OPERATOR Q-CLASS FUNCTIONS

Jun Ichi Fujii ${ }^{1}$, Mohsen Kian ${ }^{2}$ and Mohammad Sal Moslehian ${ }^{3}$

Received November 16, 2010

Abstract

We introduce the notion of operator Q-class function. Every non-negative operator convex function is of operator Q-class, but the converse is not true in general. Some inequalities for the operator Q-class functions are presented. In particular, we consider some conditions under which the operator Q-class functions have the operator monotonicity property.

1 Introduction A function $f: J \rightarrow \mathbb{R}$ is said to be a Q-class function if

$$
f(\lambda x+(1-\lambda) y) \leq \frac{f(x)}{\lambda}+\frac{f(y)}{1-\lambda}
$$

for all $x, y \in J$ and all $\lambda \in(0,1)$. This notion is introduced by Godunova and Levin [7].
Let D be a subset of \mathbb{R} with at least two elements. A function $f: D \rightarrow \mathbb{R}$ is said to be a Schur function if

$$
f(t)(t-s)(t-u)+f(s)(s-t)(s-u)+f(u)(u-t)(u-s) \geq 0
$$

for all s, t, u in D. In [7] Godunova and Levin showed that the class of Schur functions and the Q-class functions coincide. Many properties of classical Q-class functions can be found in $[4,5,10,11]$. It is easy to see that every non-negative monotone function or convex function is of Q-class.

Let \mathcal{H} be a Hilbert space and $\mathrm{B}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H}. We say that an operator A in $\mathrm{B}(\mathcal{H})$ is positive and write $A \geq 0$ if $\langle A x, x\rangle \geq 0$ for all $x \in \mathcal{H}$. Let I be the identity operator on \mathcal{H} and $A, B \in \mathrm{~B}(\mathcal{H})$. By $A \leq B$ we mean that $B-A \geq 0$. We denote $A>0$ if A is a invertible positive operator or equivalently, there exists a number $m>0$ such that $A \geq m I$. Also in this case, $A>B$ means $A-B>0$. The spectrum of an operator $A \in \mathrm{~B}(\mathcal{H})$ is denoted by $\sigma(A)$.

In this paper we introduce operator Q-class functions and state some relations between the operator Q-class functions and the operator monotonicity property. In particular, we show that if $\alpha>0$ and $f:(0,1 / \alpha) \rightarrow \mathbb{R}$ is a continuous function with $f(t) \leq t^{-\beta}$ for $\beta>1$ such that f is of operator Q-class on $(0,1 / \alpha)$, then it is operator decreasing on $(0,1 / \alpha)$. Other types of such conditions implying the operator monotonicity are discussed.

2 Main results We start our work with the following definition.
Definition 2.1. Let f be a continuous real valued function defined on an interval J. We say that f is an operator Q-class function on J if

$$
\begin{equation*}
f(\lambda A+(1-\lambda) B) \leq \frac{f(A)}{\lambda}+\frac{f(B)}{1-\lambda} \tag{2.1}
\end{equation*}
$$

for all self-adjoint operators A, B with spectra in J and all $\lambda \in(0,1)$.

[^0]Using induction one can easily extend (2.1) to n-tuples of operators and scalars, which is a Jensen type inequality, see [8]:

$$
f\left(\sum_{k=1}^{n} \lambda_{k} A_{k}\right) \leq \sum_{k=1}^{n} \frac{f\left(A_{k}\right)}{\lambda_{k}}
$$

for all self-adjoint operators A_{k} with $\sigma\left(A_{k}\right) \subseteq J(1 \leq k \leq n)$ and positive numbers $\lambda_{k}(1 \leq$ $k \leq n$) with $\sum_{k=1}^{n} \lambda_{k}=1$.

The next lemma gives a useful property of Q-class functions.
Lemma 2.2. Let $f: J \rightarrow \mathbb{R}$ be a continuous function. If f is of Q-class, in particular if f is of operator Q-class, then $f(t) \geq 0$ for all $t \in J$.

Proof. Let $x, y \in I$ and $\lambda \in(0,1)$. Then $f(\lambda x+(1-\lambda) y) \leq \frac{f(x)}{\lambda}+\frac{f(y)}{1-\lambda}$. Multiplying each side by $\lambda(1-\lambda)$ we get $\lambda(1-\lambda) f(\lambda x+(1-\lambda) y) \leq(1-\lambda) f(x)+\lambda f(y)$. Letting $\lambda \rightarrow 0$ we obtain $f(x) \geq 0$.

It is trivial that every non-negative operator convex function is of operator Q-class. Also if a function $f:(0, \infty) \rightarrow(0, \infty)$ is operator monotone, then $\frac{1}{f}$ is operator convex [1, Corollary V.2.6] and so $\frac{1}{f}$ is of operator Q-class. Here we give an example for operator Q-class functions that is not operator convex (another example is also given in Example 2.7(1).

Example 2.3. Consider the function $f(x)=3-x^{2}$ on the interval $(0,1)$. Then it is not operator convex but operator concave. Since $2 \leq f(x) \leq 3$ and $2 \leq \max \left\{\frac{1}{\lambda}, \frac{1}{1-\lambda}\right\}$, we have

$$
3-(\lambda A+(1-\lambda) B)^{2} \leq 3<2 \times 2 \leq \frac{3-A^{2}}{\lambda}+\frac{3-B^{2}}{1-\lambda}
$$

for all self-adjoint operators A and B with spectra in (0,1), that is, f is of operator Q-class.
Theorem 2.4. Let f be a continuous Q-class function with $f(0)=0$. Then

$$
\begin{equation*}
(G(A)-A)[G(A) f(G(A))-A f(A)] \geq 0 \tag{2.2}
\end{equation*}
$$

for all selfadjoint A with $\sigma(A) \subseteq \operatorname{dom} f$ and functions G with $G(\operatorname{dom} f) \subseteq \operatorname{dom} f$.
Proof. Since f is of Q-class,

$$
\begin{equation*}
f(t)(t-s)(t-u)+f(s)(s-t)(s-u)+f(u)(u-s)(u-t) \geq 0 \tag{2.3}
\end{equation*}
$$

for all real numbers $s, t, u \in \operatorname{dom} f$. Putting $u=0$ and $s=G(A)$ in (2.3), we obtain

$$
\begin{equation*}
t f(t)(t-G(A))+G(A) f(G(A))(G(A)-t) \geq 0 \tag{2.4}
\end{equation*}
$$

Since A commutes with $G(A)$, we can put $t=A$ to get

$$
A f(A)(A-G(A))+G(A) f(G(A))(G(A)-A) \geq 0
$$

which is (2.2).
Corollary 2.5. Let f be a continuous Q-class function with $f(0)=0$. Then

$$
\begin{equation*}
\langle A x, x\rangle\langle A f(A) x, x\rangle \leq\left\langle A^{2} f(A) x, x\right\rangle \tag{2.5}
\end{equation*}
$$

for all selfadjoint operators A with $\sigma(A) \subseteq \operatorname{dom} f$ and all unit vectors x.

Proof. Putting the constant function $G(t)=\langle A x, x\rangle$ in the above theorem, we have

$$
\begin{equation*}
B \equiv(\langle A x, x\rangle-A)[\langle A x, x\rangle f(\langle A x, x\rangle)-A f(A)] \geq 0 \tag{2.6}
\end{equation*}
$$

It follows from

$$
\begin{aligned}
0 \leq\langle B x, x\rangle= & \langle A x, x\rangle^{2} f(\langle A x, x\rangle)-\langle A x, x\rangle\langle A f(A) x, x\rangle \\
& \quad-\langle A x, x\rangle^{2} f(\langle A x, x\rangle)+\left\langle A^{2} f(A) x, x\right\rangle \\
= & \left\langle A^{2} f(A) x, x\right\rangle-\langle A x, x\rangle\langle A f(A) x, x\rangle
\end{aligned}
$$

that (2.5) holds true.
Now we discuss the relations between operator Q-class functions and operator monotone ones.

Theorem 2.6. Let $\alpha>0, \beta>1$ and $f:(\alpha, \infty) \longrightarrow \mathbb{R}$ be a continuous function with $f(t) \leq t^{\beta}$. If $f\left(t^{-1}\right)$ is of operator Q-class on $(0,1 / \alpha)$, then f is operator monotone on (α, ∞).

Proof. Let $0<\alpha<A$ and $0<\varepsilon \leq B_{\varepsilon}=B+\varepsilon$ for any positive operator B. Take positive invertible operators $C=\left(A+B_{\varepsilon}\right)^{-1}<A^{-1}<1 / \alpha$ and $D=A^{-1}-\left(A+B_{\varepsilon}\right)^{-1}<A^{-1}<1 / \alpha$. Since $f\left(t^{-1}\right)$ is of operator Q-class on $(0,1 / \alpha)$ and

$$
\lambda(C+D)=\lambda C+(1-\lambda) \frac{\lambda}{1-\lambda} D
$$

we have

$$
\begin{aligned}
f\left((\lambda(C+D))^{-1}\right) & \leq \frac{f\left(C^{-1}\right)}{\lambda}+\frac{1}{1-\lambda} f\left(\left(\frac{\lambda}{1-\lambda} D\right)^{-1}\right) \\
& \leq \frac{f\left(C^{-1}\right)}{\lambda}+\frac{1}{1-\lambda}\left(\frac{1-\lambda}{\lambda}\right)^{\beta} D^{-\beta} \\
& =\frac{f\left(C^{-1}\right)}{\lambda}+\frac{(1-\lambda)^{\beta-1}}{\lambda^{\beta}} D^{-\beta}
\end{aligned}
$$

Letting $\lambda \longrightarrow 1$, we obtain

$$
f(A)=f\left((C+D)^{-1}\right) \leq f\left(C^{-1}\right)=f\left(A+B_{\varepsilon}\right)
$$

As $\varepsilon \longrightarrow 0$, we have

$$
f(A) \leq f(A+B)
$$

for all positive operators B. We therefore conclude that f is operator monotone on (α, ∞).

Example 2.7. The following functions satisfy the conditions of Theorem 2.6.

1. $f(t)=t^{r}, 0 \leq r \leq 1$ on $(1,+\infty)$. Then $t^{r} \leq t^{2}$ for $t \in(1,+\infty)$. Since f is operator concave, by taking inverses for the Jensen operator inequality and the arithmeticharmonic mean inequality, we have

$$
\begin{aligned}
(\lambda A+(1-\lambda) B)^{-r} & \leq\left(\lambda A^{r}+(1-\lambda) B^{r}\right)^{-1} \\
& \leq \lambda A^{-r}+(1-\lambda) B^{-r} \leq \frac{A^{-r}}{\lambda}+\frac{B^{-r}}{1-\lambda}
\end{aligned}
$$

which implies $f\left(t^{-1}\right)$ is an operator Q-class function.
2. $f(t)=\ln t$ on $(1,+\infty)$. In this domain, we have $\log t \leq t \leq t^{\beta}$. Since $f\left(t^{-1}\right)=-\ln t$ is nonnegative operator convex on $(0,1)$ and hence of operator Q-class on $(0,1)$.

Contrastively we have similar conditions for operator decreasing:
Theorem 2.8. Let $\alpha>0$ and $f:(0,1 / \alpha) \rightarrow \mathbb{R}$ be a continuous function with $f(t) \leq t^{-\beta}$ for some $\beta>1$. If f is of operator Q-class on $(0,1 / \alpha)$, then it is operator decreasing on $(0,1 / \alpha)$.

Proof. Theorem 2.6 implies that $f\left(t^{-1}\right)$ is operator monotone on (α, ∞).
Let $0<A \leq B<\frac{1}{\alpha}$. Then $\alpha<B^{-1} \leq A^{-1}$ whence $f(B) \leq f(A)$.
Taking $\alpha \longrightarrow 0$, we have a variation for functions on $(0, \infty)$:
Corollary 2.9. Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a continuous function with $f(t) \leq t^{-^{\beta}}$ for some $\beta>1$. If f is of operator Q-class on $(0, \infty)$, then it is operator decreasing on $(0, \infty)$.
Remark 2.10. Since an operator monotone (resp., operator decreasing) function on $(0, \infty)$ is operator concave (resp., operator convex), such functions satisfy

$$
f(\Phi(A)) \geq \Phi(f(A)) \quad(\text { resp., } f(\Phi(A)) \leq \Phi(f(A)))
$$

for all unital positive linear maps Φ, which is the so-called Jensen operator inequality due to Davis-Choi, see [2, 3, 6]. In particular, a function in Corollary 2.9 is operator convex and hence satisfies

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} \lambda_{i} A_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(A_{i}\right) \tag{2.7}
\end{equation*}
$$

for all $\lambda_{i} \geq 0 \quad(1 \leq i \leq n)$ with $\sum_{i=1}^{n} \lambda_{i}=1$.
By this remark and that f is operator decreasing, we have some inequalities including the subadditivity:
Corollary 2.11. Let f be a function as in Corollary 2.9. Then

$$
f\left(\sum_{i=1}^{n} A_{i}\right) \leq f\left(\sum_{i=1}^{n} \lambda_{i} A_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(A_{i}\right) \leq \sum_{i=1}^{n} f\left(A_{i}\right)
$$

for all $\lambda_{i} \geq 0 \quad(1 \leq i \leq n)$ with $\sum_{i=1}^{n} \lambda_{i}=1$.
Moreover we have an inequality for weights, whose sum is greater than 1:
Corollary 2.12. Let f be a function as in Corollary 2.9 and $p_{i}>0 \quad(1 \leq i \leq n)$ with $\sum_{i=1}^{n} p_{i} \geq 1$. Then

$$
\begin{equation*}
f\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(A_{i}\right) \tag{2.8}
\end{equation*}
$$

Proof. By $\sum_{i=1}^{n} p_{i} A_{i} \geq \sum_{i=1}^{n} \frac{p_{i}}{\sum_{k} p_{k}} A_{i}$, decreasingness and the Jensen inequality (2.7) we have

$$
f\left(\sum_{i=1}^{n} p_{i} A_{i}\right) \leq f\left(\sum_{i=1}^{n} \frac{p_{i}}{\sum_{k} p_{k}} A_{i}\right) \leq \sum_{i=1}^{n} \frac{p_{i}}{\sum_{k} p_{k}} f\left(A_{i}\right) \leq \sum_{i=1}^{n} p_{i} f\left(A_{i}\right)
$$

Finally we have a variation of Theorem 2.8:
Theorem 2.13. Let $f:(0, \infty) \rightarrow(0, \infty)$ be a function with the property that $t f(t) \leq f\left(t^{-1}\right)$ and $\lim _{t \rightarrow 0^{+}} f(t)=0$. If f is of operator Q-class, then it is operator decreasing.

Proof. Let $0<A \leq B$ and $\epsilon>0$. It follows from

$$
\lambda(B+\epsilon)=\lambda A+(1-\lambda) \frac{\lambda}{1-\lambda}(B-A+\epsilon)
$$

that

$$
\begin{aligned}
f(\lambda(B+\epsilon)) & \leq \frac{f(A)}{\lambda}+\frac{f\left(\frac{\lambda}{1-\lambda}(B-A+\epsilon)\right)}{(1-\lambda)} \\
& \leq \frac{f(A)}{\lambda}+\frac{1}{1-\lambda} \frac{1-\lambda}{\lambda}(B-A+\epsilon)^{-1} f\left(\frac{1-\lambda}{\lambda}(B-A+\epsilon)^{-1}\right) \\
& =\frac{f(A)}{\lambda}+\frac{1}{\lambda}(B-A+\epsilon)^{-1} f\left(\frac{1-\lambda}{\lambda}(B-A+\epsilon)^{-1}\right) .
\end{aligned}
$$

Letting $\lambda \rightarrow 1$ and $\epsilon \rightarrow 0$ we obtain $f(B) \leq f(A)$.

Acknowledgement. The first author was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 20540166, 2008.

References

[1] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[2] M.-D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math. 18 (1974), 565-574.
[3] C. Davis, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957), 42-44.
[4] S.S. Dragomir and C.E.M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin, Period. Math. Hungar. 33 (1996), no. 2, 93-100.
[5] S.S. Dragomir, J. Pečarić and L.E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335-341.
[6] J.I. Fujii and M. Fujii, Jensen's inequalities on any interval for operators, Proc. 3-rd Int. Conf. on Nonlinear Analysis and Convex Analysis, (2004) 29-39.
[7] E.K. Godunova and V.I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, (Russian) Numerical mathematics and mathematical physics (Russian), 138-142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985.
[8] D.S. Mitrinović and J. Pečarić, Note on a class of functions of Godunava and Levin, C. R. Math. Rep. Acad. Sci. Canada, 12 (1990) 33-36.
[9] J. Pečarić T. Furuta, H. Mićić and Y. Seo, Mond-Pecaric Method in Ooperator Inequalities, Zagreb: ELEMENT, 2005.
[10] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions, Math. Inequal. Appl. 12 (2009), no. 4, 853-862.
[11] M. Radulescu, S. Radulescu and P. Alexandrescu, On Schur inequality and Schur functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 32 (2005), 202-208.
${ }^{1}$ Department of Art and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
E-mail address: fujii@cc.osaka-kyoiku.ac.jp
2 Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran.; Tusi Mathematical Research group (TMRG), Mashhad, Iran.
E-mail address: kian_tak@yahoo.com
${ }^{3}$ Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran.

E-mail address: moslehian@ferdowsi.um.ac.ir and moslehian@ams.org

[^0]: 2010 Mathematics Subject Classification. Primary 47A63; Secondary 47B10, 47A30.
 Key words and phrases. Operator Q-class, Operator monotonicity, Jensen inequality, Operator convexity.

