523

REGULARITY IN ORDERED SEMIGROUPS

NIOVI KEHAYOPULU AND MICHAEL TSINGELIS

Received October 28, 2010

ABSTRACT. It is known that for a semigroup S and any two idempotent elements e, f of S, the following assertions are satisfied: (1) $Reg(eSf) = Reg(eS) \cap Reg(Sf)$; (2) $Gr(eSf) = gr(eSf) = Gr(eS) \cap Gr(Sf)$; (3) $E(eSf) = E(eS) \cap E(Sf)$; (4) Gr(Se) = gr(Se) and Gr(eS) = gr(eS). Also that for a semigroup S and an idempotent element e of S, the following conditions are equivalent: (i) Reg(eSe) = Reg(Se); (ii) $Reg(Se) \subseteq Reg(eS)$; (iii) E(eSe) = E(Se); (iv) $E(Se) \subseteq E(eS)$. We extend these results in ordered semigroups. As an application of the result of the present paper, the above mentioned results hold for any elements a, b of a semigroup S and not only for idempotent elements of S. Some additional information are also obtained.

1. Introduction and prerequisites. The Lemma 2.1.1, Lemma 2.1.2 and the Theorem 2.1.1 below are from [5]. The Lemma 2.1.1 has been used in Lemma 2.1.2 and Lemma 2.1.2 in Theorem 2.1.1.

Lemma 2.1.1. Let e, f be idempotent elements of a semigroup S. Then the following hold:

- (1) $Reg(eSf) = Reg(eS) \cap Reg(Sf)$
- (2) $Gr(eSf) = gr(eSf) = Gr(eS) \cap Gr(Sf)$
- (3) $E(eSf) = E(eS) \cap E(Sf)$.

Lemma 2.1.2. Let e be an idempotent element of a semigroup S. Then the following hold: (1) $Reg(eSe) = reg(eSe) = Reg(Se) \cap Reg(eS)$

- (2) Gr(eSe) = gr(eSe)
- (3) Gr(Se) = gr(Se) and Gr(eS) = gr(eS)
- (4) $E(eSe) = E(Se) \cap E(eS)$.

Theorem 2.1.1. Let e be an idempotent element of a semigroup S. Then the following conditions are equivalent:

- (i) Reg(eSe) = Reg(Se)(ii) $Reg(Se) \subseteq Reg(eS)$ (iii) E(eSe) = E(Se)
- (iv) $E(Se) \subseteq E(eS)$.

The new results in Lemma 2.1.2 above are the following: The part of (1) referring to Reg(eSe) = reg(eSe) and condition (3), that is, that Gr(Se) = gr(Se) and Gr(eS) = gr(eS), the rest being immediate consequences of Lemma 2.1.1. So Lemma 2.1.2 can be formulated as follows:

Lemma 2.1.2. Let e be an idempotent element of a semigroup S. Then the following hold: (1) Reg(eSe) = reg(eSe)

²⁰⁰⁰ Mathematics Subject Classification. 06F05 (20M05).

 $Key \ words \ and \ phrases.$ Ordered semigroup, regular element, completely regular element, idempotent element.

(2) Gr(Se) = gr(Se) and Gr(eS) = gr(eS).

In the present paper we extend and generalize these results for an ordered semigroup S and for arbitrary elements of S. The results in [5] mentioned above can be also obtained as application of the results of the present paper as every semigroup S with the equality relation $\{(x, y) \in S \times S \mid x = y\}$ is an ordered semigroup. As a consequence, the results of Lemma 2.1.1 and Theorem 2.1.1 hold for arbitrary elements and not only for idempotent elements of S. As far as the Lemma 2.1.2 is concerned, for $a, b \in S$, the property Reg(aSb) = reg(aSb) does not hold, in general, while we have Reg(eSe) = reg(eSe) for every idempotent element e of S; the rest of the lemma being true for arbitrary elements a, b and not only for idempotent elements of S. Some additional information are also obtained.

An element a of a semigroup S is called regular [1] if there exists $x \in S$ such that a = axa; it is called completely regular [6] if there exists $x \in S$ such that $a = a^2xa^2$. An element a of an ordered semigroup $(S, ., \leq)$ is called regular if $a \leq axa$ for some $x \in S$ [3]; it is called completely regular $a \leq a^2xa^2$ for some $x \in S$ [2]. For ordered semigroups, we keep the same notations as in semigroups in [5]. Thus, for an ordered semigroup S, we denote by Reg(S) the set of regular elements of S, by Gr(S) the set of completely regular elements of S, for a subsemigroup T of S we denote by reg(T) the intersection $T \cap Reg(S)$, that is, the elements of T which are regular in S, and by gr(T) the intersection $T \cap Gr(S)$. On the other hand, while E(S) denotes the set of idempotent elements in [5], for an ordered semigroup $(S, ., \leq)$ we denote by E(S) the set of the elements t of S such that $t \leq t^2$.

2. Main results. If $(S, ., \le)$ is an ordered semigroup and H a subset of S, we denote by (H] the subset of S defined by $(H] = \{t \in S \mid t \le h \text{ for some } h \in H\}$.

Definition 1. Let $(S, ., \leq)$ be an ordered semigroup and T a subsemigroup of S. We define $Reg(T) := \{a \in T \mid a \leq axa \text{ for some } x \in T\}$ $Gr(T) := \{a \in T \mid a \leq a^2xa^2 \text{ for some } x \in T\}$ $reg(T) := T \cap Reg(S)$ $gr(T) := T \cap Gr(S)$ $E(T) := \{e \in T \mid e < e^2\}.$

Throughout the paper, we use the fact that the sets (aSb], (aS] and (Sb] $(a, b \in S)$ are subsemigroups of S.

Proposition 2. Let $(S, ., \leq)$ be an ordered semigroup and $a, b \in S$. Then

$$Reg(aSb] = Reg(aS] \cap Reg(Sb].$$

Proof. Since $aSb \subseteq aS$, Sb, we have $Reg(aSb] \subseteq Reg(aS] \cap Reg(Sb]$. Let now $c \in Reg(aS] \cap Reg(Sb]$. Since $c \in Reg(aS]$, we have $c \in (aS]$ and $c \leq cxc$ for some $x \in (aS]$. Since $c \in Reg(Sb]$, we have $c \in (Sb]$ and $c \leq cyc$ for some $y \in (Sb]$. Since $c \in (aS]$, $c \leq as$ for some $s \in S$. Since $c \in (Sb]$, $c \leq tb$ for some $t \in S$. Thus we have

$$c \le cxc \le (as)x(tb) = a(sxt)b \in aSb,$$

so $c \in (aSb]$. Since $x \in (aS]$, $x \leq aw$ for some $w \in S$. Since $y \in (Sb]$, $y \leq ub$ for some $u \in S$. Hence we obtain

$$c \leq cxc \leq cx(cyc) \leq c(aw)c(ub)c = c(awcub)c,$$

with $awcub \in aSb \subseteq (aSb]$. Therefore we have $c \in Reg(aSb]$.

Proposition 3. Let $(S, ., \leq)$ be an ordered semigroup $a, b \in S$. Then we have

$$Gr(aSb] = gr(aSb].$$

Proof. Let $c \in Gr(aSb]$. Then $c \in (aSb]$ and $c \leq c^2yc^2$ for some $y \in (aSb]$. Since $c, y \in S$ and $c \leq c^2yc^2$, we have $c \in Gr(S)$, so $c \in (aSb] \cap Gr(S) := gr(aSb]$. Let now $d \in gr(aSb] := (aSb] \cap Gr(S)$. Since $d \in Gr(S)$, $d \leq d^2xd^2$ for some $x \in S$. Then

$$d \le d^2 x d^2 \le d (d^2 x d^2) x (d^2 x d^2) d = d^2 (d x d^2 x d^2 x d) d^2.$$

Since $d \in (aSb]$, $d \leq asb$ for some $s \in S$. We put $t := dxd^2xd^2xd$, and we have $t \leq (asb)xd^2xd^2x(asb) \in aSb$, so $t \in (aSb]$. Since $d \in (aSb]$ and $d \leq d^2td^2$, where $t \in (aSb]$, we have $d \in Gr(aSb]$.

Proposition 4. Let $(S, ., \leq)$ be an ordered semigroup and $a, b \in S$. Then we have

$$Gr(aSb] = Gr(aS] \cap (Sb] = (aS] \cap Gr(Sb].$$

Proof. Let $c \in Gr(aSb]$. Then $c \in (aSb]$ and $c \leq c^2yc^2$ for some $y \in (aSb]$. Since $aSb \subseteq aS, Sb$, we have $(aSb] \subseteq (aS], (Sb]$. Since $c, y \in (aS]$ and $c \leq c^2yc^2$, we have $c \in Gr(aS]$, so $c \in Gr(aS] \cap (Sb]$. Let now $d \in Gr(aS] \cap (Sb]$. Since $d \in Gr(aS]$, $d \in (aS]$ and $d \leq d^2xd^2$ for some $x \in (aS]$. Since $d \in (aS]$, $d \leq as$ for some $s \in S$. Since $d \in (Sb]$, $d \leq tb$ for some $t \in S$. Then we have $d \leq d^2xd^2 \leq (as)dxd(tb) \in aSb$, so $d \in (aSb]$. Moreover, we have

$$d \le d^2 x d^2 \le d(d^2 x d^2) x (d^2 x d^2) d = d^2 (dx d^2 x d^2 x d) d^2.$$

Putting $t := dxd^2xd^2xd$, we have $t \le (as)xd^2xd^2x(tb) \in aSb$, so $t \in (aSb]$. Since $d \in (aSb]$ and $d \le d^2td^2$, where $t \in (aSb]$, we have $d \in Gr(aSb]$. In a similar way we prove that $Gr(aSb] = (aS] \cap Gr(Sb]$.

Proposition 5. Let S be an ordered semigroup $a, b \in S$. Then we have

$$Gr(aSb] = Gr(aS] \cap Gr(Sb].$$

Proof. By Proposition 4, we have

$$Gr(aSb] = Gr(aSb] \cap Gr(aSb] = Gr(aS] \cap (Sb] \cap (aS] \cap Gr(Sb].$$

Since $Gr(aS] \subseteq (aS]$ and $Gr(Sb] \subseteq (Sb]$, we have $Gr(aSb] = Gr(aS] \cap Gr(Sb]$.

Proposition 6. Let $(S, ., \leq)$ be an ordered semigroup and $a, b \in S$. Then

$$E(aSb] = E(aS] \cap (Sb] = (aS] \cap E(Sb].$$

Proof. Let $c \in E(aSb]$. Then $c \in (aSb]$ and $c \leq c^2$. Since $c \in (aSb]$, $c \leq aub$ for some $u \in S$. Since $c \leq aub \in aS$, we have $c \in (aS]$. Since $c \in (aS]$ and $c \leq c^2$, we have $c \in E(aS]$. Besides, since $c \leq aub \in Sb$, we have $c \in (Sb]$. Thus $c \in E(aS] \cap (Sb]$. Let now $d \in E(aS] \cap (Sb]$. Since $d \in E(aS]$, we have $d \in (aS]$ and $d \leq d^2$. Since $d \in (aS]$, $d \leq as$ for some $s \in S$. Since $d \in (Sb]$, $d \leq tb$ for some $t \in S$. Thus we have $d \leq d^2 \leq (as)(tb) = a(st)b \in aSb$, so $d \in (aSb]$. Since $d \in (aSb]$ and $d \leq d^2$, we have $d \in E(aSb]$. In a similar way we get $E(aSb] = (aS] \cap E(Sb]$.

Proposition 7. If S is an ordered semigroup $a, b \in S$, then we have

$$E(aSb] = E(aS] \cap E(Sb].$$

Proof. By Proposition 6, we have

$$E(aSb] = E(aSb] \cap E(aSb] = E(aS] \cap (Sb] \cap (aS] \cap E(Sb].$$

Since $E(aS] \subseteq (aS]$ and $E(Sb] \subseteq (Sb]$, we have $E(aSb] = E(aS] \cap E(Sb]$.

Proposition 8. If $(S, ., \leq)$ is an ordered semigroup, then we have

$$Gr(Sa] = gr(Sa)$$
 and $Gr(aS] = gr(aS)$.

Proof. First of all, for any subsemigroup T of S, we have $Gr(T) \subseteq gr(T)$. In fact: if $d \in Gr(T)$, then $d \in T$ and $d \leq d^2yd^2$ for some $y \in T$. Since $d, y \in S$ and $d \leq d^2yd^2$, we have $d \in Gr(S)$, thus $d \in T \cap Gr(S) = gr(T)$. Since (Sa] is a subsemigroup of S, we have $Gr(Sa] \subseteq gr(Sa]$. Let now $x \in gr(Sa] := (Sa] \cap Gr(S)$. Since $x \in (Sa]$, $x \leq sa$ for some $s \in S$. Since $x \in Gr(S)$, we get $x \leq x^2tx^2$ for some $t \in S$. Then

$$x \le x^2 t x^2 \le x^2 t (x^2 t x^2) x = x^2 (t x^2 t x) x^2.$$

On the other hand, $tx^2tx \leq tx^2tsa \in Sa$, so $tx^2tx \in (Sa]$. Since $x \in (Sa]$ and $x \leq x^2(tx^2tx)x^2$, where $tx^2tx \in (Sa]$, we have $x \in Gr(Sa]$. Similarly we get Gr(aS] = gr(aS].

For an ordered semigroup S and an element e of S such that $e \leq e^2$, we have Reg(eSe) = reg(eSe) [4], while for arbitrary elements $a, b \in S$, condition Reg(aSb) = reg(aSb) does not hold in general. We prove it by the following

Example. Let S be the ordered semigroup defined by the multiplication and the order below:

•	a	b	c	d	e
a	a	a	a	a	a
b	a	b	a	d	a
c	a	e	С	С	e
d	a	b	d	d	b
e	a	e	a	С	a

$$\leq := \{(a, a), (a, b), (a, c), (a, d), (a, e), (b, b), (c, c), (d, d), (e, e)\}.$$

The set $cSb = \{a, e\}$ is a subsemigroup of S,

 $Reg(cSb) = \{t \in cSb \mid t \le txt \text{ for some } x \in cSb\} = \{a\},\$

 $reg(S) = \{t \in S \mid t \leq txt \text{ for some } x \in S\} = S$, and

```
reg(cSb) = cSb \cap Reg(S) = \{a, e\}.
```

Thus $Reg(cSb) \neq reg(cSb)$.

We notice that if S is the semigroup defined in the table above, then $Reg(cSb) \neq reg(cSb)$. Which means that for a semigroup S, as well, the relation Reg(aSb) = reg(aSb) which holds for a = b = e, where e is an idempotent element of S, does not hold for arbitrary elements a, b of S, in general.

Theorem 9. Let S be an ordered semigroup and $a, b \in S$. The following are equivalent:

- (1) $Reg(aS] \subseteq Reg(aSb]$
- (2) Reg(aS] = Reg(aSb]
- (3) $Reg(aS] \subseteq Reg(Sb]$
- (4) $Reg(aS] \subseteq (Sb]$
- (5) E(aS] = E(aSb]

(6) $E(aS] \subseteq E(aSb]$ (7) $E(aS] \subseteq E(Sb]$ (8) $E(aS] \subseteq (Sb].$

Proof. (1) \implies (2). Since $aSb \subseteq aS$, we have $(aSb] \subseteq (aS]$. Then, since (aSb] and (aS] are subsemigroups of S, the sets Reg(aSb] and Reg(aS] are defined, and we have $Reg(aSb] \subseteq Reg(aS]$. Then, by (1), Reg(aS] = Reg(aSb].

 $(2) \implies (3)$. Since $aSb \subseteq Sb$, we have $(aSb] \subseteq (Sb]$. Then, since (aSb] and (Sb] are subsemigroups of S, we have $Reg(aSb] \subseteq Reg(Sb]$. Then, by (2), $Reg(aS] \subseteq Reg(Sb]$.

(3) \implies (4). Since (Sb] is a subsemigroup of S, we have $Reg(Sb] \subseteq (Sb]$ then, by (3), $Reg(aS] \subseteq (Sb]$.

 $(4) \Longrightarrow (5)$. For every subsemigroup T of S, we have $E(T) \subseteq Reg(T)$. Indeed, if $x \in E(T)$, then $x \in T$ and $x \leq x^2 \leq xxx$, so $x \in Reg(T)$. Since (aS] is a subsemigroup of S, we have $E(aS] \subseteq Reg(aS]$. Then, by (4), $E(aS] \subseteq (Sb]$, so $E(aS] \cap (Sb] = E(aS]$. By Proposition 6, $E(aSb] = E(aS] \cap (Sb]$. Thus we have E(aS] = E(aSb]. The implication $(5) \Longrightarrow (6)$ is obvious.

(6) \Longrightarrow (7). If T_1, T_2 are subsemigroups of S such that $T_1 \subseteq T_2$, then $E(T_1) \subseteq E(T_2)$. Since (aSb] and (Sb] are subsemigroups of S such that $(aSb] \subseteq (Sb]$, we have $E(aSb] \subseteq E(Sb]$. Then, by (6), $E(aS] \subseteq E(Sb]$.

 $(7) \Longrightarrow (8)$. Since (Sb] is a subsemigroup of S, $E(Sb] \subseteq (Sb]$ and, by (7), we get $E(aS] \subseteq (Sb]$.

(8) \implies (1). Let $c \in Reg(aS]$. Then $c \in (aS]$ and $c \leq cxc$ for some $x \in (aS]$. Then $xc \leq xcxc = (xc)^2$, $x \leq as$ for some $s \in S$, $xc \leq asc \in aS$, $xc \in (aS]$, and $xc \in E(aS]$. Then, by (8), $xc \in (Sb]$, that is, $xc \leq tb$ for some $t \in S$. On the other hand, since $c \in (aS]$, $c \leq az$ for some $z \in S$. Hence we have $c \leq c(xc) \leq (az)(tb) \in aSb$, so $c \in (aSb]$. Furthermore, since $c \leq cxc$, we have $cx \leq (cx)^2$ and, since $c \leq az$, we have $cx \leq azx \in aS$, that is, $cx \in (aS]$. Hence we have $cx \in E(aS]$ and, by (8), $cx \in (Sb]$, then $cx \leq tb$ for some $t \in S$. Now $c \leq cxc \leq cx(cxc) = c(xcx)c$ and $xcx \leq (as)(tb) \in aSb$, so $xcx \in (aSb]$. Since $c \in (aSb]$ and $c \leq c(xcx)c$, where $xcx \in (aSb]$, we have $c \in Reg(aSb]$.

Theorem 10. Let S be an ordered semigroup and $a, b \in S$. The following conditions are equivalent:

(1) $Reg(Sb] \subseteq Reg(aSb]$ (2) Reg(Sb] = Reg(aSb](3) $Reg(Sb] \subseteq Reg(aS]$ (4) $Reg(Sb] \subseteq (aS]$ (5) E(Sb] = E(aSb](6) $E(Sb] \subseteq E(aSb]$ (7) $E(Sb] \subseteq E(aS]$ (8) $E(Sb] \subseteq (aS]$. tring a = b in Theorem 9 and

Putting a = b in Theorem 9, we have the following:

Theorem 11. Let S be an ordered semigroup and $a \in S$. The following are equivalent:

- (1) $Reg(aS] \subseteq Reg(aSa]$ (2) Reg(aS] = Reg(aSa](3) $Reg(aS] \subseteq Reg(Sa]$ (4) $Reg(aS] \subseteq (Sa]$ (5) E(aS] = E(aSa](6) $E(aS) \in E(aSa)$
- $(6) \ E(aS] \subseteq E(aSa]$
- (7) $E(aS] \subseteq E(Sa]$

(8) $E(aS] \subseteq (Sa].$

Putting a = b in Theorem 10, we have the following:

Theorem 12. Let S be an ordered semigroup and $a \in S$. The following are equivalent:

- (1) $Reg(Sa] \subseteq Reg(aSa]$
- (2) Reg(Sa] = Reg(aSa]
- (3) $Reg(Sa] \subseteq Reg(aS]$
- (4) $Reg(Sa] \subseteq (aS]$
- (5) E(Sa] = E(aSa](6) $E(Sa] \subseteq E(aSa]$
- $(7) E(Sa] \subseteq E(aSa)$
- (1) $E(Sa] \subseteq E(aS)$ (8) $E(Sa] \subseteq (aS]$.

Applying Propositions 2, 3, 5, 7 and 8 to a semigroup (without order), we obtain the following

Corollary 13. (Cf. also Lemma 2.1.1 and Lemma 2.1.2) For a semigroup S and arbitrary elements $a, b \in S$, the following conditions are satisfied:

- (1) $Reg(aSb) = Reg(aS) \cap Reg(Sb)$
- (2) $Gr(aSb) = gr(aSb) = Gr(aS) \cap Gr(Sb)$
- (3) $E(aSa) = E(aS) \cap E(Sb)$
- (4) Gr(Sa) = gr(Sa) and Gr(aS) = gr(aS).

We have already seen that if S is an ordered semigroup and e an element of S such that $e \leq e^2$, then Reg(eSe) = reg(eSe). As a consequence, if S is a semigroup and e an idempotent element of S, then Reg(eSe) = reg(eSe) (the part of (1) in Lemma 2.1.2 mentioned above).

By conditions (2),(3),(5),(7) of Theorem 10, we have the following

Corollary 14. (Cf. also Theorem 2.1.1) For a semigroup S and arbitrary elements $a, b \in S$, the following are equivalent:

- (1) Reg(aSb) = Reg(Sb)
- (2) $Reg(Sb) \subseteq Reg(aS)$
- (3) E(aSb) = E(Sb)
- (4) $E(Sb) \subseteq E(aS)$.

Besides, applying conditions (2),(3),(5) and (7) of Theorem 12 to semigroups (without order) or just putting a = b in Corollary 14 we get the Theorem 2.1.1 in [5] for an arbitrary element of S.

So the Lemma 2.1.1, Lemma 2.1.2 and the Theorem 2.1.1 in [5] except the part of Lemma 2.1.2 referring to Reg(eSe) = reg(eSe) hold for arbitrary elements a, b and not only for idempotent elements e, f of a semigroup S.

References

- A.H. Clifford, G.B. Preston, *The Algebraic Theory of Semigroups* I. Mathematical Surveys, no. 7, American Mathematical Society, Providence, Rhode Island 1961. xv+224 pp.
- [2] N. Kehayopulu, On completely regular poe-semigroups, Math. Japon. 37(1) (1992), 123–130.
- [3] N. Kehayopulu, On regular duo ordered semigroups, Math. Japon. 37(3) (1992), 535–540.
- [4] N. Kehayopulu, M. Tsingelis, The set of regular elements in ordered semigroups, Math. Japon. 72(1) (2010), 61–66.

- [5] M. Mitrović, Semilattices of Archimedean Semigroups, University of Nis, Faculty of Mechanical Engineering, Nis, 2003. xiv+160 pp. ISBN: 86-80587-32-X
- [6] M. Petrich, *Introduction to Semigroups*, Merrill Research and Lecture Series, Charles E. Merrill Publishing Co., Columbus, Ohio, 1973. viii+198 pp.

University of Athens Department of Mathematics 157 84 Panepistimiopolis Athens, Greece

e-mail: nkehayop@math.uoa.gr