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OPERATOR @-CLASS FUNCTIONS
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ABSTRACT. We introduce the notion of operator Q-class function. Every non-negative
operator convex function is of operator @)-class, but the converse is not true in general.
Some inequalities for the operator -class functions are presented. In particular, we
consider some conditions under which the operator Q-class functions have the operator
monotonicity property.

1 Introduction A function f:J — R is said to be a @Q-class function if

f@) | f)
1-— e
fOw+ (1= 2y < S 4 S
for all x,y € J and all A € (0,1). This notion is introduced by Godunova and Levin [7].
Let D be a subset of R with at least two elements. A function f : D — R is said to be

a Schur function if
FOE =)t —u)+ f(s)(s —1)(s —w) + f(u)(u—t)(u—1s) =0,

for all s,¢,u in D. In [7] Godunova and Levin showed that the class of Schur functions and
the @Q-class functions coincide. Many properties of classical @-class functions can be found
in [4, 5, 10, 11]. It is easy to see that every non-negative monotone function or convex
function is of Q-class.

Let H be a Hilbert space and B(H) be the algebra of all bounded linear operators on
‘H. We say that an operator A in B(H) is positive and write A > 0 if (Az,z) > 0 for all
x € H. Let I be the identity operator on H and A, B € B(H). By A < B we mean that
B — A > 0. We denote A > 0 if A is a invertible positive operator or equivalently, there
exists a number m > 0 such that A > mlI. Also in this case, A > B means A — B > 0. The
spectrum of an operator A € B(H) is denoted by o(A).

In this paper we introduce operator @J-class functions and state some relations between
the operator @)-class functions and the operator monotonicity property. In particular, we
show that if @ > 0 and f: (0,1/a) — R is a continuous function with f(t) <t for 8 > 1
such that f is of operator @-class on (0,1/a), then it is operator decreasing on (0,1/«).
Other types of such conditions implying the operator monotonicity are discussed.

2 Main results We start our work with the following definition.

Definition 2.1. Let f be a continuous real valued function defined on an interval J. We
say that f is an operator @)-class function on J if

(2.1) foa+ - xp) < LA S

for all self-adjoint operators A, B with spectra in J and all A € (0,1).
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Using induction one can easily extend (2.1) to n-tuples of operators and scalars, which
is a Jensen type inequality, see [8]:

() £

1

for all self-adjoint operators Ay with o0(A;) C J (1 <k < n) and positive numbers A, (1 <
k <n)with >0, A = 1.
The next lemma gives a useful property of @Q-class functions.

Lemma 2.2. Let f: J — R be a continuous function. If fis of Q-class, in particular if f
is of operator Q-class, then f(t) >0 for allt € J.

Proof. Let x,y € I and A € (0,1). Then f(Az + (1 — N)y) < (m) + 1(‘1’))\ Multiplying each
side by A(1 — X) we get A(1—=A)f(Az+ (1—XN)y) < (1-— )\)f(ac) + Af(y). Letting A — 0 we

obtain f(z) > 0. O

It is trivial that every non-negative operator convex function is of operator Q-class.
Also if a function f : (0,00) — (0,00) is operator monotone, then % is operator convex
[1, Corollary V.2.6] and so % is of operator @-class. Here we give an example for operator

Q-class functions that is not operator convex (another example is also given in Example
2.7(1).

Example 2.3. Consider the function f(z) = 3 — 22 on the interval (0,1). Then it is not
operator convex but operator concave. Since 2 < f(z) < 3 and 2 < max{5, 175}, we have
A?  3-B?

2 3—
— — < <
M+ (1-NB)"<3<2x2< T T

for all self-adjoint operators A and B with spectra in (0, 1), that is, f is of operator Q-class.
Theorem 2.4. Let f be a continuous Q-class function with f(0) = 0. Then
(2.2) (G(A) = A[GA)f(G(A)) — Af(A)] =0
for all selfadjoint A with o(A) C domf and functions G with G(domf) C domf.
Proof. Since f is of Q-class,
(2.3) @Ot =)t —u)+ f(s)(s =) (s —u) + fu)(u—s)(u—1) >0
for all real numbers s, ¢, u € domf. Putting v = 0 and s = G(A4) in (2.3), we obtain
(2.4) tf ()t — G(A)) + G(A) f(G(A))(G(A) —t) = 0.
Since A commutes with G(A), we can put t = A to get
Af(A)(A—=G(A) + G(A)F(G(A)(G(A) — A) =0,
which is (2.2). O
Corollary 2.5. Let f be a continuous Q-class function with f(0) = 0. Then
(2.5) (Az,2)(Af(A)z,x) < (A*f(A)z,z),

for all selfadjoint operators A with o(A) C domf and all unit vectors x.
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Proof. Putting the constant function G(t) = (Az,z) in the above theorem, we have
(2.6) B = ((Az,x) — A)[(Az,z) f((Az,x)) — Af(A)] > 0.
It follows from
0 < (Bz,z) = (Az,z)? f((Az,z)) — (Az, z) (Af(A)z, )
— (Az,2)* f((Az,2)) + (A f(A)z, 2)
= (A2 f(A)z,z) — (Az,2)(Af(A)w, ),
that (2.5) holds true. O

Now we discuss the relations between operator @-class functions and operator monotone
ones.

Theorem 2.6. Let « > 0, 8 > 1 and f : (a,00) — R be a continuous function with
ft) < 8. If f(t~1) is of operator Q-class on (0,1/a), then f is operator monotone on
(o, 00).
Proof. Let 0 < a < A and 0 < ¢ < B, = B + ¢ for any positive operator B. Take positive
invertible operators C = (A+B.) ! < A™' < 1/aand D= A"'—(A+B.)"' < A7 < 1/a.
Since f(t~1) is of operator Q-class on (0,1/a) and

A

we have

re oy < L8 Loy ((1fAD) )

o Je (1—A)‘3D-5

) T-x\
_feh a=Nt g
=~ +——5 D"

Letting A — 1, we obtain
f(A) =f((C+D)™) < f(C™) = f(A+ B.).
As e — 0, we have
f(A) < f(A+ B)

for all positive operators B. We therefore conclude that f is operator monotone on («, c0).
O

Example 2.7. The following functions satisfy the conditions of Theorem 2.6.

1. f(t) =t", 0<r <1on (1,+00). Then t" < t2 for t € (1,40c0). Since f is operator
concave, by taking inverses for the Jensen operator inequality and the arithmetic-
harmonic mean inequality, we have

(M+(1-NB) <" +(1-0B")"

< -r — T <L
SAMTHA-NBT S P+

which implies f(¢~!) is an operator Q-class function.
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2. f(t) =Int on (1,+0c). In this domain, we have logt < t < t#. Since f(t~!) = —Int
is nonnegative operator convex on (0, 1) and hence of operator @-class on (0, 1).

Contrastively we have similar conditions for operator decreasing:

Theorem 2.8. Let a > 0 and f : (0,1/a) — R be a continuous function with f(t) < t=5
for some B > 1. If f is of operator Q-class on (0,1/«), then it is operator decreasing on

0,1/a).

Proof. Theorem 2.6 implies that f(¢t~1) is operator monotone on (a, 00).
Let 0 < A< B <1 Thena< B! <A™ whence f(B) < f(A). O

Taking o« — 0, we have a variation for functions on (0, c0):

Corollary 2.9. Let f : (0,00) — R be a continuous function with f(t) < =" for some
B> 1. If f is of operator Q-class on (0,00), then it is operator decreasing on (0, 00).

Remark 2.10. Since an operator monotone (resp., operator decreasing) function on (0, c0)
is operator concave (resp., operator convex), such functions satisfy

f(@(A)) = 2(f(A4)) (resp., f(D(4)) < @(f(4)))

for all unital positive linear maps ®, which is the so-called Jensen operator inequality due
to Davis—Choi, see [2, 3, 6]. In particular, a function in Corollary 2.9 is operator convex
and hence satisfies

(2.7) f (Z )\iAi> < Z)\if(Ai)

forall \; >0 (1<i<n)with) [ \=1

By this remark and that f is operator decreasing, we have some inequalities including
the subadditivity:

Corollary 2.11. Let f be a function as in Corollary 2.9. Then

f <Z Ai) <f (Z )\iAi> < ZAif(Ai) < Zf(Ai)
i1 i—1 i—1 i1

forall \; >0 (1 <1i<n) with Z;’Zl X =1.
Moreover we have an inequality for weights, whose sum is greater than 1:

Corollary 2.12. Let f be a function as in Corollary 2.9 and p; > 0 (1 < i < n) with
E?:l p;i > 1. Then

(2.8) f <ZP¢A1'> < Zpif(Ai)'

Proof. By Y piAi > Y0, %Ai, decreasingness and the Jensen inequality (2.7) we

3 ~_Pi Di "
! (;m&) = <zz=; mfl) - Z kakf(Ai) < ;pif(Ai)-

n
i=1

have
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Finally we have a variation of Theorem 2.8:

Theorem 2.13. Let f : (0,00) — (0,00) be a function with the property that tf(t) < f(t=1)
and lim;_,o+ f(t) = 0. If f is of operator Q-class, then it is operator decreasing.

Proof. Let 0 < A < B and € > 0. It follows from

MB+6&) =AM+ (12— (B—A+e

1-X
that
f(4)  f(ER(B-A+e)
FOB+a) < L T
A - —-A
< f&)+1i/\1/\ (B—A—i—e)_lf(lT(B—A—f—e)_l)
= @Jr%(B—AjLe)‘lf(?(B—AJre)‘l).
Letting A — 1 and € — 0 we obtain f(B) < f(A4). O
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