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Abstract. We introduce the notion of operator Q-class function. Every non-negative
operator convex function is of operator Q-class, but the converse is not true in general.
Some inequalities for the operator Q-class functions are presented. In particular, we
consider some conditions under which the operator Q-class functions have the operator
monotonicity property.

1 Introduction A function f : J → R is said to be a Q-class function if

f(λx + (1 − λ)y) ≤ f(x)
λ

+
f(y)
1 − λ

.

for all x, y ∈ J and all λ ∈ (0, 1). This notion is introduced by Godunova and Levin [7].
Let D be a subset of R with at least two elements. A function f : D → R is said to be

a Schur function if

f(t)(t − s)(t − u) + f(s)(s − t)(s − u) + f(u)(u − t)(u − s) ≥ 0,

for all s, t, u in D. In [7] Godunova and Levin showed that the class of Schur functions and
the Q-class functions coincide. Many properties of classical Q-class functions can be found
in [4, 5, 10, 11]. It is easy to see that every non-negative monotone function or convex
function is of Q-class.

Let H be a Hilbert space and B(H) be the algebra of all bounded linear operators on
H. We say that an operator A in B(H) is positive and write A ≥ 0 if 〈Ax,x〉 ≥ 0 for all
x ∈ H. Let I be the identity operator on H and A,B ∈ B(H). By A ≤ B we mean that
B − A ≥ 0. We denote A > 0 if A is a invertible positive operator or equivalently, there
exists a number m > 0 such that A ≥ mI. Also in this case, A > B means A−B > 0. The
spectrum of an operator A ∈ B(H) is denoted by σ(A).

In this paper we introduce operator Q-class functions and state some relations between
the operator Q-class functions and the operator monotonicity property. In particular, we
show that if α > 0 and f : (0, 1/α) → R is a continuous function with f(t) ≤ t−β for β > 1
such that f is of operator Q-class on (0, 1/α), then it is operator decreasing on (0, 1/α).
Other types of such conditions implying the operator monotonicity are discussed.

2 Main results We start our work with the following definition.

Definition 2.1. Let f be a continuous real valued function defined on an interval J . We
say that f is an operator Q-class function on J if

f(λA + (1 − λ)B) ≤ f(A)
λ

+
f(B)
1 − λ

,(2.1)

for all self-adjoint operators A,B with spectra in J and all λ ∈ (0, 1).
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Using induction one can easily extend (2.1) to n-tuples of operators and scalars, which
is a Jensen type inequality, see [8]:

f

(
n∑

k=1

λkAk

)
≤

n∑
k=1

f(Ak)
λk

for all self-adjoint operators Ak with σ(Ak) ⊆ J (1 ≤ k ≤ n) and positive numbers λk (1 ≤
k ≤ n) with

∑n
k=1 λk = 1.

The next lemma gives a useful property of Q-class functions.

Lemma 2.2. Let f : J → R be a continuous function. If f is of Q-class, in particular if f
is of operator Q-class, then f(t) ≥ 0 for all t ∈ J .

Proof. Let x, y ∈ I and λ ∈ (0, 1). Then f(λx + (1 − λ)y) ≤ f(x)
λ + f(y)

1−λ . Multiplying each
side by λ(1− λ) we get λ(1− λ)f(λx + (1− λ)y) ≤ (1 − λ)f(x) + λf(y). Letting λ → 0 we
obtain f(x) ≥ 0.

It is trivial that every non-negative operator convex function is of operator Q-class.
Also if a function f : (0,∞) → (0,∞) is operator monotone, then 1

f is operator convex
[1, Corollary V.2.6] and so 1

f is of operator Q-class. Here we give an example for operator
Q-class functions that is not operator convex (another example is also given in Example
2.7(1).

Example 2.3. Consider the function f(x) = 3 − x2 on the interval (0, 1). Then it is not
operator convex but operator concave. Since 2 ≤ f(x) ≤ 3 and 2 ≤ max{ 1

λ , 1
1−λ}, we have

3 − (λA + (1 − λ)B
)2 ≤ 3 < 2 × 2 ≤ 3 − A2

λ
+

3 − B2

1 − λ
,

for all self-adjoint operators A and B with spectra in (0, 1), that is, f is of operator Q-class.

Theorem 2.4. Let f be a continuous Q-class function with f(0) = 0. Then

(G(A) − A)[G(A)f(G(A)) − Af(A)] ≥ 0(2.2)

for all selfadjoint A with σ(A) ⊆ domf and functions G with G(domf) ⊆ domf .

Proof. Since f is of Q-class,

f(t)(t − s)(t − u) + f(s)(s − t)(s − u) + f(u)(u − s)(u − t) ≥ 0(2.3)

for all real numbers s, t, u ∈ domf . Putting u = 0 and s = G(A) in (2.3), we obtain

tf(t)(t − G(A)) + G(A)f(G(A))(G(A) − t) ≥ 0.(2.4)

Since A commutes with G(A), we can put t = A to get

Af(A)(A − G(A)) + G(A)f(G(A))(G(A) − A) ≥ 0,

which is (2.2).

Corollary 2.5. Let f be a continuous Q-class function with f(0) = 0. Then

〈Ax,x〉〈Af(A)x, x〉 ≤ 〈A2f(A)x, x〉,(2.5)

for all selfadjoint operators A with σ(A) ⊆ domf and all unit vectors x.
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Proof. Putting the constant function G(t) = 〈Ax,x〉 in the above theorem, we have

B ≡ (〈Ax,x〉 − A)[〈Ax,x〉f(〈Ax,x〉) − Af(A)] ≥ 0.(2.6)

It follows from

0 ≤ 〈Bx, x〉 = 〈Ax,x〉2f(〈Ax,x〉) − 〈Ax,x〉〈Af(A)x, x〉
− 〈Ax,x〉2f(〈Ax,x〉) + 〈A2f(A)x, x〉

= 〈A2f(A)x, x〉 − 〈Ax,x〉〈Af(A)x, x〉,
that (2.5) holds true.

Now we discuss the relations between operator Q-class functions and operator monotone
ones.

Theorem 2.6. Let α > 0, β > 1 and f : (α,∞) −→ R be a continuous function with
f(t) ≤ tβ. If f(t−1) is of operator Q-class on (0, 1/α), then f is operator monotone on
(α,∞).

Proof. Let 0 < α < A and 0 < ε ≤ Bε = B + ε for any positive operator B. Take positive
invertible operators C = (A+Bε)−1 < A−1 < 1/α and D = A−1−(A+Bε)−1 < A−1 < 1/α.
Since f(t−1) is of operator Q-class on (0, 1/α) and

λ(C + D) = λC + (1 − λ)
λ

1 − λ
D,

we have

f((λ(C + D))−1) ≤ f(C−1)
λ

+
1

1 − λ
f

((
λ

1 − λ
D

)−1
)

≤ f(C−1)
λ

+
1

1 − λ

(
1 − λ

λ

)β

D−β

=
f(C−1)

λ
+

(1 − λ)β−1

λβ
D−β .

Letting λ −→ 1, we obtain

f(A) = f((C + D)−1) ≤ f(C−1) = f(A + Bε).

As ε −→ 0, we have

f(A) ≤ f(A + B)

for all positive operators B. We therefore conclude that f is operator monotone on (α,∞).

Example 2.7. The following functions satisfy the conditions of Theorem 2.6.

1. f(t) = tr, 0 ≤ r ≤ 1 on (1, +∞). Then tr ≤ t2 for t ∈ (1, +∞). Since f is operator
concave, by taking inverses for the Jensen operator inequality and the arithmetic-
harmonic mean inequality, we have(

λA + (1 − λ)B
)−r ≤ (λAr + (1 − λ)Br)−1

≤ λA−r + (1 − λ)B−r ≤ A−r

λ
+

B−r

1 − λ
,

which implies f(t−1) is an operator Q-class function.
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2. f(t) = ln t on (1, +∞). In this domain, we have log t ≤ t ≤ tβ . Since f(t−1) = − ln t
is nonnegative operator convex on (0, 1) and hence of operator Q-class on (0, 1).

Contrastively we have similar conditions for operator decreasing:

Theorem 2.8. Let α > 0 and f : (0, 1/α) → R be a continuous function with f(t) ≤ t−β

for some β > 1. If f is of operator Q-class on (0, 1/α), then it is operator decreasing on
(0, 1/α).

Proof. Theorem 2.6 implies that f(t−1) is operator monotone on (α,∞).
Let 0 < A ≤ B < 1

α . Then α < B−1 ≤ A−1 whence f(B) ≤ f(A).

Taking α −→ 0, we have a variation for functions on (0,∞):

Corollary 2.9. Let f : (0,∞) → R be a continuous function with f(t) ≤ t−
β

for some
β > 1. If f is of operator Q-class on (0,∞), then it is operator decreasing on (0,∞).

Remark 2.10. Since an operator monotone (resp., operator decreasing) function on (0,∞)
is operator concave (resp., operator convex), such functions satisfy

f(Φ(A)) ≥ Φ(f(A)) (resp., f(Φ(A)) ≤ Φ(f(A)))

for all unital positive linear maps Φ, which is the so-called Jensen operator inequality due
to Davis–Choi, see [2, 3, 6]. In particular, a function in Corollary 2.9 is operator convex
and hence satisfies

f

(
n∑

i=1

λiAi

)
≤

n∑
i=1

λif(Ai)(2.7)

for all λi ≥ 0 (1 ≤ i ≤ n) with
∑n

i=1 λi = 1.

By this remark and that f is operator decreasing, we have some inequalities including
the subadditivity:

Corollary 2.11. Let f be a function as in Corollary 2.9. Then

f

(
n∑

i=1

Ai

)
≤ f

(
n∑

i=1

λiAi

)
≤

n∑
i=1

λif(Ai) ≤
n∑

i=1

f(Ai)

for all λi ≥ 0 (1 ≤ i ≤ n) with
∑n

i=1 λi = 1.

Moreover we have an inequality for weights, whose sum is greater than 1:

Corollary 2.12. Let f be a function as in Corollary 2.9 and pi > 0 (1 ≤ i ≤ n) with∑n
i=1 pi ≥ 1. Then

f

(
n∑

i=1

piAi

)
≤

n∑
i=1

pif(Ai).(2.8)

Proof. By
∑n

i=1 piAi ≥ ∑n
i=1

pi�
k pk

Ai, decreasingness and the Jensen inequality (2.7) we
have

f

(
n∑

i=1

piAi

)
≤ f

(
n∑

i=1

pi∑
k pk

Ai

)
≤

n∑
i=1

pi∑
k pk

f(Ai) ≤
n∑

i=1

pif(Ai).
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Finally we have a variation of Theorem 2.8:

Theorem 2.13. Let f : (0,∞) → (0,∞) be a function with the property that tf(t) ≤ f(t−1)
and limt→0+ f(t) = 0. If f is of operator Q-class, then it is operator decreasing.

Proof. Let 0 < A ≤ B and ε > 0. It follows from

λ(B + ε) = λA + (1 − λ)
λ

1 − λ
(B − A + ε)

that

f(λ(B + ε)) ≤ f(A)
λ

+
f( λ

1−λ(B − A + ε))
(1 − λ)

≤ f(A)
λ

+
1

1 − λ

1 − λ

λ
(B − A + ε)−1f

(
1 − λ

λ
(B − A + ε)−1

)

=
f(A)

λ
+

1
λ

(B − A + ε)−1f

(
1 − λ

λ
(B − A + ε)−1

)
.

Letting λ → 1 and ε → 0 we obtain f(B) ≤ f(A).
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