xa Z/) < Qn—l,n(xa y)

Similarly,

Qnnt1(2,Y) - Qun(@,y) = (- 2y)(2y)" - (y2)" ) - (= - 2y) (zy)" - (yz)")
< ((@-2y)(@y)™ - (y2)") - (@ - zy)(zy)™ - (y2)" 1)
<< (@ ay)(ay)™ - yx) - (@ ay) (zy)”

= ((z - 2y)(ay)" - (z - zy)(zy)") -y =0 - yz = 0.
Hence

Qn,n—i—l (3’5, y) < Qn,n(x’ y)

The last inequality of (1) is a consequence of the first.

(2) If x,y € B(a), then zy,yz € B(0) and = - zy,y - yx € B(a) by Corollary 3.10
and Proposition 3.12. From this, analogously as in the proof of (1), we can deduce that
(2 - 2y)(zy)" ! and (z - zy)(zy)" ' - (yz)" are in B(a) for every natural n. Therefore
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Qnin (Y1) - Quo1n(z,y) = (v - yx)(yz)™ - (xy)") - ((x - zy)(xy)" ' - (yz)")
yx

(y - yx)(yz)™ - ((z - zy)(zy)" =" - (yx)™)) - (2y)”

= ( )

= ( )

< ((y-yx) - (z-2y)(zy)" ") - (zy)"

= ( ( et
< (

y-yz)(zy)" - (z - zy)(zy)

y-yx)(zy) - (z-2y) < (y-yz)z = 0.
Hence

Qn,n(ya 33) < Qn—l,n(xa Z/)

Analogously,
Qnnt1(2,Y)  Qun(y, 2) = (- 2y)(2y)" - (y2)" ) - ((y - yz)(y2)" - (zy)")

= ((z - zy)(zy)” - ((y - yz)(y2)™ - (2Y)")) - (y2)" !

( )
( )
< ((@-2y) - (y - yo)(ya)") - (yo)" !
= ( (
< (

n+1

z - zy)(yz)" - (y - yz)(yz)"

)
x-xy)(yz) - (y-yx) < (z-ay)y = 0.
This proves that

Qn,nJrl('rv y) < Qn,n(y7 LU)
The last inequality of (2) is a consequence of the first. O

Theorem 6.5. Fvery solid weak BCC-algebra which is decomposed into a finite number of
finite branches is b-quasi-commutative of some type of the form (m,m;m, m + 1).

Proof. Each branch B(a) of G is finite, hence for each pair of elements x,y € B(a) the
sequence (2) from Proposition 6.4 is finite. This means that for all 2,y € B(a) there exists
natural n’ = n(z,y) such that Q (%, y) = Qun+1(y,z) for all n = n’. Since I(G) is finite
for every

m > max{n(z,y) : x,y € B(a), a € I(G)}

and z,y belonging to the same branch we have Qu m(2,y) = Qm,m+1(y, x), which shows
that G is quasi-commutative of type (m, m;m, m + 1). O

Corollary 6.6. Any finite solid weak BCC-algebra is b-quasi-commutative of some type
(m,m;m,m+ 1). O

Theorem 6.7. If a proper weak BCC-algebra is quasi-commautative of type (i,j;m,n), then
i—j+m—n+1%#+£l1.

Proof. Since, by the assumption, a weak BCC-algebra G is proper, it has at least two
branches, i.e., there exists a € I(G) such that a # 0. For this a we have Q;;(0,a) -
Qm,n(a,0) =0 because G is quasi-commutative of type (4, j;m,n).

By Corollary 2.5 I(G) is a subalgebra of G. By Theorems 2.4 and 4.3 it is a group-like
subalgebra. Hence (Theorem 4.2) there exists a group (I(G);*,0) such that zy = x * y~*
for x,y € I(G). Thus,

0=Qi;(0,a) - Qm.n(a,0) = ((0-0a)(0a)’ - (a0)) - ((a - a0)(a0)™ - (0a)")
= ((a-(0a)") -a?) - ((0-a™) - (0a)")
— (al—i-i % a—j) * (a—m * an)—l

_ al—&-z—]-{-m—n-
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For i—j+m—n+1 = +1, from the above we obtain a*! = 0, which implies a = 0. But
this contradicts to our assumption on a. Therefore, it must be i —j+m —n+1# £1. O

Theorem 6.8. Fori— j+m —n+ 1 # +1 there exists a group-like quasi-commutative
weak BCC-algebra of type (i,j;m,n).

Proof. Let k =|i — j 4+ m —n+ 1|. By Theorem 6.7 we have k # 1. Consider a group-like
weak BCC-algebra (Gj-,0) induced by an abelian group (Gj*,0). Then, as it is not difficult
to verify,

Qi,j('ra y) ' Q?rt,n(ya Z‘) = ($71 * y)iijer*THkl = (xil * y)ik'

This means that for k¥ = 0 each group-like weak BCC-algebra induced by an abelian group is
quasi-commutative of type (4, j;m,n). For k > 1 such weak BCC-algebra should be induced
by a cyclic group of order k. O

Theorem 6.9. An algebra (G;-,0) of type (2,0) is a quasi-commutative weak BCC-algebra
of type (i,j;m,n) if and only if it satisfies the following three identities:

(a) (zy-zy) z2=0,
(b) 20 ==,
(C) Qi7j(x7y) = Qm,n(y7x)'

Proof. The necessity is obvious. To show the sufficiency, we only need to verify two axioms
from the definition of weak BCC-algebras: (ii) and (iv), because (i) coincides with (a), (i7)
with (b).

Using (a) and (b) we obtain zx = zx - 0 = (20 - z0) - 00 = 0, which proves (7). If zy =

ya =0, then Q; ;(2,y) = (z-2y)(zy)’ - (yz)’ = and Qu.n(y, ) = (y-yz)(yz)™ - (2y)" = y.
This, by (¢), implies * = y and completes the proof. O

Corollary 6.10. The class of quasi-commutative weak BCC-algebras of a fixed type is a
variety. O

The class of quasi-commutative weak BCC-algebras of a fixed type can also be defined
by two identities.

Theorem 6.11. An algebra (G;-,0) of type (2,0) is a quasi-commutative weak BCC-algebra
of type (i,j;m,n) if and only if it satisfies the following identities:

(@) u-((zy-2y)- z2) =u,
(6) Qi,j(xay) = Qm,n(y,x) - 0.

Proof. The necessity is obvious. To prove sufficiency we will show that any algebra (Gj -, 0)
satisfying the conditions («), (), also satisfies the conditions (a), (b), (¢) from the previous
theorem.

Let 6 = (00-00) - 00. Then, by («), we have

90 = 9 - ((00 - 00) - 00) = 6.
Using («) once again, for every u € G we obtain

u-((00-00)-00) = u,
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which, in view of 00 = 0, gives uf = u. Now, putting y = z = 0 in («) and applying just
proved identity uf = u we get u - xx = u for all z,u € G. This means that

u(@e) =u 5)
for any natural k. In particular 0 - (00)* = 0. Hence
Qi,4(0,0) = (0-00)(00)" - (00)’ =0 (00)7 = 0.

Similarly, @, (0,0) = 0. This, by (8), implies 00 = 0. Consequently, 10 = u - 00 = u for
every u € G. So, the condition (b) from Theorem 6.9 is satisfied. Combining (b) and (5)
we obtain the condition (c).

Observe that (5) for u = xz implies (zz)
obtain 0- (zz)* = 0 for any natural k. Hence

k+1 — px for any natural k. ;From (5) we also

Qi j(zz,0) = (zz - (zx - 0))(zz - 0)* - (0 - z2)’
= (zz - xx)(22)" - 07 = (22)"72 = 200
and
Qmn(0,22) = (0-(0-22))(0 - zx)™ - (xx-0)"
=(00-0™) - (zz)* =0- (zz)" =0,

which together with just proved (¢) gives zz = 0 for every z € G. Now, putting u =
(xy - zy) - zz in (o) we have

u=u-(zy-zy) xz=uu=0.

This means that (zy - zy) - 2z = 0, so any algebra (G;-,0) satisfying («), (3) satisfies also
(¢), and consequently it is a quasi-commutative weak BCC-algebra of type (i, j;m,n). O

Theorem 6.12. If a solid weak BCC-algebra G is quasi-commutative of type (i,j;m,n),
then its branch B(0) is a quasi-commutative BCK-algebra of one of the following three types:

(i,154,4), (4,457,7) and (n,j;j,n).
The proof of this theorem is based on the following lemma.
Lemma 6.13. In a quasi-commutative solid weak BCC-algebra of type (i,7;m,n) we have
(1) ay™h =ay"t,
(2) wy’™h = aym
for z,y € B(0).

Proof. According to [10] B(0) is the greatest BCC-algebra contained in G. Since G is solid,
for all z,y,z € B(0) we have zy - 2 = xzz - y. Thus, B(0) is a BCK-algebra.
Observe first that
(x - ay)t = oy

for z,y € B(0) and any natural k.
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Indeed, for £ = 1 it is valid by Lemma 5.8. If it is valid for some k, then for k + 1 we
have

w(z -yt =z ay)* - (v ay)
=zy* - (v - xy) by the assumption on k

= (zyt - (z-2y) -y

= (zy*"% (2 2y)) -
=...=(@ (z-2y) yF =2y -y* by Lemma 5.8
= pyFtt.
Then it is valid for every natural k.
Hence
Qij(w,ay) = (v (z-ay))(z-2y)' - (wy - x)!
= z(z - ay) -0 because zy-x =0
= z(z - oy)t = ayith
Likewise,

Qmn(ay,x) = (zy - (2y - 2))(2y - 2)™ - (2 2Y)"
=ay-(v-ay)" =x(x-zy)" y =2y

Further, since G is quasi-commutative of type (4, j;m, n), we have

Qi,j (x, :vy) = Qm,n(xya x)

Thus, zyiT! = xy"*t1. This proves the first identity.
The second follows from the fact that any quasi-commutative weak BCC-algebra of type
(i,7;m,n) is also quasi-commutative of type (m,n;i, 7). O

Proof of Theorem 6.12. Let a solid weak BCC-algebra G be quasi-commutative of type
(i,7;m,n). Then, in particular,

(@ zy)(ay) - (y) = (y - ya)(y)™ - (zy)"
for z,y € B(0). Since yx € B(0), the second identity of Lemma 6.13 shows that

m+1 _ J+1 _

(y-yz)(yx)" =y - (yz) y- (yz) ™ = (y - yz)(ya)’.

Thus
(z - ay)(zy) - (yz)’ = (y - yx)(yz)’ - (zy)"

for all ,y € B(0). Hence Q;;(z,y) = Qjn(y,x) for x,y € B(0). So, B(0) is quasi-
commutative of type (i, 7;j,n). Obviously, it also is quasi-commutative of type (j,n;%,J).
Repeating the above procedure we can show that B(0) is quasi-commutative of type (4, n;n, j).
This implies that it is quasi-commutative of type (n,j;j,n). For j = n it is quasi-
commutative of type (j,7;74,7). Thus in a solid weak BCC-algebra quasi-commutative of
type (i,7;m,j) the branch B(0) is quasi-commutative of type (4, 7;7,7)-
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Finally let us consider the case i = j, i.e., the quasi-commutativity of type (i,i;m,n).
From the first part of this proof it follows that in this case B(0) is quasi-commutative of
type (i,4;4,n). Thus for z,y € B(0) and ¢ = j we have

(z - ay)(zy)" - (yz)' = (y - yz)(ya)' - (zy)".

Since ‘ ‘ ‘
(y-ya)(yz)" - (xy)" < (y-yx)(yz)" - (zy)*
for i < n and x,y € B(0), the above implies

(z - zy)(zy) - (y2)" < (y-ya)(ya)' - (zy)".
Exchanging x and y we obtain
(y - yz)(yz)' - (zy)' < (z-2y)(zy)' - (2y)',

which together with the previous inequality gives

(z - zy)(zy)' - (yz)' = (y - yz)(yx)' - (zy)".

O

Therefore in this case B(0) is quasi-commutative of type (4,%;14,1%).

Corollary 6.14. Suppose that G is a quasi-commutative BCK-algebra of type (i,7;m,n
Then its type of quasi-commutativity can be reduced to one of the following types: (i,4;4,1

(4,453, 4) and (n, j; j,n).

~— —

2’
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