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Abstract. Evolutionarily stable strategies(ESSs) of asymmetric animal contests are
formulated by using Bayesian games. A criterion which is a generalization of that of
Abakukus([1]) and a strengthened Selten’s theorem([9]) are given. As an example, a
Hawk-Dove game with roles, in which the animals having the same role may possibly
meet each other, is investigated and all possible Nash equilibria and ESSs are obtained
for given parameters.

1 Introduction
In his famous book(1982, [7]), Maynard-Smith has discussed asymmetric games and

their evolutionarily stable strategies between animal contests as normal form games, where
the payoff matrix between strategies is obtained from the situation explained intuitively.
In fact, his payoff matrix, Table 13(p.101) about the Hawk-Dove-Bourgeois game involves
some miscalculations, and they are corrected in the japanese book translated by Teramoto-
Kakehasi published in 1985.

Weibull(1995, [14]) has also discussed the same situatins as role conditioned behaviors
using extensive form games and gives a simple proof of Selten’s theorem(1980, [9]).

In this paper, we will characterize ESS of asymmetric animal contests by using Bayesian
games due to Harsanyi(1967-68, [3]) and generalize Abakuks’s criterion(1980, [1]) of ESS for
normal form games to that for Bayesian games and strengthen Selten’s theorem. Finally,
we shall discuss a Hawk-Dove game with roles based on Bayesian games and its ESS under
more general setting than that of Maynard-Smith, where Selten’s theorem is not applicable
in general and give all possible Nash equilibria and ESSs.

In addition, we remark the following:
1. In his book(pp.25–31), Vega-Redondo(1996, [13]) has also given an equivalent formu-

lation with ours, but he discusses only the case where animals with the same role never meet
each other. In case of ’owner’ and ’intruder’, they may naturally never meet themselves but
in case of ’old’ and ’young’, ’small’ and ’large’, or ’male’ and ’female’, they may possibly
meet themselves.

Taylor(1979, [12]) has also discussed ESS with two types of player, but his formulation
is a little bit different from ours.

2. Selten(1983, [10], pp.278–280) has also discussed a Hawk-Dove game with incomplete
information. However his framework is a little bit different from ours. In fact, his ’possessor’
knows the value ’good’ or ’bad’ of the territory, but the ’possesor’ or ’intruder’ never meet
themselves. Moreover, his symmetrization of asymmetric animal conflicts using extensive
form games seems to be unnatural.

3. Abakuks(1980, [1]) corrected the original theorem on a criterion for ESS due to
Haigh(1975, [2]) whose statement was inadequate and also his proof is valid only in the
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restricted case. Hines’s neceaary and sufficient condition (1980, [4], p.336) is assumed to be
mixed ESSs with full support. In this case Haigh’s proof is varidated.

2 Formulation
In this section, we reexamine two-player Bayesian games and their symmetric versions

for our purpose. First, let us list up some notation:
T (Type space) : a finite set of player’s types, say, male or female, large size or small

size, owner or intruder and so on, but not necessarily two types. To avoid a trivial case, we
assume |T | ≥ 2, where |T | means the cardinal number of the set T .

S (Strategy space) : a finite set of strategies for all players. We also assume |S| ≥ 2.
un(s1, s2; t1, t2) (Payoff for player n, n=1,2) : a real valued function defined on S × S ×

T × T .
P(M) denotes the set of all probability distributions on a finite set M .
We assume that at the first stage nature gives a probability distribution {p(t1, t2)} ∈

P(T × T ). Here, we always assume that for all t ∈ T ,
∑

t1∈T p(t1, t) and
∑

t2∈T p(t, t2) are
not zero.

We call a family of probability distributions of P(S): X := ({x(s/t)}s∈S ; t ∈ T ) a
behavior strategy1 of players and the set of all behavior strategies is denoted by B. That
is, each player chooses an element from B at the same time after the first stage.

The expected payoff un(X1, X2) for player n when player n adopts a strategy Xn is
defined by

un(X1, X2) =
∑
t1∈T

∑
t2∈T

∑
s1∈S

∑
s2∈S

un(s1, s2; t1, t2)p(t1, t2)x1(s1/t1)x2(s2/t2).

When the above framework are given, we call Γ = (T, S, un, p ; n = 1, 2) a (two player)
Bayesian game.

Definition 1. A behavior strategy profile (X∗
1 , X∗

2 ) ∈ B × B is called a Bayesian Nash
equiliblium if and only if

(i) ∀X1 ∈ B, u1(X∗
1 , X∗

2 ) ≥ u1(X1, X∗
2 ),

and
(ii) ∀X2 ∈ B, u2(X∗

1 , X∗
2 ) ≥ u2(X∗

1 , X2)
hold.

Now in order to define ESS under our framework, we introduce a symmetric Bayesian
game.

Definition 2. A Bayesian game Γ = (T, S, un, p ; n = 1, 2) is called symmetric if and
only if

(i) ∀(sn, tn) ∈ S × T, n = 1, 2, u2(s1, s2; t1, t2) = u1(s2, s1; t2, t1),
and

(ii) ∀(t1, t2) ∈ T × T, p(t1, t2) = p(t2, t1)
hold.

We can easily verify that for a symmetric Bayesian game, u2(X1, X2) = u1(X2, X1)
holds for all (X1, X2) ∈ B × B.

1A behavior strategy can be represented by one random variable. See Kôno([5], [6]).
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Now we can define ESS for a symmetric Bayesian game Γ = (T, S, un, p ; n = 1, 2) as
follows:

Definition 3. A behavior strategy X∗ ∈ B is said to be an ESS if and only if
(i) ∀X ∈ B, u1(X∗, X∗) ≥ u1(X, X∗),

and
(ii) if u1(X∗, X∗) = u1(X, X∗) and X �= X∗, then u1(X∗, X) > u1(X, X)

hold.

We observe that if a behavior strategy X∗ ∈ B is an ESS, then condition (i) of Definition
3 implies that the behavior strategy profile (X∗, X∗) is a Bayesian Nash equilibrium. In
this case, we call a behavior strategy X∗ a symmetric Bayesian Nash equilibrium or simply
a Bayesian Nash equilibrium if no confusion arises.

In the following discussions, we need a refinement of the notion of a mixed strategy,
which is a little bit different from the usual one.

We denote the support of a probability distribution {x(s)}s∈S ∈ P(S) by Supp({x(s)}),
that is Supp({x(s)}) := {s ∈ S ; x(s) > 0}.

Definition 4. A behavior strategy X = ({x(s/t)}s∈S ; t ∈ T ) is called a t-pure behav-
ior strategy if |Supp({x(s/t)})| = 1, a t-mixed behavior strategy if |Supp({x(s/t)})| ≥
2, a totally pure behavior strategy if it is a t-pure behavior strategy for all t. We observe
that our t-mixed behavior strategy is different from a mixed strategy in an extensive form
game but our totally pure behavior strategy coincides with a pure strategy in an extensive
form game.

Now, we have the following lemma equivalent to Definition 1.

Lemma 1. A behavior strategy profile (X∗
1 = ({x∗

1(s/t)}s∈S ; t ∈ T ), X∗
2 =

({x∗
2(s/t)}s∈S ; t ∈ T )) is a Bayesian Nash equilibrium if and only if
(i) ∀t ∈ T, ∀{x1(s)}s∈S ∈ P(S)C∑
s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t, t2)(x∗
1(s1/t) − x1(s1))x∗

2(s2/t2)p(t, t2) ≥ 0,

and
(ii) ∀t ∈ T, ∀{x2(s)}s∈S ∈ P(S) C∑
s1∈S

∑
s2∈S

∑
t1∈T

u2(s1, s2 ; t1, t)x∗
1(s1/t1)(x∗

2(s2/t) − x2(s2))p(t1, t) ≥ 0

hold.

The following lemma is well known in case of normal form games.
For a behavior strategy X = ({x(s/t)}s∈S ; t ∈ T ), set

S1(X/t) := {s ∈ S ; max
i∈S

∑
s2∈S

∑
t2∈T

u1(i, s2 ; t, t2)x(s2/t2)p(t, t2)

=
∑
s2∈S

∑
t2∈T

u1(s, s2 ; t, t2)x(s2/t2)p(t, t2)},
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and
S2(X/t) := {s ∈ S ; max

j ∈S

∑
s1∈S

∑
t1∈T

u2(s1, j ; t1, t)x(s1/t1)p(t1, t)

=
∑
s1∈S

∑
t1∈T

u2(s1, s ; t1, t)x(s1/t1)p(t1, t)}.

Lemma 2. A behavior strategy profile (X∗
1 = ({x∗

1(s/t)}s∈S ; t ∈ T ), X∗
2 = ({x∗

2(s/t)}s∈S ;
t ∈ T )) is a Bayesian Nash equiliblium if and only if

(i) ∀t ∈ T, Supp({x∗
1(s/t)}) ⊂ S1(X∗

2/t),
and

(ii) ∀t ∈ T, Supp({x∗
2(s/t)}) ⊂ S2(X∗

1/t)
hold.

Proof. First, we assume that (i) of Lemma 2 holds. Then, by the definition of S1(X∗
2/t),

for all j ∈ S and t ∈ T , we have

max
i∈S

∑
s2∈S

∑
t2∈T

u1(i, s2 ; t, t2)x∗
2(s2/t2)p(t, t2)

=
∑
s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t, t2)x∗
1(s1/t)x∗

2(s2/t2)p(t, t2)

≥
∑
s2∈S

∑
t2∈T

u1(j, s2 ; t, t2)x∗
2(s2/t2)p(t, t2).

Here, multiply the both sides of the above inequality by x1(j) of any probability dis-
trubution {x1(j)}j∈S ∈ P(S) and sum with respect to j. Then, (i) of Lemma 1 holds by
virtue of

∑
j∈S x1(j) = 1.

Conversely, if there exists t1 ∈ T such that s10 /∈ S1(X∗
2/t1) and x∗

1(s10/t1) > 0, then
by the definition of S1(X∗

2/t1), we have

max
i∈S

∑
s2∈S

∑
t2∈T

u1(i, s2 ; t1, t2)x∗
2(s2/t2)p(t1, t2) >

∑
s2∈S

∑
t2∈T

u1(s10, s2 ; t1, t2)x∗
2(s2/t2)p(t1, t2).

Therefore, for any {x1(s)}s∈S ∈ P(S) such that Supp({x1(s)}) ⊂ S1(X∗
2/t1), we have the

following estimations:∑
s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t1, t2)x∗
1(s1/t1)x∗

2(s2/t2)p(t1, t2)

=
∑

s1∈S,s1 �=s10

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t1, t2)x∗
1(s1/t1)x∗

2(s2/t2)p(t1, t2)

+
∑
s2∈S

∑
t2∈T

u1(s10, s2 ; t1, t2)x∗
1(s10/t1)x∗

2(s2/t2)p(t1, t2)

< max
i∈S

∑
s2∈S

∑
t2∈T

u1(i, s2 ; t1, t2)x∗
2(s2/t2)p(t1, t2)

=
∑
s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t1, t2)x1(s1)x∗
2(s2/t2)p(t1, t2).



ESS BASED ON BAYESIAN GAMES 557

But, this inequality contradicts condition (i) of Lemma 1. In a similar manner, we have
the equivalence between (ii) of Lemma 1 and (ii) of Lemma 2. (Q.E.D.)

By rewriting Definition 3, we have the following lemma.

Lemma 3. A behavior strategy X∗ = ({x∗(s/t)}s∈S ; t ∈ T ) is an ESS if and only if
(i) the behavior strategy X∗ is a Bayesian Nash equilibrium, and
(ii) for all behavior strategy ({x(s/t}s∈S ; t ∈ T ) �= ({x∗(s/t)}s∈S ; t ∈ T ) such that
∀t1 ∈ T ,

∑
s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t1, t2)(x∗(s1/t1) − x(s1/t1))x∗(s2/t2)p(t1, t2) = 0,(1)

the following strict inequality holds:∑
s1∈S

∑
s2∈S

∑
t1∈T

∑
t2∈T

u1(s1, s2 ; t1, t2)(x∗(s1/t1) − x(s1/t1))x(s2/t2)p(t1, t2) > 0.(2)

Definition 5. In a symmetric Bayesian game, a Bayesian Nash equilibrium X∗ =
({x∗(s/t)}s∈S ; t ∈ T ) is called a t-strong Bayesian Nash equilibrium if and only if for
∀ {x(s)}s∈S ∈ P(S) �= {x∗(s/t)}s∈S,

∑
s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t, t2)(x∗(s1/t) − x(s1))x∗(s2/t2)p(t, t2) > 0(3)

holds. If it is a t-strong Bayesian Nash equilibrium for all t ∈ T , then it is simply called a
strong Bayesian Nash equilibrium.

Remark. (i) By virtue of Lemma 2, a Bayesian Nash equilibrium X∗ = ({x∗(s/t)}s∈S,
t ∈ T ) is t-strong if and only if |S1(X∗/t)| = 1 holds.

(ii) A strong Bayesian Nash equilibrium is a totally pure behavior strategy and an ESS,
since (ii) of Lemma 3 holds trivially.

(iii) A Bayesian Nash equilibrium which is a t-pure behavior strategy is not necessarily
a t-strong Bayesian Nash equilibrium.

3 Theorems
The following theorem can be obtained immediately from the definition of ESS and

Lemma 2.

Theorem 1. If a behavior strategy X∗ = ({x∗(s/t)}s∈S ; t ∈ T ) is an ESS, then any
other behavior strategy X = ({x(s/t)}s∈S ; t ∈ T ) �= X∗ such that Supp({s ; x(s/t)}) ⊂
S1(X∗/t) hold for all t ∈ T is not a Bayesian Nash equilibrium.

Corollary. If a behavior strategy X∗ = ({x∗(s/t)}s∈S; t ∈ T ) such that Supp({x∗(s/t)}
= S hold for all t ∈ T is an ESS, then this behavior strategy is only one symmetric Bayesian
Nash equilibrium in this game.

Now, in order to obtain an criterion whether a Bayesian Nash equilibrium X∗ =
({x∗(s/t)}s∈S ; t ∈ T ) is an ESS or not, let us continue an analysis of Lemma 3. By
taking account of Lemma 2, the equation (1) holds if and only if ∀t ∈ T, Supp({x(s/t)}) ⊂
S1(X∗/t), and {x(s/t)} can be different from {x∗(s/t)} if and only if |S1(X∗/t)| ≥ 2. There-
fore, setting T0 := {t ; |S1(X∗/t)| ≥ 2}, and subtracting (2) from (1), we have
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∑
s1∈S

∑
s2∈S

∑
t1∈T0

∑
t2∈T0

u1(s1, s2 ; t1, t2)×(4)

(x∗(s1/t1) − x(s1/t1))(x∗(s2/t2) − x(s2/t2))p(t1, t2) < 0.

Now, choose an element s
(0)
t from Supp({x∗(s/t)}) and set

S0(X∗/t) := S1(X∗/t) − {s(0)
t }.

By using the relations

x∗(s(0)
t /t) = 1 −

∑
s∈S0(X∗/t)

x∗(s/t), and x(s(0)
t /t) = 1 −

∑
s∈S0(X∗/t)

x(s/t),

formula (4) turns out to be the following:∑
t1∈T0

∑
t2∈T0

∑
s1∈S0(X∗/t1)

∑
s2∈S0(X∗/t2)

(u1(s1, s2 ; t1, t2) − u1(s
(0)
t1 , s2 ; t1, t2)

− u1(s1, s
(0)
t2 ; t1, t2) + u1(s

(0)
t1 , s

(0)
t2 ; t1, t2))p(t1, t2)×

(x∗(s1/t1) − x(s1/t1))(x∗(s2/t2) − x(s2/t2)) < 0.(5)

Here, we introduce a square matrix U(X∗) = (u((s1, t1), (s2, t2))) of order
d :=

∑
t∈T0

|S0(X∗/t)|, where the entry u((s1, t1), (s2, t2)) ; tn ∈ T0, sn ∈ S0(X∗/tn), n =
1, 2 is defined as follows:

u((s1, t1), (s2, t2)) := ( − u1(s1, s2 ; t1, t2) + u1(s1, s
(0)
t2 ; t1, t2)

+ u1(s
(0)
t1 , s2 ; t1, t2) − u1(s

(0)
t1 , s

(0)
t2 ; t1, t2))p(t1, t2) ;

tn ∈ T0, sn ∈ S0(X∗/tn), n = 1, 2.(6)

We denote also symmetrized matrix of U(X∗) by Us(X∗), i.e. Us(X∗) = (U(X∗) +
tU(X∗)/2, where tA means transposed matrix of A and let Rd be d-dimensional Eu-
clidean space with the dot product ( , ) as the usual inner product. Then, setting �y =
{x∗(s/t) − x(s/t)} ∈ Rd, the formula (5) turns out to be the following:

(U(X∗)�y, �y) = (Us(X∗)�y, �y) > 0.(7)

Then, we have the following theorem on criteria of ESS when a behavior strategy
X∗ = ({x∗(s/t)}s∈S ; t ∈ T ) is a Bayesian Nash equilibrium. This theorem is a gener-
alization of that of Abakuks(1980, [1]) to Bayesian games.

Theorem 2.
(i) If X∗ is a strong Bayesian Nash equilibrium, then it is an ESS.
(ii) If the matrix Us(X∗) is positive definite, then a Bayesian Nash equilibrium X∗ is

an ESS.
(iii) If for all t ∈ T0, |S1(X∗/t)| = |Supp({x∗(s/t)})| holds with at most one point ex-

ception t0, where |S1(X∗/t0)| = |Supp({x∗(s/t0)})|+1 holds and the behavior strategy X∗

is an ESS, then the matrix Us(X∗) is positive definite2.

2The assumption can not be relaxed due to Abakuks([1])’s counter example.
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Proof. (i) If a behavior strategy X∗ = ({x∗(s/t)}s∈S ; t ∈ T ) is a strong Bayesian Nash
equilibrium, then by Lemma 2, there does not exist such behavior strategies ({x(s/t}s∈S ∈
P(S) ; t ∈ T ) �= ({x∗(s/t)}s∈S , t ∈ T ) that equation (1) holds. Therefore, it is an ESS by
definition.

(ii) By the definition of positive definiteness of the matrix Us(X∗), formula (7) holds
for any non-zero vector �y ∈ Rd.

(iii) Take any non-zero vector �y = {y(s/t)}s∈S0(X∗/t), t∈T0 ∈ Rd and set

ε = min
s∈Supp({x∗(s/t)}), t∈T0

{x∗(s/t)}.

We observe that ε > 0. If the exceptional point t0 exists, then there exists only one point
s
(1)
t0 = S1(X∗/t0) − Supp({x∗(s/t0)}) by the assumption and set

sig{�y} :=

{
1 if y(s(1)

t0 /t0) ≥ 0 or there does not exist such t0,
−1 if y(s(1)

t0 /t0) < 0.
(8)

Finally, set
M := max

t∈T0

∑
s∈S0(X∗/t)

|y(s/t)|,

and
x(s/t) := x∗(s/t) − (sig{�y}ε/M)y(s/t) ; t ∈ T0, s ∈ S0(X∗/t).

By our setting of M , it follows that x(s/t) ≥ 0 holds for any t ∈ T0, s ∈ S0(X∗/t) and

x(s(0)
t ) := 1 −

∑
s∈S0(X∗/t)

x(s/t) ≥ 1 −
∑

s∈S0(X∗/t)

x∗(s/t) − ε = x∗(s(0)
t /t) − ε ≥ 0.

Therefore, substituting x∗(s/t) − x(s/t) to the formula (7), we have

(sig{�y}ε/M)2(Us(X∗)�y, �y) > 0.

This inequality shows that the matrix Us(X∗) is positive definite. (Q.E.D.)

The following theorem strengthens that of Selten(1980, [9]).

Theorem 3. If p(t0, t0) = 0, then ESS implies t0-strong Bayesian Nash equilibrium.

Corollary.(Selten [9]) If p(t.t) = 0 holds for all t ∈ T , then ESS implies a strong
Bayesian Nash equilibrium3.

Proof. Suppose that |S1(X∗/t0)| ≥ 2 holds, that is, X∗ is not t0-strong Bayesian
Nash equilibrium but a Bayesian Nash equilibrium. Then, from |S1(X∗/t0)| ≥ 2 and
Lemma 2, there exists a behavior strategy {x(s/t0)}s∈S1(X∗/t0) ∈ P(S1(X∗/t0)) such that
{x(s/t0)}s∈S1(X∗/t0) �= {x∗(s/t0)}s∈S1(X∗/t0), and∑

s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t0, t2)x∗(s1/t0)x∗(s2/t2)p(t0, t2) =

3As for Selten’s statement, it is not clear the difference between a strong Bayesian Nash equilibrium and
a totally pure behavior strategy which is a Bayesian Nash equilibrium.
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∑
s1∈S

∑
s2∈S

∑
t2∈T

u1(s1, s2 ; t0, t2)x(s1/t0)x∗(s2/t2)p(t0, t2)(9)

holds.
Now, we define a new behavior strategy Y = ({y(s/t)}s∈S ; t ∈ T ) as follows:

y(s/t) =
{

x∗(s/t) if t �= t0,
x(s/t0) if t = t0

.

Then, taking account of p(t0, t0) = 0, we have

u1(Y, Y ) =
∑
t1∈T

∑
t2∈T

∑
s1∈S

∑
s2∈S

u1(s1, s2 ; t1, t2)y(s1/t1)y(s2/t2)p(t1, t2)

=
∑
s1∈S

∑
s2∈S

(
∑

t1 �=t0

∑
t2 �=t0

u1(s1, s2 ; t1, t2)x∗(s1/t1)y(s2/t2)p(t1, t2)

+
∑

t2 �=t0

u1(s1, s2 ; t0, t2)x(s1/t0)x∗(s2/t2)p(t0, t2)

+
∑

t1 �=t0

u1(s1, s2 ; t1, t0)x∗(s1/t1)y(s2/t0)p(t1, t0))

(by virtue of (9))

=
∑
s1∈S

∑
s2∈S

(
∑

t1 �=t0

∑
t2 �=t0

u1(s1, s2 ; t1, t2)x∗(s1/t1)y(s2/t2)p(t1, t2)

+
∑

t2 �=t0

u1(s1, s2 ; t0, t2)x∗(s1/t0)y(s2/t2)p(t0, t2)

+
∑

t1 �=t0

u1(s1, s0 ; t1, t0)x∗(s1/t1)y(s2/t0)p(t1, t0))

= u1(X∗, Y ),

which implies that the Bayesian Nash equilibrium X∗ = ({x∗(s/t)}s∈S , t ∈ T ) is not an
ESS. (Q.E.D.)

4 Bayesian Hawk-Dove Game
As an example of our Bayesian game described above, let us reformulate Maynard-

Smith’s Hawk-Dove game with roles discussed in his book([7], §8).

Type Space : T = {1, 2}. {owner, intruder} or {larger, smaller} for examples.
{p(k, m)}(k,m)∈T×T : a probability distribution on T × T given in advance by nature.
We assume the following two conditions:

(i) p(1, 2) > 0 (non-triviality), and
(ii) p(1, 2) = p(2, 1) (symmetricity).
Since any probability distribution satisfying the above conditions can be characterized

by two parameters, we introduce two parameters q1 and q2 defined as follows:

q1 =
p(1, 1)

p(1, 1) + p(1, 2)
, q2 =

p(2, 1)
p(2, 1) + p(2, 2)

.

We remark that non-triviality and symmetricity of {p(k, m)} imply 0 ≤ q1 < 1 and
0 < q2 ≤ 1.
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Strategy Space : S = {1, 2}={H(awk),D(ove)}
Payoff Matrices : Payoff matrices (u1(i, j ; k,m), u2(i, j ; k,m))(i,j)∈S×S for the type

(k,m) ∈ T × T are defined as follows: Here, Player 1 picks the row, while Player 2 selects
the column. The element on the left side in the parenthesis represents Player 1’s payoff and
that on the right side denotes Player 2’s payoff. Here, we assume4 V, v, C, c > 0.

¶ Type (1, 1)F
H D

H ((V − C)/2, (V − C)/2) (V, 0)
D (0, V ) (V/2, V/2)

¶ Type (1, 2)F
H D

H ((V − C)/2, (v − c)/2) (V, 0)
D (0, v) (V/2, v/2)

¶ Type (2, 1)F
H D

H ((v − c)/2, (V − C)/2) (v, 0)
D (0, V ) (v/2, V/2)

¶ Type (2, 2)F
H D

H ((v − c)/2, (v − c)/2) (v, 0)
D (0, v) (v/2, v/2)

Table 1. Payoff matrices of Bayesian Hawk-Dove game

Since any behavior strategy ({x(s/t)}s∈S ; t ∈ T ) can be determined by x(1/1) and
x(1/2), we represent this behavior strategy by (x(1/1), x(1/2)). Then, Maynard-Smith’s
“Bourgeois” strategy, i.e. if owner, play Hawk; if intruder, play Dove is represented by
(x(1/1), x(1/2)) = (1, 0). We denote Bourgeois strategy by “B” strategy. Likewise, we
introduce “ Anti-Bourgeois” strategy, i.e. if intruder, play Hawk; if owner, play Dove. This
stragegy is represented by (x(1/1), x(1/2)) = (0, 1). We denote Anti-Bourgeois strategy by
“A” strategy. If he/she plays always Hawk, it is represented by (x(1/1), x(1/2)) = (1, 1)
and we denote it by “H” strategy. Finally, If he/she plays always Dove, it is represented
by (x(1/1), x(1/2)) = (0, 0) and we denote it by “D” strategy. We remark that the utility
table u1(X, Y ) calculated by our formulation , where X, Y = “H”, “D”, “B”, “A” under
the assumption p(1, 2) = p(2, 1) = 1/2 coincides with that of Table 13 in page 110 of the
japanese translation of Maynard-Smith’s book. But this result is slitely different from his
original table 13 in page 101 of his book.

As is shown below, the mathmatical stracture is completely determined by five parame-
ters, 0 ≤ q1 < 1, 0 < q2 ≤ 1, r1 := V/C > 0, r2 := v/c > 0 and γ := C/c > 0. Bayesian Nash
equilibria are determined by the first four parameters q1, q2, r1 and r2, but to determine
whether they are ESS or not, the parameter γ is required. We will give a complete classi-
fication using these parameters when a behavior strategy (x∗(1/1), x∗(1/2)) is a Bayesian
Nash equilibrium or an ESS.

The first proposition is about when a Bayesian Nash equilibrium X∗ = (x∗(1/1), x∗(1/2))
is an ESS or not.

4Maynard-Smith has assumed that V > v > 0 and C = c > 0, but we investigate them under more
general setting.
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Proposition 1.
(i) Assume |S1(X∗/1)| = |S1(X∗/2)| = 1. Then, the Bayesian Nash equilibrium X∗ is

an ESS
(ii) Assume |S1(X∗/1)| = 1 and |S1(X∗/2)| = 2. Then, the Bayesian Nash equilibrium

X∗ is an ESS if and only if p(2, 2) > 0 ( ⇔ (1 − q2) > 0).
(iii) Assume |S1(X∗/1)| = 2 and |S1(X∗/2)| = 1. Then, the Bayesian Nash equilibrium

X∗ is an ESS if and only if p(1, 1) > 0 ( ⇔ q1 > 0).
(iv) Assume |S1(X∗/1)| = |S1(X∗/2)| = 2, and |Supp({x∗(s/1)})| = 2 or |Supp({x∗(s/2)}

)| = 2. Then, the Bayesian Nash equilibrium X∗ = (x∗(1/1), x∗(1/2)) is an ESS if and only

0 < q1, q2 < 1 and q2 < g(q1), where

g(q1) =
4γq1

4γ + (γ − 1)2(1 − q1)
.

(v) Assume |S1(X∗/1)| = |S1(X∗/2)| = 2 and |Supp({x∗(s/1)})| = |Supp({x∗(s/2)})| =
1. Then, the Bayesian Nash equilibrium is possibly one of four totally pure strategies. In
case of “H” or “D” strategy, it is an ESS if and only if 0 < q1, q2 < 1. On the other hand
in case of “B” or “A” strategy, it is an ESS if and only if 0 < q1, q2 < 1 and q2 < g(q1).

Proof. Theorem 2 is applicable to the cases (i),(ii),(iii) and (iv), but case (v) is obtained
directly from the estimation of (5).

(i) In this case, X∗ is a strong Bayesian Nash equilibrium. Therefore, it is an ESS by
(i) of Theorem 2.

(ii) In this case, T0 = { 2 } and we can choose s
(0)
2 = 1 or s

(0)
2 = 2. In any case,

from the definition of U(X∗), or (6), it is enough to check d = 1 dimensional matrix
U(X∗) = u((2, 2), (2 2)) or U(X∗) = u((1, 2), (1 2)), but both values coincide and we have

u((1, 2), (1, 2)) = u((2, 2), (2, 2))
= (−u1(1, 1 ; 2, 2) + u1(1, 2 ; 2, 2) + u1(2, 1 ; 2, 2)− u1(2, 2 ; 2, 2))p(2, 2).
= cp(2, 2)/2.

Therefore, X∗ is an ESS if and only if p(2, 2) > 0. We can prove (iii) in a similar manner.
(iv) In this case, T0 = {1, 2} and we can choose s

(0)
1 = s

(0)
2 = 1 or s

(0)
1 = s

(0)
2 = 2. In

any case, we have the same matrix U(x∗) = (u(k,m))k,m=1,2 :

u(k, m) = (−u1(1, 1 ; k,m) + u1(1, 2 ; k,m)
+ u1(2, 1 ; k,m) − u1(2, 2 ; k,m))p(k,m), k,m = 1, 2.

By calculation, we get

Us(X∗) =
1
4

(
2Cp(1, 1) (C + c)p(1, 2)

(C + c)p(2, 1) 2cp(2, 2)

)
.

Therefore, Us(X∗) is positive definite if and only if p(1, 1) > 0, p(2, 2) > 0 and 4det(U s(X∗))
= 4Ccp(1, 1)p(2, 2)− (C + c)2(p(1, 2))2 > 0. By using q1, q2 and γ, we have the equivalent
conditions 0 < q1, q2 < 1 and q2 < g(q1).

(v) In this case, we can not apply Theorem 2. From the assumption |Supp({x∗(s/1)})| =
|Supp({x∗(s/2)})| = 1, there are four possibilities, that is, X∗ is “H”, “D”, “B” or “A”
strategy. We shall check each case.
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Case 1. X∗=“H” strategy, i.e. x∗(1/1) = 1, x∗(1/2) = 1. In (5), T0 = T , s
(0)
1 = 1, s

(0)
2 =

1 and so S0(X∗/1) = S0(X∗/2) = { 2 }. Therefore, formula (6) turns out to be the following:

u((2, k), (2, m))=(−u1(2, 2 ; k,m) + u1(2, 1 ; k,m) + u1(1, 2 ; k,m) − u1(1, 1 ; k,m))p(k,m).

Since �y(2/k) = x∗(2/k) − x(2/k) = −x(2/k) ; k = 1, 2, we have

(U(X∗)�y, �y) =

Cp(1, 1)(x(2/1))2/2+Cp(1, 2)x(2/1)x(2/2)/2+cp(2, 1)x(2/2)x(2/1)/2+cp(2, 2)(x(2/2))2/2

= C(p(1, 1) + p(1, 2))x(2/1)(q1x(2/1) + (1 − q1)x(2/2))/2

+ c(p(2, 1) + p(2, 2))x(2/2)(q2x(2/1) + (1 − q2)x(2/2))/2.(10)

Therefore, for (x∗(2/1), x∗(2/2)) = (0, 0) �= (x(2/1), x(2/2)), if 0 < q1, q2 < 1, (10) is
positive, whereas if q1 = 0, then (10) is zero for x(2/1) �= 0, x(2/2) = 0, and if q2 = 1, then
(10) is zero for x(2/1) = 0, x(2/2) �= 0.

Case 2. X∗=“D” strategy, i.e. x∗(1/1) = 0, x∗(1/2) = 0. As is shown in Proposition 2,
“D” strategy can not be a Bayesian Nash equilibium, so we omit this case.

Case 3. X∗=“B” strategy, i.e. x∗(1/1) = 1, x∗(1/2) = 0. In (5), T0 = T , s
(0)
1 = 1, s

(0)
2 =

2 and so S0(X∗/1) = { 2 }, S0(X∗/2) = { 1 }. Therefore, in this case we have

U(X∗) =
(

(C/2)p(1, 1) −(C/2)p(1, 2)
−(c/2)p(2, 1) (c/2)p(2, 2)

)
.

Contrary to case 1, (10) must be positive for x(2/1) and −x(1/2) instead of x(2/2). With
a little inspection, we conclude that Us(X∗) must be positive definite. Therefore, we have
the same conditions as those of (iv) of Proposition 1. We can prove the case of “A” strategy
in a similar manner. (Q.E.D.)

Now we give a complele classification by using four parameters q1, q2, r1 and r2 what
kind of Bayesian Nash equilibria exist and whether they are ESS or not. Here, imagine the
first quadrant {(r1, r2) ; r1 > 0, r2 > 0} in a Cartesian coordinate system (r1, r2).

Proposition 2.
(I) “D” strategy is never Bayesian Nash equilibrium.

(II) (i) r1 > 1, r2 > 1 : “H” strategy is a unique strong Bayesian Nash equilibrium and
an ESS in this domain.

(ii) r1 = 1, r2 > 1 : “H” strategy is a unique Bayesian Nash equilibrium, and it is an
ESS if and only if q1 > 0.

(iii) r1 > 1, r2 = 1 : “H” strategy is a unique Bayesian Nash equilibrium, and it is an
ESS if and only if 1 − q2 > 0.

(iv) r1 = 1, r2 = 1 : “H” strategy is a unique Bayesian Nash equilibrium, and it is an
ESS if and only if 0 < q1, q2 < 1.

In case of r1 < 1 or r2 < 1, the results depend on q1, q2 and γ.

(III) Assume q1 = 0, q2 = 1 (⇐⇒ p(1, 1) = p(2, 2) = 0, p(1, 2) = p(2, 1) = 1/2.)
(v) r2 < 1 < r1 : “B” strategy is a unique strong Bayesian Nash equilibrium and an

ESS.
(vi) r2 < 1 = r1 : “B” strategy is a strong Bayesian Nash equilibrium and an ESS, and

there are other Bayesian Nash equilibria such as (0 ≤ x∗(1/1) ≤ r2, x∗(1/2) = 1) but these
equilibria are not ESS.
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(vii) r1 < 1 < r2 : “A” strategy is a unique strong Bayesian Nash equilibrium and an
ESS.

(viii) r1 < 1 = r2 : “A” strategy is a strong Bayesian Nash equilibrium and an ESS,
and there are other Bayesian Nash equilibria such as (x∗(1/1) = 1, 0 ≤ x∗(1/2) ≤ r1) but
these equilibria are not ESS.

(ix) r1 < 1, r2 < 1 : There are three Bayesian Nash equilibria5 (a) “B” strategy (b)
“A” strategy and (c) (x∗(1/1), x∗(1/2)) = (r2, r1). Among these equilibria, (a) and (b) are
strong Bayesian Nash equilibria and ESS, but (c) is not an ESS.

We remark that the cases (v) and (ix) are those investigated by Maynard-Smith and his
results coincide with ours.

For real numbers a and b, we denote max{a, b} by a∨ b and min{a, b} by a∧ b, respec-
tively.

(IV) Assume q1 = 0, 0 < q2 < 1 (⇐⇒ p(1, 1) = 0, 0 < p(2, 2) < 1).
(x) r2 < 1 < r1 : There is a unique Bayesian Nash equilibrium (x∗(1/1) = 1, x∗(1/2) =

((r2 − q2)/(1 − q2)) ∨ 0) which is an ESS.
(xi) r2 < 1 = r1 : There is a Bayesian Nash equilibrium (x∗(1/1) = 1, x∗(1/2) =

((r2 − q2)/(1 − q2)) ∨ 0) which is an ESS. In addition, if r2 ≥ 1 − q2, then there are such
Bayesian Nash equilibria that (0 ≤ x∗(1/1) ≤ (r2 − (1 − q2))/q2, x∗(1/2) = 1) which are
not ESS.

(xii) r1 < 1 : If r2 < (1−q2)r1+q2, then there is a Bayesian Nash equilibrium (x∗(1/1) =
1, x∗(1/2)) = ((r2− q2)/(1− q2))∨0) which is an ESS. On the other hand, if r2 > (1− q2)r1

, then there is a Bayesian Nash equilibrium (x∗(1/1) = 0, x∗(1/2) = (r2/(1−q2))∧1) which
is an ESS. In addition, if (1 − q2)r1 ≤ r2 ≤ (1 − q2)r1 + q2, then there is a Bayesian Nash
equilibrium (x∗(1/1) = (r2 − (1 − q2)r1)/q2, x∗(1/2) = r1) which is not an ESS.

(V) Assume 0 < q1 < 1, q2 = 1 (⇐⇒ 0 < p(1, 1) < 1, p(2, 2) = 0).
(xiii) r1 < 1 < r2 : There is a unique Bayesian Nash equilibrium (x∗(1/1)) = ((r1 − (1−

q1))/q1) ∨ 0, x∗(1/2) = 1) which is an ESS.
(xiv) r1 < 1 = r2 : There is a Bayesian Nash equilibrium (x∗(1/1) = ((r1−(1−q1))/q1)∨

0, x∗(1/2) = 1) which is an ESS. In addition, if r1 ≥ q1, then there are scuh Bayesian Nash
equilibrium that (x∗(1/1) = 1, 0 ≤ x∗(1/2) ≤ (r1 − q1)/(1 − q1)) which are not ESS.

(xv) r2 < 1 : If r1 < q1r2 + (1 − q1), then there is a Bayesian Nash equilibrium
(x∗(1/1) = ((r1 − (1 − q1))/q1) ∨ 0, x∗(1/2) = 1) which is an ESS. On the other hand, if
r1 > q1r2, then there is a Bayesian Nash equilibrium (x∗(1/1)) = (r1/q1) ∧ 1, x∗(1/2) = 0)
which is an ESS. In addition, if q1r2 ≤ r1 ≤ q1r2 + (1− q1), then There is a Bayesian Nash
equilibrium (x∗(1/1) = r2, x∗(1/2) = (r1 − q1r2)/(1 − q1)) which is not an ESS.

(VI) In case of 0 < q1, q2 < 1 (⇐⇒ 0 < p(1, 1) < 1, 0 < p(2, 2) < 1), we divide it in the
following three cases. In these cases, the classifications are a little bit complecated. First,
we introduce the following four linear functions having two parameters q1 and q2:

�1(r1) := (1 − q2)r1/(1 − q1), �2(r1) := q2r1/q1 + (q1 − q2)/q1,
�3(r2) := q1r2/q2, �4(r2) := (1 − q1)r2/(1 − q2) + (q1 − q2)/(1 − q2).

(VI-1) Assume 0 < q2 < q1 < 1 : Set

R11 := {(r1, r2) ; r1 < 1, r2 > �1(r1) ∧ �2(r1)},
R12 := {(r1, r2) ; r1 > �3(r2) ∧ �4(r2), r2 < 1},
R13 := {(r1, r2) ; r1 ≤ �3(r2) ∧ �4(r2), r2 ≤ �1(r1) ∧ �2(r1)} − (1, 1).

5In this case, there exist two nonsymmetric Bayesian Nash equilibria
(x∗

1(1/1),x∗
1(1/2) ; x∗

2(1/1), x∗
2(1/2))= (r2, 1 ; 0, r1) or (r2, 0 ; 1, r1).
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We remark that the three domains R11, R12 and R13 make a partition of the domain
{r1 < 1} ∪ {r2 < 1}. As is shown below, there is a unique Bayesian Nash equilibrium in
each domain.

(xvi) (r1, r2) ∈ R11 : There is a unique Bayesian Nash equilibrium (x∗(1/1) = ((r1 −
(1 − q1))/q1) ∨ 0, x∗(1/2) = (r2/(1 − q2)) ∧ 1) which is an ESS.

(xvii) (r1, r2) ∈ R12 : There is a unique Bayesian Nash equilibrium (x∗(1/1) = (r1/q1)∧
1, x∗(1/2) = ((r2 − q2)/(1 − q2)) ∨ 0) which is an ESS.

(xviii) (r1, r2) ∈ R13 : There is a unique Bayesian Nash equilibrium (x∗(1/1) = ((1 −
q2)r1 − (1 − q1)r2)/(q1 − q2), x∗(1/2) = (−q2r1 + q1r2)/(q1 − q2)) which is an ESS if and
only if q2 < g(q1).

(VI-2) Assume 0 < q1 < q2 < 1 : Set

R21 := {(r1, r2) ; r1 < 1, r2 > �1(r1) ∨ �2(r1)},
R22 := {(r1, r2) ; r1 > �3(r2) ∨ �4(r2), r2 < 1},
R23 := {(r1, r2) ; r1 ≥ �3(r2) ∨ �4(r2), r2 ≥ �1(r1) ∨ �2(r1)} − (1, 1).
We remark that contrary to case (VI-1), {0 < r1 < 1} ∪ {0 < r2 < 1} = R21 ∪ R22 and

R23 ⊃ R21 ∩ R22.
(xix) (r1, r2) ∈ R21 : There is a Bayesian Nash equilibrium (x∗(1/1) = ((r1 − (1 −

q1))/q1) ∨ 0, x∗(1/2) = (r2/(1 − q2)) ∧ 1) which is an ESS.
(xx) (r1, r2) ∈ R22 : There is a Bayesian Nash equilibrium (x∗(1/1) = (r1/q1) ∧

1, x∗(1/2) = ((r2 − q2)/(1 − q2)) ∨ 0) which is an ESS.
(xxi) (r1, r2) ∈ R23 : There is a Bayesian Nash equilibrium (x∗(1/1) = ((1− q2)r1− (1−

q1)r2)/(q1 − q2), x∗(1/2) = (−q2r1 + q1r2)/(q1 − q2)) which is not an ESS.

(VI-3) Assume 0 < q1 = q2 =: q < 1 (⇐⇒ p(1, 1) = q2). In this case, there are Bayesian
Nash equilibria which are ESS obtained by putting q1 = q2 = q in cases (xvi), (xvii) of (VI-1)
or (xix), (xx) of (VI-2). In addition, if r1 = r2 = r < 1, then there are Bayesian Nash equi-
libria 0 ≤ x∗(1/1), x∗(1/2) ≤ 1 which satisfy the equation r−qx∗(1/1)−(1−q)x∗(1/2) = 0,
but they are not ESS.

Proof. We will prove in detail for readers who are not mathematicians.
Since any probability distribution {x(s)}s∈S in our case can be represented by one pa-

rameter x(1) = x ; 0 ≤ x ≤ 1, from Lemma 1, a behavior strategy (x∗(1/1), x∗(1/2)) is a
Bayesian Nash equilibrium if and only if

(i-1) 0 ≤ ∀x ≤ 1,

(x∗(1/1) − x)((V − Cx∗(1/1))p(1, 1) + (V − Cx∗(1/2))p(1, 2)) ≥ 0,(11)

and

(i-2) 0 ≤ ∀x ≤ 1,

(x∗(1/2) − x)((v − cx∗(1/1))p(2, 1) + (v − cx∗(1/2))p(2, 2)) ≥ 0(12)

hold.
By dividing formula (11) or (12) by C(p(1, 1)+p(1, 2)) or c(p(2, 1)+p(2, 2)) respectively,

they turn out to be the following:

(i-1) 0 ≤ ∀x ≤ 1,

(x∗(1/1) − x)(r1 − q1x
∗(1/1) − (1 − q1)x∗(1/2)) ≥ 0,(13)

and
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(i-2) 0 ≤ ∀x ≤ 1,

(x∗(1/2) − x)(r2 − q2x
∗(1/1) − (1 − q2)x∗(1/2)) ≥ 0(14)

hold.

Now we start proving each case.
(I) Since r1, r2 > 0, obviously none of (13) or (14) holds for x∗(1/1) = x∗(1/2) = 0(“D”

strategy).

(II) (i) r1 > 1, r2 > 1 : Since r1, r2 > x∗(1/1), x∗(1/2), obviously (13) and (14) hold if
and onloy if x∗(1/1) = x∗(1/2) = 1(“H” strategy) and |S1(X∗/1)| = |S1(X∗/2)| = 1 holds,
which means a strong Bayesian Nash equilibrium and an ESS by (i) of Theorem 2.

(ii) r1 = 1, r2 > 1 : Since 1 − q1x
∗(1/1) − (1 − q1)x∗(1/2) ≥ 1 and r2 − q2x

∗(1/1) −
(1− q2)x∗(1/2) > 0, obviously (13) and (14) hold if and only if x∗(1/1) = x∗(1/2) = 1(“H”
strategy), but in this case we have |S1(X∗/1)| = 2, |S1(X∗/2)| = 1. Appling (iii) of
Proposition 1, this equilibrium is an ESS if and only if q1 > 0.

(iii) r1 > 1 = r2 : Similarly to (ii), “H” strategy is a unique Bayesian Nash equilibrium,
but in this case we have |S1(X∗/1)| = 1, |S1(X∗/2)| = 2. Applying (ii) of Proposition 1,
this equilibrium is an ESS if and only if 1− q2 > 0.

(iv) r1 = r2 = 1 : Similarly to (ii), “H” strategy is a unique Bayesian Nash equilib-
rium, but in this case we have |S1(X∗/1)| = |S1(X∗/2)| = 2 and |Supp({x∗(s/1)})| =
|Supp({x∗(s/2)})| = 1. Applying (v) of Proposition 1, this equilibrium is an ESS if and
only if 0 < q1, q2 < 1.

(III) Assume q1 = 0, q2 = 1 : (13) and (14) turn out to be the following:

(i-1)
0 ≤ ∀x ≤ 1, (x∗(1/1) − x)(r1 − x∗(1/2)) ≥ 0,(15)

and

(i-2)
0 ≤ ∀x ≤ 1, (x∗(1/2) − x)(r2 − x∗(1/1)) ≥ 0(16)

hold.

(v) r2 < 1 < r1 : Since r1 − x∗(1/2)) > 0 and r2 − 1 < 0 , we have x∗(1/1) = 1 by (15)
and x∗(1/2) = 0 by (16). Therefore, “B” strategy is a strong Bayesian Nash equilibrium
and an ESS.

(vi) r2 < 1 = r1 : If x∗(1/2) = 1, then (15) holds for any x∗(1/1). On the other hand,
(16) implies r2 − x∗(1/1) ≥ 0. In this case, if x∗(1/1) = r2, then we have |S1(X∗/1)| =
|S1(X∗/2)| = 2 and |Supp({ x∗(s/1)}| = 2. Appling (iv) of Proposition 1, this equilibrium
is not an ESS. If 0 ≤ x∗(1/1) < r2, we have |S1(X∗/2)| = 1, and from (iii) of Proposition
1 it is not an ESS. If x∗(1/2) < 1, then (15) holds if and only if x∗(1/1) = 1. On the other
hand, (16) implies x∗(1/2) = 0. Therefore, (x∗(1/1) = 1, x∗(1/2) = 0)(“B” strategy) is a
strong Bayesian Nash equilibrium and an ESS.

(vii) r1 < 1 < r2 : In this case, we can obtain the result by interchanging r1 and r2 in
csse (v).

(viii) r1 < 1 = r2 : In this case, we can obtain the results by interchanging r1 and r2 in
csse (vi).

(ix) r1 < 1 and r2 < 1 : This case is a little bit complicated. If r1 − x∗(1/2) = 0,
then (16) holds if and only if r2 − x∗(1/1) = 0. Therefore, (x∗(1/1), x∗(1/2)) = (r2, r1)
is a Bayesian Nash equilibrium and applying (iv) of Proposition 1, it is not an ESS. If
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r1 − x∗(1/2) > 0, (15) holds if and only if x∗(1/1) = 1. Then (16) holds if and only if
x∗(1/2) = 0. That is, (x∗(1/1), x∗(1/2)) = (1 , 0)(“B” strategy) is a Bayesian Nash equi-
librium. It is easily seen that this equilibrium is a strong Bayesian Nash equilibrium and
an ESS. Finally, if r1 − x∗(1/2) < 0, (15) holds if and only if x∗(1/1) = 0. Then (16)
holds if and only if x∗(1/2) = 1. That is, (x∗(1/1), x∗(1/2)) = (0 , 1)(“A” strategy) is a
Bayesian Nash equilibrium. It is easily seen that this equilibrium is a strong Bayesian Nash
equilibrium and an ESS.

(IV) Assume q1 = 0, 0 < q2 < 1. (13) and (14) turn out to be the following:

(i-1)
0 ≤ ∀x ≤ 1, (x∗(1/1) − x)(r1 − x∗(1/2)) ≥ 0,(17)

and

(i-2) 0 ≤ ∀x ≤ 1,

(x∗(1/2) − x)(r2 − q2x
∗(1/1) − (1 − q2)x∗(1/2)) ≥ 0(18)

hold.

(x) r2 < 1 < r1 : (17) implies that x∗(1/1) = 1, therefore substituting this to (18), we
have

0 ≤ ∀x ≤ 1, (x∗(1/2) − x)(r2 − q2 − (1 − q2)x∗(1/2)) ≥ 0.(19)

Since r2 − q2 − (1 − q2) < 0, x∗(1/2) = 1 does not satisfy (19). If r2 < q2, then (19) holds
if and only if x∗(1/2) = 0. On the other hand, if q2 ≤ r2 < 1, then (19) holds if and only if
x∗(1/2) = (r2−q2)/(1−q2). Therefore, (x∗(1/1) = 1, x∗(1/2) = ((r2−q2)/(1−q2))∨0) is a
Bayesian Nash equilibrium. Since |S1(X∗/1)| = 1, it is an ESS by (i) or (ii) of Proposition
1.

(xi) r2 < 1 = r1 : If x∗(1/2) = 1, then (17) holds for any x∗(1/1), but by (18) we
have (r2 − q2x

∗(1/1) − (1 − q2) ≥ 0. Solving this inequality with respect to x∗(1/1), we
have x∗(1/1) ≤ (r2 − (1 − q2))/q2. Since x∗(1/1) ≥ 0, r2 ≥ 1 − q2 must hold and we have
Bayesian Nash equilibria (0 ≤ x∗(1/1) ≤ (r2 − (1− q2))/q2, x

∗(1/2) = 1) when r2 ≥ 1− q2,
which are not ESS by (iii) or (iv) of Proposition 1. On the other hand, if 0 < x∗(1/2) < 1,
then (17) implys x∗(1/1) = 1 and (18) implys r2 − q2 − (1 − q2)x∗(1/2) = 0, which means
x∗(1/2) = (r2 − q2)/(1 − q2) if r2 ≥ q2. On the contrary, if r2 ≤ q2, (18) still holds for
x∗(1/2) = 0. Therefore, (x∗(1/1) = 1, x∗(1/2) = ((r2−q2)/(1−q2))∨0) is a Bayesian Nash
equilibrium and an ESS by (ii) of Proposition 1.

(xii) r1 < 1 : We shall investigate three cases of x∗(1/2) for which (17) holds. First, if
x∗(1/2) = r1, then from (18), we have r2 − q2x

∗(1/1) − (1 − q2)r1 = 0, that is, x∗(1/1) =
(r2 − (1− q2)r1)/q2. Since 0 ≤ x∗(1/1) ≤ 1, (1− q2)r1 ≤ r2 ≤ (1− q2)r1 + q2 must be satis-
fied. In this case, by (iv) of Proposition 1, this Bayesian Nash equilibrium (x∗(1/1) = (r2 −
r1(1 − q2))/q2, x

∗(1/2) = r1) is not an ESS. Second, if x∗(1/2) < r1, then by (17) and (18)
we have x∗(1/1) = 1 and (r2−q2)−(1−q2)x∗(1/2) ≤ 0. More precisely, if 0 < x∗(1/2) < r1,
it must be (r2 − q2)− (1− q2)x∗(1/2) = 0. Combining all together, if (r2 − q2)/(1− q2) < r1

we have a Bayesian Nash equilibrium (x∗(1/1) = 1, x∗(1/2) = ((r2−q2)/(1−q2))∨0) which
is an ESS by (ii) of Proposition 1. Third, if x∗(1/2) > r1, then by (17) and (18) we have
x∗(1/1) = 0 and r2 − (1 − q2)x∗(1/2) ≥ 0. More precisely, if 1 > x∗(1/2) > r1, it must be
r2−(1−q2)x∗(1/2) = 0. Combining all together, if r2 > r1(1−q2) we have a Bayesian Nash
equilibrium (x∗(1/1) = 0, x∗(1/2) = (r2/(1−q2))∧1) which is an ESS by (ii) of Proposition
1.

We can prove case (V) in a similar manner to that of (IV), so we omit it.
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(VI) Assume 0 < q1, q2 < 1. (13) and (14) turn out to be the following:

(i-1)
0 ≤ ∀x ≤ 1, (x∗(1/1) − x)f1(x∗(1/1), x∗(1/2)) ≥ 0,(20)

and
(i-2)

0 ≤ ∀x ≤ 1, (x∗(1/2) − x)f2(x∗(1/1), x∗(1/2)) ≥ 0,(21)

hold, where
f1(x, y) := r1 − q1x − (1 − q1)y, f2(x, y) := r2 − q2x − (1 − q2)y

We shall investigate the conditions for r1, r2, q1 and q2 under the supposed Bayesian
Nash equilibrium (x∗(1/1), x∗(1/2)).

(a) Assume that (x∗(1/1), x∗(1/2)) = (1, 1)(“H” strategy) is a Bayesian Nash equilib-
rium: Then, (20) and (21) imply f1(1, 1) ≥ 0, f2(1, 1) ≥ 0, that is, f1(1, 1) = r1 − 1 ≥ 0
and f2(1, 1) = r2 − 1 ≥ 0. In this case, we have already obtained the results in (II) above.

(b) (x∗(1/1), x∗(1/2)) = (1, 0)(“B” strategy) : f1(1, 0) ≥ 0, f2(1, 0) ≤ 0, that is,
f1(1, 0) = r1 − q1 ≥ 0 and f2(1, 0) = r2 − q2 ≤ 0. More precisely, if r1 > q1, |S1(X∗/1)| = 1
and if r1 = q1, |S1(X∗/1)| = 2. Similarly, if r2 < q2, |S1(X∗/2)| = 1 and if r2 = q2,
|S1(X∗/2)| = 2. Therefore, in case of (r1 > q1, r2 < q2), “B” strategy is a strong Bayesian
Nash equilibrium and an ESS, in case of (r1 = q1, r2 < q2) or (r1 > q1, r2 = q2), applying
(ii) or (iii) of Proposition 1, it is also an ESS, but in case of (r1 = q1, r2 = q2), applying
(v) of Proposition 1, it is an ESS if and only if q2 < g(q1).

(c) (x∗(1/1), x∗(1/2)) = (0, 1)(“A” strategy) : f1(0, 1) ≤ 0, f2(0, 1) ≥ 0, that is,
f1(0, 1) = r1 − (1 − q1) ≤ 0, f2(0, 1) = r2 − (1 − q2) ≥ 0DMore precisely, if r1 < 1 − q1,
|S1(X∗/1)| = 1 and if r1 = 1− q1, |S1(X∗/1)| = 2. Similarly, if r2 > 1− q2, |S1(X∗/2)| = 1
and if r2 = 1−q2, |S1(X∗/2)| = 2. Therefore, in case of (r1 < 1−q1, r2 > 1−q2), “A” strat-
egy is a strong Bayesian Nash equilibrium and an ESS, in case of (r1 = 1−q1, r2 > 1−q2) or
(r1 < 1−q1, r2 = 1−q2), applying (ii) or (iii) of Proposition 1, it is also an ESS, but in case of
(r1 = 1−q1, r2 = 1−q2), applying (v) of Proposition 1, it is an ESS if and only if q2 < g(q1).

(d) (x∗(1/1) = 1, 0 < x∗(1/2) < 1) : (20) and (21) imply
f1(1, x∗(1/2)) = r1 − q1 − (1 − q1)x∗(1/2)) ≥ 0 · · · (∗) and
f2(1, x∗(1/2)) = r2 − q2 − (1 − q2)x∗(1/2) = 0 · · · (∗∗).
If f1(1, x∗(1/2)) > 0, we have |S1(X∗/1)| = 1 and applying (ii) of Proposition 1, this

Bayesian Nash equilibrium is an ESS. If f1(1, x∗(1/2)) = 0, we have |S1(X∗/1)| = 2 and
applying (iv) of Proposition 1, this Bayesian Nash equilibrium is an ESS if and only if
q2 < g(q1). Now solving (∗∗), we have x∗(1/2) = (r2 − q2)/(1 − q2) and substituting this
solution to (∗), we have r1 ≥ �4(r2), and q2 < r2 < 1 from 0 < x∗(1/2) < 1. Therefore, we
have a Bayesian Nash equilibrium (x∗(1/1) = 1, x∗(1/2) = (r2 − q2)/(1 − q2)) which is an
ESS if (r1 > �4(r2), q2 < r2 < 1). In case of (r1 = �4(r2), q2 < r2 < 1), it is an ESS if and
only if q2 < g(q1).

(e) (0 < x∗(1/1) < 1, x∗(1/2) = 1) : (20) and (21) imply
f1(x∗(1/1), 1) = r1 − q1x

∗(1/1) − (1 − q1) = 0 · · · (∗) and
f2(x∗(1/1), 1) = r2 − q2x

∗(1/1) − (1 − q2) ≥ 0 · · · (∗∗).
If f2(x∗(1/1), 1) > 0 , we have |S1(X∗/2)| = 1 and applying (ii) of Proposition 1, this

Bayesian Nash equilibrium is an ESS. If f2(x∗(1/1), 1) = 0 , we have |S1(X∗/2)| = 2 and
applying (iv) of Proposition 1, this Bayesian Nash equilibrium is an ESS if and only if
q2 < g(q1). Now solving (∗), we have x∗(1/1) = (r1 − (1 − q1))/q1 and substituting this
solution to (∗∗), we have r2 ≥ �2(r1), and 1− q1 < r1 < 1 from 0 < x∗(1/1) < 1. Therefore,
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we have a Bayesian Nash equilibrium (x∗(1/1) = (r1 − (1 − q1))/q1, x∗(1/2) = 1) which is
an ESS if (1 − q1 < r1 < 1, r2 > �2(r1)). In case of (1 − q1 < r1 < 1, r2 = �2(r1)), it is an
ESS if and only if q2 < g(q1).

(f) (x∗(1/1) = 0, 0 < x∗(1/2)) < 1) : (20) and (21) imply
f1(0, x∗(1/2)) = r1 − (1 − q1)x∗(1/2) ≤ 0 · · · (∗)
f2(0, x∗(1/2)) = r2 − (1 − q2)x∗(1/2) = 0 · · · (∗∗).
If f1(0, x∗(1/2)) < 0 , we have |S1(X∗/1)| = 1 and applying (iii) of Proposition 1, this

Bayesian Nash equilibrium is an ESS. If f1(0, x∗(1/2)) = 0 , we have |S1(X∗/1)| = 2 and
applying (iv) of Proposition 1, this Bayesian Nash equilibrium is an ESS if and only if
q2 < g(q1). Now solving (∗∗), we have x∗(1/2) = r2/(1 − q2) and substituting this solution
to (∗), we have r2 ≥ �1(r1), and 0 < r2 < 1 − q2 from 0 < x∗(1/2) < 1. Therefore, we
have a Bayesian Nash equilibrium (x∗(1/1) = 0, x∗(1/2) = r2/(1 − q2) which is an ESS if
0 < r2 < 1 − q2 and r2 > �1(r1). In case of 0 < r2 < 1 − q2 and r2 = �1(r1), it is an ESS if
and only if q2 < g(q1).

(g) (0 < x∗(1/1) < 1, x∗(1/2)) = 0) : (20) and (21) imply
f1(x∗(1/1), 0) = r1 − q1x

∗(1/1) = 0 · · · (∗),
f2(x∗(1/1), 0) = r2 − q2x

∗(1/1) ≤ 0 · · · (∗∗).
If f2(x∗(1/1), 0) < 0 , we have |S1(X∗/2)| = 1 and applying (iii) of Proposition 1,

this Bayesian Nash equilibrium is an ESS. If f2(x∗(1/1), 0) = 0 , we have |S1(X∗/1)| = 2
and applying (iv) of Proposition 1, this Bayesian Nash equilibrium is an ESS if and only
if q2 < g(q1). Now solving (∗), we have x∗(1/1) = r1/q1 and substituting this solution to
(∗∗), we have r1 ≥ �3(r2), and 0 < r1 < q1 from 0 < x∗(1/1) < 1. Therefore, we have a
Bayesian Nash equilibrium (x∗(1/1) = r1/q1, x∗(1/2) = 0) which is an ESS if 0 < r1 < q1

and r1 > �3(r2). In case of 0 < r1 < q1 and r1 = �3(r2), it is an ESS if and only if q2 < g(q1).
(h) 0 < (x∗(1/1) < 1, 0 < x∗(1/2)) < 1) : (20) and (21) imply
f1(x∗(1/1), x∗(1/2)) = r1 − q1x

∗(1/1) − (1 − q1)x∗(1/2) = 0 · · · (∗),
f2(x∗(1/1), x∗(1/2)) = r2 − q2x

∗(1/1) − (1 − q2)x∗(1/2) = 0 · · · (∗∗).
Since |Supp({x∗(s/1)}| = 2 and |{x∗(s/2)}| = 2 in this case, this Bayesian Nash equi-

librium is an ESS if anf only if q2 < g(q1) by (iv) of Proposition 1. Now solving a linear
system of equations (∗) and (∗∗), if q1 �= q2, then we have a unique solution

x∗(1/1) =
(1 − q2)r1 − (1 − q1)r2

q1 − q2
, x∗(1/2) =

−q2r1 + q1r2

q1 − q2
.

Besides being a solution, x∗(1/1), x∗(1/2) must satisfy 0 < x∗(1/1), x∗(1/2) < 1, i.e.

0 <
(1 − q2)r1 − (1 − q1)r2

q1 − q2
< 1, 0 <

−q2r1 + q1r2

q1 − q2
< 1.(22)

In order to solve the inequalities (22) with respect to r1 and r2, we investigate two cases,
0 < q2 < q1 or 0 < q1 < q2.

(h-1) 0 < q2 < q1 < 1. In this case, we have (1 − q1)/(1 − q2) < q1/q2. Therefore,(22)
implies {(r1, r2) ; r1 < �3(r2)∧�4(r2), r2 < �1(r1)∧�2(r1)}−(1, 1) and by (iv) of Proposition
1, this Bayesian Nash equilibrium is an ESS if and only if q2 < g(q1).

(h-2) 0 < q1 < q2 < 1. In this case we have q1/q2 < (1 − q1)/(1 − q2). Therefore,(22)
implies {(r1, r2) ; r1 > �3(r2)∨�4(r2), r2 > �1(r1)∨�2(r1)}−(1, 1) and by (iv) of Proposition
1, this Bayesian Nash equilibrium is not an ESS. (Notice that 0 < q1 < q2 < 1 ⇒ q2 > g(q1))
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(h-3) If q1 = q2 =: q, there exist such solutions as

r − qx∗(1/1) − (1 − q)x∗(1/2) = 0(23)

if and only if r1 = r2 =: r ≤ 1. If r < 1, they are not ESS since q ≥ g(q). If r = 1,“H”
strategy is a uniqu solution of this equation and an ESS by (v) of Proposition 1, but this
result is a part of case (II).

Finally, combining all together, (VI-1) is obtained from the cases (c), (e), (f) and (h-1),
(VI-2) is from (b), (d), (g) and (h-2), and (VI-3) is from (h-3), respectively. (Q.E.D.)

The author would like to thank Professor Higuchi of Kobe University for suggesting
related literatures.
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