OPERATOR *Q*-CLASS FUNCTIONS

JUN ICHI FUJII¹, MOHSEN KIAN² AND MOHAMMAD SAL MOSLEHIAN³

Received November 16, 2010

ABSTRACT. We introduce the notion of operator Q-class function. Every non-negative operator convex function is of operator Q-class, but the converse is not true in general. Some inequalities for the operator Q-class functions are presented. In particular, we consider some conditions under which the operator Q-class functions have the operator monotonicity property.

1 Introduction A function $f: J \to \mathbb{R}$ is said to be a *Q*-class function if

$$f(\lambda x + (1 - \lambda)y) \le \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda}.$$

for all $x, y \in J$ and all $\lambda \in (0, 1)$. This notion is introduced by Godunova and Levin [7].

Let D be a subset of \mathbb{R} with at least two elements. A function $f: D \to \mathbb{R}$ is said to be a Schur function if

$$f(t)(t-s)(t-u) + f(s)(s-t)(s-u) + f(u)(u-t)(u-s) \ge 0,$$

for all s, t, u in D. In [7] Godunova and Levin showed that the class of Schur functions and the Q-class functions coincide. Many properties of classical Q-class functions can be found in [4, 5, 10, 11]. It is easy to see that every non-negative monotone function or convex function is of Q-class.

Let \mathcal{H} be a Hilbert space and $B(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . We say that an operator A in $B(\mathcal{H})$ is positive and write $A \ge 0$ if $\langle Ax, x \rangle \ge 0$ for all $x \in \mathcal{H}$. Let I be the identity operator on \mathcal{H} and $A, B \in B(\mathcal{H})$. By $A \le B$ we mean that $B - A \ge 0$. We denote A > 0 if A is a invertible positive operator or equivalently, there exists a number m > 0 such that $A \ge mI$. Also in this case, A > B means A - B > 0. The spectrum of an operator $A \in B(\mathcal{H})$ is denoted by $\sigma(A)$.

In this paper we introduce operator Q-class functions and state some relations between the operator Q-class functions and the operator monotonicity property. In particular, we show that if $\alpha > 0$ and $f: (0, 1/\alpha) \to \mathbb{R}$ is a continuous function with $f(t) \leq t^{-\beta}$ for $\beta > 1$ such that f is of operator Q-class on $(0, 1/\alpha)$, then it is operator decreasing on $(0, 1/\alpha)$. Other types of such conditions implying the operator monotonicity are discussed.

2 Main results We start our work with the following definition.

Definition 2.1. Let f be a continuous real valued function defined on an interval J. We say that f is an operator Q-class function on J if

(2.1)
$$f(\lambda A + (1-\lambda)B) \le \frac{f(A)}{\lambda} + \frac{f(B)}{1-\lambda},$$

for all self-adjoint operators A, B with spectra in J and all $\lambda \in (0, 1)$.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A63; Secondary 47B10, 47A30.

Key words and phrases. Operator Q-class, Operator monotonicity, Jensen inequality, Operator convexity.

Using induction one can easily extend (2.1) to *n*-tuples of operators and scalars, which is a Jensen type inequality, see [8]:

$$f\left(\sum_{k=1}^{n}\lambda_k A_k\right) \le \sum_{k=1}^{n} \frac{f(A_k)}{\lambda_k}$$

for all self-adjoint operators A_k with $\sigma(A_k) \subseteq J$ $(1 \leq k \leq n)$ and positive numbers λ_k $(1 \leq k \leq n)$ $k \leq n$ with $\sum_{k=1}^{n} \lambda_k = 1$. The next lemma gives a useful property of *Q*-class functions.

Lemma 2.2. Let $f: J \to \mathbb{R}$ be a continuous function. If f is of Q-class, in particular if f is of operator Q-class, then $f(t) \ge 0$ for all $t \in J$.

Proof. Let $x, y \in I$ and $\lambda \in (0, 1)$. Then $f(\lambda x + (1 - \lambda)y) \leq \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda}$. Multiplying each side by $\lambda(1 - \lambda)$ we get $\lambda(1 - \lambda)f(\lambda x + (1 - \lambda)y) \leq (1 - \lambda)f(x) + \lambda f(y)$. Letting $\lambda \to 0$ we obtain $f(x) \ge 0$.

It is trivial that every non-negative operator convex function is of operator Q-class. Also if a function $f: (0,\infty) \to (0,\infty)$ is operator monotone, then $\frac{1}{f}$ is operator convex [1, Corollary V.2.6] and so $\frac{1}{f}$ is of operator Q-class. Here we give an example for operator Q-class functions that is not operator convex (another example is also given in Example 2.7(1).

Example 2.3. Consider the function $f(x) = 3 - x^2$ on the interval (0, 1). Then it is not operator convex but operator concave. Since $2 \le f(x) \le 3$ and $2 \le \max\{\frac{1}{\lambda}, \frac{1}{1-\lambda}\}$, we have

$$3 - (\lambda A + (1 - \lambda)B)^2 \le 3 < 2 \times 2 \le \frac{3 - A^2}{\lambda} + \frac{3 - B^2}{1 - \lambda},$$

for all self-adjoint operators A and B with spectra in (0, 1), that is, f is of operator Q-class.

Theorem 2.4. Let f be a continuous Q-class function with f(0) = 0. Then

(2.2)
$$(G(A) - A)[G(A)f(G(A)) - Af(A)] \ge 0$$

for all selfadjoint A with $\sigma(A) \subseteq \text{dom} f$ and functions G with $G(\text{dom} f) \subseteq \text{dom} f$.

Proof. Since f is of Q-class,

(2.3)
$$f(t)(t-s)(t-u) + f(s)(s-t)(s-u) + f(u)(u-s)(u-t) \ge 0$$

for all real numbers $s, t, u \in \text{dom} f$. Putting u = 0 and s = G(A) in (2.3), we obtain

(2.4)
$$tf(t)(t - G(A)) + G(A)f(G(A))(G(A) - t) \ge 0.$$

Since A commutes with G(A), we can put t = A to get

$$Af(A)(A - G(A)) + G(A)f(G(A))(G(A) - A) \ge 0,$$

which is (2.2).

Corollary 2.5. Let f be a continuous Q-class function with f(0) = 0. Then

(2.5)
$$\langle Ax, x \rangle \langle Af(A)x, x \rangle \leq \langle A^2 f(A)x, x \rangle,$$

for all selfadjoint operators A with $\sigma(A) \subseteq \text{dom} f$ and all unit vectors x.

572

Proof. Putting the constant function $G(t) = \langle Ax, x \rangle$ in the above theorem, we have

(2.6)
$$B \equiv (\langle Ax, x \rangle - A)[\langle Ax, x \rangle f(\langle Ax, x \rangle) - Af(A)] \ge 0.$$

It follows from

$$0 \leq \langle Bx, x \rangle = \langle Ax, x \rangle^2 f(\langle Ax, x \rangle) - \langle Ax, x \rangle \langle Af(A)x, x \rangle - \langle Ax, x \rangle^2 f(\langle Ax, x \rangle) + \langle A^2 f(A)x, x \rangle = \langle A^2 f(A)x, x \rangle - \langle Ax, x \rangle \langle Af(A)x, x \rangle,$$

that (2.5) holds true.

Now we discuss the relations between operator Q-class functions and operator monotone ones.

Theorem 2.6. Let $\alpha > 0$, $\beta > 1$ and $f : (\alpha, \infty) \longrightarrow \mathbb{R}$ be a continuous function with $f(t) \leq t^{\beta}$. If $f(t^{-1})$ is of operator Q-class on $(0, 1/\alpha)$, then f is operator monotone on (α, ∞) .

Proof. Let $0 < \alpha < A$ and $0 < \varepsilon \leq B_{\varepsilon} = B + \varepsilon$ for any positive operator B. Take positive invertible operators $C = (A+B_{\varepsilon})^{-1} < A^{-1} < 1/\alpha$ and $D = A^{-1} - (A+B_{\varepsilon})^{-1} < A^{-1} < 1/\alpha$. Since $f(t^{-1})$ is of operator Q-class on $(0, 1/\alpha)$ and

$$\lambda(C+D) = \lambda C + (1-\lambda)\frac{\lambda}{1-\lambda}D,$$

we have

$$f((\lambda(C+D))^{-1}) \leq \frac{f(C^{-1})}{\lambda} + \frac{1}{1-\lambda}f\left(\left(\frac{\lambda}{1-\lambda}D\right)^{-1}\right)$$
$$\leq \frac{f(C^{-1})}{\lambda} + \frac{1}{1-\lambda}\left(\frac{1-\lambda}{\lambda}\right)^{\beta}D^{-\beta}$$
$$= \frac{f(C^{-1})}{\lambda} + \frac{(1-\lambda)^{\beta-1}}{\lambda^{\beta}}D^{-\beta}.$$

Letting $\lambda \longrightarrow 1$, we obtain

$$f(A) = f((C+D)^{-1}) \le f(C^{-1}) = f(A+B_{\varepsilon}).$$

As $\varepsilon \longrightarrow 0$, we have

$$f(A) \le f(A+B)$$

for all positive operators B. We therefore conclude that f is operator monotone on (α, ∞) .

Example 2.7. The following functions satisfy the conditions of Theorem 2.6.

1. $f(t) = t^r$, $0 \le r \le 1$ on $(1, +\infty)$. Then $t^r \le t^2$ for $t \in (1, +\infty)$. Since f is operator concave, by taking inverses for the Jensen operator inequality and the arithmetic-harmonic mean inequality, we have

$$\left(\lambda A + (1-\lambda)B \right)^{-r} \leq (\lambda A^r + (1-\lambda)B^r)^{-1}$$

$$\leq \lambda A^{-r} + (1-\lambda)B^{-r} \leq \frac{A^{-r}}{\lambda} + \frac{B^{-r}}{1-\lambda},$$

which implies $f(t^{-1})$ is an operator Q-class function.

2. $f(t) = \ln t$ on $(1, +\infty)$. In this domain, we have $\log t \le t \le t^{\beta}$. Since $f(t^{-1}) = -\ln t$ is nonnegative operator convex on (0, 1) and hence of operator Q-class on (0, 1).

Contrastively we have similar conditions for operator decreasing:

Theorem 2.8. Let $\alpha > 0$ and $f : (0, 1/\alpha) \to \mathbb{R}$ be a continuous function with $f(t) \leq t^{-\beta}$ for some $\beta > 1$. If f is of operator Q-class on $(0, 1/\alpha)$, then it is operator decreasing on $(0, 1/\alpha)$.

Proof. Theorem 2.6 implies that $f(t^{-1})$ is operator monotone on (α, ∞) . Let $0 < A \leq B < \frac{1}{\alpha}$. Then $\alpha < B^{-1} \leq A^{-1}$ whence $f(B) \leq f(A)$.

Taking $\alpha \longrightarrow 0$, we have a variation for functions on $(0, \infty)$:

Corollary 2.9. Let $f : (0, \infty) \to \mathbb{R}$ be a continuous function with $f(t) \leq t^{-\beta}$ for some $\beta > 1$. If f is of operator Q-class on $(0, \infty)$, then it is operator decreasing on $(0, \infty)$.

Remark 2.10. Since an operator monotone (resp., operator decreasing) function on $(0, \infty)$ is operator concave (resp., operator convex), such functions satisfy

 $f(\Phi(A)) \ge \Phi(f(A))$ (resp., $f(\Phi(A)) \le \Phi(f(A))$)

for all unital positive linear maps Φ , which is the so-called Jensen operator inequality due to Davis–Choi, see [2, 3, 6]. In particular, a function in Corollary 2.9 is operator convex and hence satisfies

(2.7)
$$f\left(\sum_{i=1}^{n}\lambda_{i}A_{i}\right) \leq \sum_{i=1}^{n}\lambda_{i}f(A_{i})$$

for all $\lambda_i \ge 0$ $(1 \le i \le n)$ with $\sum_{i=1}^n \lambda_i = 1$.

By this remark and that f is operator decreasing, we have some inequalities including the subadditivity:

Corollary 2.11. Let f be a function as in Corollary 2.9. Then

$$f\left(\sum_{i=1}^{n} A_i\right) \le f\left(\sum_{i=1}^{n} \lambda_i A_i\right) \le \sum_{i=1}^{n} \lambda_i f(A_i) \le \sum_{i=1}^{n} f(A_i)$$

for all $\lambda_i \ge 0$ $(1 \le i \le n)$ with $\sum_{i=1}^n \lambda_i = 1$.

Moreover we have an inequality for weights, whose sum is greater than 1:

Corollary 2.12. Let f be a function as in Corollary 2.9 and $p_i > 0$ $(1 \le i \le n)$ with $\sum_{i=1}^{n} p_i \ge 1$. Then

(2.8)
$$f\left(\sum_{i=1}^{n} p_i A_i\right) \le \sum_{i=1}^{n} p_i f(A_i).$$

Proof. By $\sum_{i=1}^{n} p_i A_i \ge \sum_{i=1}^{n} \frac{p_i}{\sum_k p_k} A_i$, decreasingness and the Jensen inequality (2.7) we have

$$f\left(\sum_{i=1}^{n} p_i A_i\right) \le f\left(\sum_{i=1}^{n} \frac{p_i}{\sum_k p_k} A_i\right) \le \sum_{i=1}^{n} \frac{p_i}{\sum_k p_k} f(A_i) \le \sum_{i=1}^{n} p_i f(A_i).$$

Finally we have a variation of Theorem 2.8:

Theorem 2.13. Let $f: (0, \infty) \to (0, \infty)$ be a function with the property that $tf(t) \leq f(t^{-1})$ and $\lim_{t\to 0^+} f(t) = 0$. If f is of operator Q-class, then it is operator decreasing.

Proof. Let $0 < A \leq B$ and $\epsilon > 0$. It follows from

$$\lambda(B+\epsilon) = \lambda A + (1-\lambda)\frac{\lambda}{1-\lambda}(B-A+\epsilon)$$

that

$$f(\lambda(B+\epsilon)) \leq \frac{f(A)}{\lambda} + \frac{f(\frac{\lambda}{1-\lambda}(B-A+\epsilon))}{(1-\lambda)}$$

$$\leq \frac{f(A)}{\lambda} + \frac{1}{1-\lambda}\frac{1-\lambda}{\lambda}(B-A+\epsilon)^{-1}f\left(\frac{1-\lambda}{\lambda}(B-A+\epsilon)^{-1}\right)$$

$$= \frac{f(A)}{\lambda} + \frac{1}{\lambda}(B-A+\epsilon)^{-1}f\left(\frac{1-\lambda}{\lambda}(B-A+\epsilon)^{-1}\right).$$

Letting $\lambda \to 1$ and $\epsilon \to 0$ we obtain $f(B) \leq f(A)$.

Acknowledgement. The first author was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 20540166, 2008.

References

- [1] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
- [2] M.-D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math. 18 (1974), 565–574.
- [3] C. Davis, A Schwarz inequality for convex operator functions, Proc. Amer. Math. Soc. 8 (1957), 42-44.
- [4] S.S. Dragomir and C.E.M. Pearce, On Jensen's inequality for a class of functions of Godunova and Levin, Period. Math. Hungar. 33 (1996), no. 2, 93–100.
- [5] S.S. Dragomir, J. Pečarić and L.E. Persson, Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), no. 3, 335–341.
- [6] J.I. Fujii and M. Fujii, Jensen's inequalities on any interval for operators, Proc. 3-rd Int. Conf. on Nonlinear Analysis and Convex Analysis, (2004) 29–39.
- [7] E.K. Godunova and V.I. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, (Russian) Numerical mathematics and mathematical physics (Russian), 138–142, 166, Moskov. Gos. Ped. Inst., Moscow, 1985.
- [8] D.S. Mitrinović and J. Pečarić, Note on a class of functions of Godunava and Levin, C. R. Math. Rep. Acad. Sci. Canada, 12 (1990) 33–36.
- [9] J. Pečarić T. Furuta, H. Mićić and Y. Seo, Mond-Pecaric Method in Operator Inequalities, Zagreb: ELEMENT, 2005.
- [10] M. Radulescu, S. Radulescu and P. Alexandrescu, On the Godunova-Levin-Schur class of functions, Math. Inequal. Appl. 12 (2009), no. 4, 853–862.

- [11] M. Radulescu, S. Radulescu and P. Alexandrescu, On Schur inequality and Schur functions, Annals of University of Craiova, Math. Comp. Sci. Ser. 32 (2005), 202–208.
 - ¹ DEPARTMENT OF ART AND SCIENCES (INFORMATION SCIENCE), OSAKA KYOIKU UNI-VERSITY, ASAHIGAOKA, KASHIWARA, OSAKA 582-8582, JAPAN. *E-mail address*: fujii@cc.osaka-kyoiku.ac.jp
 - ² DEPARTMENT OF PURE MATHEMATICS, FERDOWSI UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD 91775, IRAN.; TUSI MATHEMATICAL RESEARCH GROUP (TMRG), MASHHAD, IRAN. *E-mail address*: kian_tak@yahoo.com
 - ³ DEPARTMENT OF PURE MATHEMATICS, CENTER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS), FERDOWSI UNIVERSITY OF MASHHAD, P.O. BOX 1159, MASHHAD 91775, IRAN. *E-mail address:* moslehian@ferdowsi.um.ac.ir and moslehian@ams.org