REGULARITY IN ORDERED SEMIGROUPS

Niovi Kehayopulu and Michael Tsingelis

Received October 28, 2010

Abstract

It is known that for a semigroup S and any two idempotent elements e, f of S, the following assertions are satisfied: (1) $\operatorname{Reg}(e S f)=\operatorname{Reg}(e S) \cap \operatorname{Reg}(S f)$; (2) $G r(e S f)=g r(e S f)=G r(e S) \cap G r(S f)$; (3) $E(e S f)=E(e S) \cap E(S f)$; (4) $G r(S e)=g r(S e)$ and $G r(e S)=g r(e S)$. Also that for a semigroup S and an idempotent element e of S, the following conditions are equivalent: (i) $\operatorname{Reg}(e S e)=\operatorname{Reg}(S e)$; (ii) $\operatorname{Reg}(S e) \subseteq \operatorname{Reg}(e S)$; (iii) $E(e S e)=E(S e)$; (iv) $E(S e) \subseteq E(e S)$. We extend these results in ordered semigroups. As an application of the result of the present paper, the above mentioned results hold for any elements a, b of a semigroup S and not only for idempotent elements of S. Some additional information are also obtained.

1. Introduction and prerequisites. The Lemma 2.1.1, Lemma 2.1.2 and the Theorem 2.1.1 below are from [5]. The Lemma 2.1.1 has been used in Lemma 2.1.2 and Lemma 2.1.2 in Theorem 2.1.1.

Lemma 2.1.1. Let e, f be idempotent elements of a semigroup S. Then the following hold:
(1) $\operatorname{Reg}(e S f)=\operatorname{Reg}(e S) \cap \operatorname{Reg}(S f)$
(2) $G r(e S f)=g r(e S f)=G r(e S) \cap G r(S f)$
(3) $E(e S f)=E(e S) \cap E(S f)$.

Lemma 2.1.2. Let e be an idempotent element of a semigroup S. Then the following hold:
(1) $\operatorname{Reg}(e S e)=\operatorname{reg}(e S e)=\operatorname{Reg}(S e) \cap \operatorname{Reg}(e S)$
(2) $G r(e S e)=g r(e S e)$
(3) $G r(S e)=g r(S e)$ and $G r(e S)=g r(e S)$
(4) $E(e S e)=E(S e) \cap E(e S)$.

Theorem 2.1.1. Let e be an idempotent element of a semigroup S. Then the following conditions are equivalent:
(i) $\operatorname{Reg}(e S e)=\operatorname{Reg}(S e)$
(ii) $\operatorname{Reg}(S e) \subseteq \operatorname{Reg}(e S)$
(iii) $E(e S e)=E(S e)$
(iv) $E(S e) \subseteq E(e S)$.

The new results in Lemma 2.1.2 above are the following: The part of (1) referring to $\operatorname{Reg}(e S e)=\operatorname{reg}(e S e)$ and condition (3), that is, that $G r(S e)=\operatorname{gr}(S e)$ and $G r(e S)=$ $\operatorname{gr}(e S)$, the rest being immediate consequences of Lemma 2.1.1. So Lemma 2.1.2 can be formulated as follows:

Lemma 2.1.2. Let e be an idempotent element of a semigroup S. Then the following hold: (1) $\operatorname{Reg}(e S e)=\operatorname{reg}(e S e)$
(2) $G r(S e)=g r(S e)$ and $G r(e S)=g r(e S)$.

In the present paper we extend and generalize these results for an ordered semigroup S and for arbitrary elements of S. The results in [5] mentioned above can be also obtained as application of the results of the present paper as every semigroup S with the equality relation $\{(x, y) \in S \times S \mid x=y\}$ is an ordered semigroup. As a consequence, the results of Lemma 2.1.1 and Theorem 2.1.1 hold for arbitrary elements and not only for idempotent elements of S. As far as the Lemma 2.1.2 is concerned, for $a, b \in S$, the property $\operatorname{Reg}(a S b)=$ $\operatorname{reg}(a S b)$ does not hold, in general, while we have $\operatorname{Reg}(e S e)=\operatorname{reg}(e S e)$ for every idempotent element e of S; the rest of the lemma being true for arbitrary elements a, b and not only for idempotent elements of S. Some additional information are also obtained.

An element a of a semigroup S is called regular [1] if there exists $x \in S$ such that $a=a x a$; it is called completely regular [6] if there exists $x \in S$ such that $a=a^{2} x a^{2}$. An element a of an ordered semigroup $(S, ., \leq)$ is called regular if $a \leq a x a$ for some $x \in S[3]$; it is called completely regular $a \leq a^{2} x a^{2}$ for some $x \in S$ [2]. For ordered semigroups, we keep the same notations as in semigroups in [5]. Thus, for an ordered semigroup S, we denote by $\operatorname{Reg}(S)$ the set of regular elements of S, by $\operatorname{Gr}(S)$ the set of completely regular elements of S, for a subsemigroup T of S we denote by $\operatorname{reg}(T)$ the intersection $T \cap \operatorname{Reg}(S)$, that is, the elements of T which are regular in S, and by $\operatorname{gr}(T)$ the intersection $T \cap G r(S)$. On the other hand, while $E(S)$ denotes the set of idempotent elements in [5], for an ordered semigroup $(S, ., \leq)$ we denote by $E(S)$ the set of the elements t of S such that $t \leq t^{2}$.
2. Main results. If $(S, ., \leq)$ is an ordered semigroup and H a subset of S, we denote by $(H]$ the subset of S defined by $(H]=\{t \in S \mid t \leq h$ for some $h \in H\}$.

Definition 1. Let $(S, ., \leq)$ be an ordered semigroup and T a subsemigroup of S. We define
$\operatorname{Reg}(T):=\{a \in T \mid a \leq a x a$ for some $x \in T\}$
$G r(T):=\left\{a \in T \mid a \leq a^{2} x a^{2}\right.$ for some $\left.x \in T\right\}$
$\operatorname{reg}(T):=T \cap \operatorname{Reg}(S)$
$g r(T):=T \cap G r(S)$
$E(T):=\left\{e \in T \mid e \leq e^{2}\right\}$.
Throughout the paper, we use the fact that the sets $(a S b],(a S]$ and $(S b](a, b \in S)$ are subsemigroups of S.

Proposition 2. Let $(S, ., \leq)$ be an ordered semigroup and $a, b \in S$. Then

$$
\operatorname{Reg}(a S b]=\operatorname{Reg}(a S] \cap \operatorname{Reg}(S b]
$$

Proof. Since $a S b \subseteq a S, S b$, we have $\operatorname{Reg}(a S b] \subseteq \operatorname{Reg}(a S] \cap \operatorname{Reg}(S b]$. Let now $c \in$ $\operatorname{Reg}(a S] \cap \operatorname{Reg}(S b]$. Since $c \in \operatorname{Reg}(a S]$, we have $c \in(a S]$ and $c \leq c x c$ for some $x \in(a S]$. Since $c \in \operatorname{Reg}(S b]$, we have $c \in(S b]$ and $c \leq c y c$ for some $y \in(S b]$. Since $c \in(a S], c \leq a s$ for some $s \in S$. Since $c \in(S b], c \leq t b$ for some $t \in S$. Thus we have

$$
c \leq c x c \leq(a s) x(t b)=a(s x t) b \in a S b
$$

so $c \in(a S b]$. Since $x \in(a S], x \leq a w$ for some $w \in S$. Since $y \in(S b], y \leq u b$ for some $u \in S$. Hence we obtain

$$
c \leq c x c \leq c x(c y c) \leq c(a w) c(u b) c=c(a w c u b) c
$$

with $a w c u b \in a S b \subseteq(a S b]$. Therefore we have $c \in \operatorname{Reg}(a S b]$.

Proposition 3. Let $(S, ., \leq)$ be an ordered semigroup $a, b \in S$. Then we have

$$
G r(a S b]=g r(a S b]
$$

Proof. Let $c \in G r(a S b]$. Then $c \in(a S b]$ and $c \leq c^{2} y c^{2}$ for some $y \in(a S b]$. Since $c, y \in S$ and $c \leq c^{2} y c^{2}$, we have $c \in G r(S)$, so $c \in(a S b] \cap G r(S):=g r(a S b]$.
Let now $d \in \operatorname{gr}(a S b]:=(a S b] \cap G r(S)$. Since $d \in G r(S), d \leq d^{2} x d^{2}$ for some $x \in S$. Then

$$
d \leq d^{2} x d^{2} \leq d\left(d^{2} x d^{2}\right) x\left(d^{2} x d^{2}\right) d=d^{2}\left(d x d^{2} x d^{2} x d\right) d^{2}
$$

Since $d \in(a S b], d \leq a s b$ for some $s \in S$. We put $t:=d x d^{2} x d^{2} x d$, and we have $t \leq$ (asb) $x d^{2} x d^{2} x(a s b) \in a S b$, so $t \in(a S b]$. Since $d \in(a S b]$ and $d \leq d^{2} t d^{2}$, where $t \in(a S b]$, we have $d \in G r(a S b]$.
Proposition 4. Let $(S, ., \leq)$ be an ordered semigroup and $a, b \in S$. Then we have

$$
G r(a S b]=G r(a S] \cap(S b]=(a S] \cap G r(S b]
$$

Proof. Let $c \in G r(a S b]$. Then $c \in(a S b]$ and $c \leq c^{2} y c^{2}$ for some $y \in(a S b]$. Since $a S b \subseteq a S, S b$, we have $(a S b] \subseteq(a S],(S b]$. Since $c, y \in(a S]$ and $c \leq c^{2} y c^{2}$, we have $c \in G r(a S]$, so $c \in G r(a S] \cap(S b]$. Let now $d \in G r(a S] \cap(S b]$. Since $d \in G r(a S], d \in(a S]$ and $d \leq d^{2} x d^{2}$ for some $x \in(a S]$. Since $d \in(a S], d \leq a s$ for some $s \in S$. Since $d \in(S b]$, $d \leq t b$ for some $t \in S$. Then we have $d \leq d^{2} x d^{2} \leq(a s) d x d(t b) \in a S b$, so $d \in(a S b]$. Moreover, we have

$$
d \leq d^{2} x d^{2} \leq d\left(d^{2} x d^{2}\right) x\left(d^{2} x d^{2}\right) d=d^{2}\left(d x d^{2} x d^{2} x d\right) d^{2}
$$

Putting $t:=d x d^{2} x d^{2} x d$, we have $t \leq(a s) x d^{2} x d^{2} x(t b) \in a S b$, so $t \in(a S b]$. Since $d \in(a S b]$ and $d \leq d^{2} t d^{2}$, where $t \in(a S b]$, we have $d \in G r(a S b]$. In a similar way we prove that $G r(a S b]=(a S] \cap G r(S b]$.
Proposition 5. Let S be an ordered semigroup $a, b \in S$. Then we have

$$
G r(a S b]=G r(a S] \cap G r(S b] .
$$

Proof. By Proposition 4, we have

$$
G r(a S b]=G r(a S b] \cap G r(a S b]=G r(a S] \cap(S b] \cap(a S] \cap G r(S b]
$$

Since $\operatorname{Gr}(a S] \subseteq(a S]$ and $G r(S b] \subseteq(S b]$, we have $G r(a S b]=G r(a S] \cap G r(S b]$.
Proposition 6. Let $(S, ., \leq)$ be an ordered semigroup and $a, b \in S$. Then

$$
E(a S b]=E(a S] \cap(S b]=(a S] \cap E(S b]
$$

Proof. Let $c \in E(a S b]$. Then $c \in(a S b]$ and $c \leq c^{2}$. Since $c \in(a S b], c \leq a u b$ for some $u \in S$. Since $c \leq a u b \in a S$, we have $c \in(a S]$. Since $c \in(a S]$ and $c \leq c^{2}$, we have $c \in E(a S]$. Besides, since $c \leq a u b \in S b$, we have $c \in(S b]$. Thus $c \in E(a S] \cap(S b]$. Let now $d \in E(a S] \cap(S b]$. Since $d \in E(a S]$, we have $d \in(a S]$ and $d \leq d^{2}$. Since $d \in(a S], d \leq a s$ for some $s \in S$. Since $d \in(S b], d \leq t b$ for some $t \in S$. Thus we have $d \leq d^{2} \leq(a s)(t b)=a(s t) b \in a S b$, so $d \in(a S b]$. Since $d \in(a S b]$ and $d \leq d^{2}$, we have $d \in E(a S b]$. In a similar way we get $E(a S b]=(a S] \cap E(S b]$.

Proposition 7. If S is an ordered semigroup $a, b \in S$, then we have

$$
E(a S b]=E(a S] \cap E(S b] .
$$

Proof. By Proposition 6 , we have

$$
E(a S b]=E(a S b] \cap E(a S b]=E(a S] \cap(S b] \cap(a S] \cap E(S b]
$$

Since $E(a S] \subseteq(a S]$ and $E(S b] \subseteq(S b]$, we have $E(a S b]=E(a S] \cap E(S b]$.
Proposition 8. If $(S, ., \leq)$ is an ordered semigroup, then we have

$$
G r(S a]=\operatorname{gr}(S a] \text { and } G r(a S]=\operatorname{gr}(a S]
$$

Proof. First of all, for any subsemigroup T of S, we have $\operatorname{Gr}(T) \subseteq \operatorname{gr}(T)$. In fact: if $d \in G r(T)$, then $d \in T$ and $d \leq d^{2} y d^{2}$ for some $y \in T$. Since $d, y \in S$ and $d \leq d^{2} y d^{2}$, we have $d \in G r(S)$, thus $d \in T \cap G r(S)=\operatorname{gr}(T)$. Since $(S a]$ is a subsemigroup of S, we have $G r(S a] \subseteq \operatorname{gr}(S a]$. Let now $x \in \operatorname{gr}(S a]:=(S a] \cap G r(S)$. Since $x \in(S a], x \leq s a$ for some $s \in S$. Since $x \in G r(S)$, we get $x \leq x^{2} t x^{2}$ for some $t \in S$. Then

$$
x \leq x^{2} t x^{2} \leq x^{2} t\left(x^{2} t x^{2}\right) x=x^{2}\left(t x^{2} t x\right) x^{2}
$$

On the other hand, $t x^{2} t x \leq t x^{2} t s a \in S a$, so $t x^{2} t x \in(S a]$. Since $x \in(S a]$ and $x \leq$ $x^{2}\left(t x^{2} t x\right) x^{2}$, where $t x^{2} t x \in(S a]$, we have $x \in G r(S a]$. Similarly we get $G r(a S]=g r(a S]$.

For an ordered semigroup S and an element e of S such that $e \leq e^{2}$, we have $\operatorname{Reg}(e S e)=$ $\operatorname{reg}(e S e)$ [4], while for arbitrary elements $a, b \in S$, condition $\operatorname{Reg}(a S b)=\operatorname{reg}(a S b)$ does not hold in general. We prove it by the following

Example. Let S be the ordered semigroup defined by the multiplication and the order below:

.	a	b	c	d	e
a	a	a	a	a	a
b	a	b	a	d	a
c	a	e	c	c	e
d	a	b	d	d	b
e	a	e	a	c	a

$$
\leq:=\{(a, a),(a, b),(a, c),(a, d),(a, e),(b, b),(c, c),(d, d),(e, e)\}
$$

The set $c S b=\{a, e\}$ is a subsemigroup of S,
$\operatorname{Reg}(c S b)=\{t \in c S b \mid t \leq t x t$ for some $x \in c S b\}=\{a\}$,
$\operatorname{reg}(S)=\{t \in S \mid t \leq t x t$ for some $x \in S\}=S$, and
$r e g(c S b)=c S b \cap \operatorname{Reg}(S)=\{a, e\}$.
Thus Reg $(c S b) \neq \operatorname{reg}(c S b)$.
We notice that if S is the semigroup defined in the table above, then $\operatorname{Reg}(c S b) \neq r e g(c S b)$. Which means that for a semigroup S, as well, the relation $\operatorname{Reg}(a S b)=\operatorname{reg}(a S b)$ which holds for $a=b=e$, where e is an idempotent element of S, does not hold for arbitrary elements a, b of S, in general.

Theorem 9. Let S be an ordered semigroup and $a, b \in S$. The following are equivalent:
(1) $\operatorname{Reg}(a S] \subseteq \operatorname{Reg}(a S b]$
(2) $\operatorname{Reg}(a S]=\operatorname{Reg}(a S b]$
(3) $\operatorname{Reg}(a S] \subseteq \operatorname{Reg}(S b]$
(4) $\operatorname{Reg}(a S] \subseteq(S b]$
(5) $E(a S]=E(a S b]$
(6) $E(a S] \subseteq E(a S b]$
(7) $E(a S] \subseteq E(S b]$
(8) $E(a S] \subseteq(S b]$.

Proof. $\quad(1) \Longrightarrow(2)$. Since $a S b \subseteq a S$, we have $(a S b] \subseteq(a S]$. Then, since $(a S b]$ and ($a S$] are subsemigroups of S, the sets $\operatorname{Reg}(a S b]$ and $\operatorname{Reg}(a S]$ are defined, and we have $\operatorname{Reg}(a S b] \subseteq \operatorname{Reg}(a S]$. Then, by (1), $\operatorname{Reg}(a S]=\operatorname{Reg}(a S b]$.
$(2) \Longrightarrow(3)$. Since $a S b \subseteq S b$, we have $(a S b] \subseteq(S b]$. Then, since $(a S b]$ and $(S b]$ are subsemigroups of S, we have $\operatorname{Reg}(a S b] \subseteq \operatorname{Reg}(S b]$. Then, by $(2), \operatorname{Reg}(a S] \subseteq \operatorname{Reg}(S b]$.
$(3) \Longrightarrow(4)$. Since $(S b]$ is a subsemigroup of S, we have $\operatorname{Reg}(S b] \subseteq$ ($S b]$ then, by (3), $\operatorname{Reg}(a S] \subseteq(S b]$.
$(4) \Longrightarrow(5)$. For every subsemigroup T of S, we have $E(T) \subseteq \operatorname{Reg}(T)$. Indeed, if $x \in E(T)$, then $x \in T$ and $x \leq x^{2} \leq x x x$, so $x \in \operatorname{Reg}(T)$. Since $(a S]$ is a subsemigroup of S, we have $E(a S] \subseteq \operatorname{Reg}(a S]$. Then, by (4), $E(a S] \subseteq(S b]$, so $E(a S] \cap(S b]=E(a S]$. By Proposition $6, E(a S b]=E(a S] \cap(S b]$. Thus we have $E(a S]=E(a S b]$.
The implication $(5) \Longrightarrow(6)$ is obvious.
$(6) \Longrightarrow(7)$. If T_{1}, T_{2} are subsemigroups of S such that $T_{1} \subseteq T_{2}$, then $E\left(T_{1}\right) \subseteq E\left(T_{2}\right)$. Since $(a S b]$ and $(S b]$ are subsemigroups of S such that $(a S b] \subseteq(S b]$, we have $E(a S b] \subseteq E(S b]$. Then, by (6), $E(a S] \subseteq E(S b]$.
$(7) \Longrightarrow(8)$. Since $(S b]$ is a subsemigroup of $S, E(S b] \subseteq(S b]$ and, by (7), we get $E(a S] \subseteq$ (Sb].
$(8) \Longrightarrow(1)$. Let $c \in \operatorname{Reg}(a S]$. Then $c \in(a S]$ and $c \leq c x c$ for some $x \in(a S]$. Then $x c \leq x c x c=(x c)^{2}, x \leq a s$ for some $s \in S, x c \leq a s c \in a S, x c \in(a S]$, and $x c \in E(a S]$. Then, by (8), $x c \in(S b]$, that is, $x c \leq t b$ for some $t \in S$. On the other hand, since $c \in(a S], c \leq a z$ for some $z \in S$. Hence we have $c \leq c(x c) \leq(a z)(t b) \in a S b$, so $c \in(a S b]$. Furthermore, since $c \leq c x c$, we have $c x \leq(c x)^{2}$ and, since $c \leq a z$, we have $c x \leq a z x \in a S$, that is, $c x \in(a S]$. Hence we have $c x \in E(a S]$ and, by (8), $c x \in(S b]$, then $c x \leq t b$ for some $t \in S$. Now $c \leq c x c \leq c x(c x c)=c(x c x) c$ and $x c x \leq(a s)(t b) \in a S b$, so $x c x \in(a S b]$. Since $c \in(a S b]$ and $c \leq c(x c x) c$, where $x c x \in(a S b]$, we have $c \in \operatorname{Reg}(a S b]$.
In a similar way we prove the following:
Theorem 10. Let S be an ordered semigroup and $a, b \in S$. The following conditions are equivalent:
(1) $\operatorname{Reg}(S b] \subseteq \operatorname{Reg}(a S b]$
(2) $\operatorname{Reg}(S b]=\operatorname{Reg}(a S b]$
(3) $\operatorname{Reg}(S b] \subseteq \operatorname{Reg}(a S]$
(4) $\operatorname{Reg}(S b] \subseteq(a S]$
(5) $E(S b]=E(a S b]$
(6) $E(S b] \subseteq E(a S b]$
(7) $E(S b] \subseteq E(a S]$
(8) $E(S b] \subseteq(a S]$.

Putting $a=b$ in Theorem 9, we have the following:
Theorem 11. Let S be an ordered semigroup and $a \in S$. The following are equivalent:
(1) $\operatorname{Reg}(a S] \subseteq \operatorname{Reg}(a S a]$
(2) $\operatorname{Reg}(a S]=\operatorname{Reg}(a S a]$
(3) $\operatorname{Reg}(a S] \subseteq \operatorname{Reg}(S a]$
(4) $\operatorname{Reg}(a S] \subseteq(S a]$
(5) $E(a S]=E(a S a]$
(6) $E(a S] \subseteq E(a S a]$
(7) $E(a S] \subseteq E(S a]$
(8) $E(a S] \subseteq(S a]$.

Putting $a=b$ in Theorem 10, we have the following:
Theorem 12. Let S be an ordered semigroup and $a \in S$. The following are equivalent:
(1) $\operatorname{Reg}(S a] \subseteq \operatorname{Reg}(a S a]$
(2) $\operatorname{Reg}(S a]=\operatorname{Reg}(a S a]$
(3) $\operatorname{Reg}(S a] \subseteq \operatorname{Reg}(a S]$
(4) $\operatorname{Reg}(S a] \subseteq(a S]$
(5) $E(S a]=E(a S a]$
(6) $E(S a] \subseteq E(a S a]$
(7) $E(S a] \subseteq E(a S]$
(8) $E(S a] \subseteq(a S]$.

Applying Propositions 2, 3,5, 7 and 8 to a semigroup (without order), we obtain the following

Corollary 13. (Cf. also Lemma 2.1.1 and Lemma 2.1.2) For a semigroup S and arbitrary elements $a, b \in S$, the following conditions are satisfied:
(1) $\operatorname{Reg}(a S b)=\operatorname{Reg}(a S) \cap \operatorname{Reg}(S b)$
(2) $G r(a S b)=g r(a S b)=G r(a S) \cap G r(S b)$
(3) $E(a S a)=E(a S) \cap E(S b)$
(4) $G r(S a)=g r(S a)$ and $G r(a S)=g r(a S)$.

We have already seen that if S is an ordered semigroup and e an element of S such that $e \leq e^{2}$, then $\operatorname{Reg}(e S e)=\operatorname{reg}(e S e)$. As a consequence, if S is a semigroup and e an idempotent element of S, then $\operatorname{Reg}(e S e)=\operatorname{reg}(e S e)$ (the part of (1) in Lemma 2.1.2 mentioned above).

By conditions (2),(3),(5),(7) of Theorem 10, we have the following
Corollary 14. (Cf. also Theorem 2.1.1) For a semigroup S and arbitrary elements $a, b \in S$, the following are equivalent:
(1) $\operatorname{Reg}(a S b)=\operatorname{Reg}(S b)$
(2) $\operatorname{Reg}(S b) \subseteq \operatorname{Reg}(a S)$
(3) $E(a S b)=E(S b)$
(4) $E(S b) \subseteq E(a S)$.

Besides, applying conditions $(2),(3),(5)$ and (7) of Theorem 12 to semigroups (without order) or just putting $a=b$ in Corollary 14 we get the Theorem 2.1.1 in [5] for an arbitrary element of S.

So the Lemma 2.1.1, Lemma 2.1.2 and the Theorem 2.1.1 in [5] except the part of Lemma 2.1.2 referring to $\operatorname{Reg}(e S e)=\operatorname{reg}(e S e)$ hold for arbitrary elements a, b and not only for idempotent elements e, f of a semigroup S.

References

[1] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups I. Mathematical Surveys, no. 7, American Mathematical Society, Providence, Rhode Island 1961. xv+224 pp.
[2] N. Kehayopulu, On completely regular poe-semigroups, Math. Japon. 37(1) (1992), 123-130.
[3] N. Kehayopulu, On regular duo ordered semigroups, Math. Japon. 37(3) (1992), 535-540.
[4] N. Kehayopulu, M. Tsingelis, The set of regular elements in ordered semigroups, Math. Japon. $72(1)(2010), 61-66$.
[5] M. Mitrović, Semilattices of Archimedean Semigroups, University of Nis, Faculty of Mechanical Engineering, Nis, 2003. xiv+160 pp. ISBN: 86-80587-32-X
[6] M. Petrich, Introduction to Semigroups, Merrill Research and Lecture Series, Charles E. Merrill Publishing Co., Columbus, Ohio, 1973. viii+198 pp.

University of Athens
Department of Mathematics 15784 Panepistimiopolis Athens, Greece
e-mail: nkehayop@math.uoa.gr

