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Abstract. In this paper we prove an extension of Ekeland’s variational principle
in the setting of locally complete spaces. We also present an Equilibrium version of
the Ekeland-type variational principle, a Caristi-Kirk type fixed point theorem for
multivalued maps and a Takahashi minimization theorem, we then prove that they are
equivalent.

1 Introduction
The fundamental idea of the variational principle due to I. Ekeland [4] is to assign to a min-
imization problem a slightly perturbed problem having a solution which is at the same time
an approximate solution to the original problem. This localization property is very useful
and explains the importance of the result. It is one of the most important tools to solve
problems in optimization, optimal control, game theory, nonlinear equations, dynamical sys-
tems, etc. [1,4,6,7]. Since the discovery of the Ekeland’s variational principle there have also
appeared many extensions or equivalent formulations of the principle [2,3,5,6,7,10,11,12].
In [2] C.Bosch, A.Garcia, C.L.Garcia, established the variational principle in the setting of
locally complete spaces with the perturbations introduced by J.Qiu [11]. In this paper we
will improve the previous result by showing that the second inequality in the main theorem
can be strict. We introduce also, in the setting of locally complete spaces, the equilibrium
version of the Ekeland-type variational principle, a Caristi-Kirk type fixed point theorem
for multivalued maps and a Takahashi type minimization theorem, then we prove that they
are all equivalent to our Ekeland-type variational principle. The results of this paper extend
and generalize many results appearing recently in the literature and are of a different kind
as was noted by S.Al-Homidan, Q.H. Ansari, J.-C. Yao [7] in remark 3.3.

2 Preliminaries
Throughout this paper (E, τ) will denote a Hausdorff locally convex space (briefly locally
convex space) with topology τ , generated by a family of seminorms {ρα : α ∈ Λ} with Λ
a set of indices. A disk B in E is a closed, bounded and absolutely convex set. We denote
by (EB , ρB) the linear span of B endowed with the topology defined by the Minkowski
functional associated with B. When B is bounded ρB is a norm, and the norm topology
is finer than the topology inherited from E. If (EB , ρB) is a Banach space we say that B
is a Banach disk. We say that E is a locally complete locally convex space (briefly locally
complete space) if each closed, bounded disk is a Banach disk. There are many examples of
locally complete spaces, in fact every sequential complete space is locally complete. Typical
examples of locally complete spaces arise in the following way. Let (E, ‖.‖) be a Banach
space and σ(E, E′) be the weak topology in E then (E, σ(E, E′)) is a locally complete space
which is not sequentially complete. For metrizable locally convex spaces these concepts are
equivalent. The class Φ of perturbations we will use is defined as the family of functions
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ϕ : [0,∞) → [0,∞) which are subadditive, strictly increasing, continuous, ϕ(0) = 0, and
limx→∞ ϕ(x) = ∞. Clearly the inverse of ϕ exists and is superadditive, strictly increasing
and continuous, ϕ−1(0) = 0. Here ϕ is said to be subadditive if ϕ(s + t) ≤ ϕ(s) + ϕ(t), for
every s, t ∈ [0,∞), and ϕ−1 is said to be superadditive if ϕ−1(s + t) ≥ ϕ−1(s) + ϕ−1(t), for
every s, t ∈ [0,∞). Functions like ϕ(t) = t, ϕ(t) = n

√
t, ϕ(t) = ln(1 + t), are examples of

elements in Φ.

3 Ekeland-Type variational principle
In this section we present a generalization of Ekeland-Type variational principle for locally
complete spaces. This theorem is more precise than the one in [2] since here we will have in
(b) a strict inequality, the proof is similar to that of the cited theorem but for completeness
we will write down the details here.

Theorem 1 Let (E,τ) be a locally complete space and f : E → R ∪ {∞} be a proper, lower
semicontinuous and bounded below function. Let ϕ be in Φ and x0 be a point in Dom(f),
that is f(x0) < ∞. Then for any Banach disk B in E such that x0 ∈ EB there exists
x∗ ∈ EB such that :

(a) f(x∗) + ϕ(ρB(x∗ − x0)) ≤ f(x0) and
(b) f(x∗) < f(x) + ϕ(ρB(x∗ − x)) for all x ∈ E� {x∗}.

Proof Let B be a Banach disk in E such that x0 ∈ (EB , ρB) and let

S(x0) = {x ∈ EB : f(x) + ϕ(ρB(x − x0)) ≤ f(x0)}.

Observe that S(x0) is nonempty and ρB-closed in EB and that if x1 is in S(x0) then
S(x1) ⊂ S(x0), since for x2 ∈ S(x1), we have

ϕ(ρB(x2 − x0) ≤ ϕ(ρB(x2 − x1) + ϕ(ρB(x1 − x0)
≤ f(x1) − f(x2) + f(x0) − f(x1) = f(x0) − f(x2)

Let g : EB → R ∪ {∞} be the function defined by,

g(x) =
{

f(x), S(x0)
∞, EB � S(x0).

Note that g is both ρB-lower semicontinuous and bounded below.
Now, starting from any x1 in S(x0) construct, inductively, xk in S(xk−1) such that,

g(xk) ≤ inf{g(x) : x ∈ S(xk−1)} +
1
k

since xk ∈ S(xk−1), we obtain from the definition of S(xk−1),

g(xk) + ϕ(ρB(xk − xk−1)) ≤ g(xk−1)

then 0 ≤ ϕ(ρB(xk − xk−1)) ≤ g(xk−1) − g(xk).
From which we have that the bounded below sequence (g(xk)) is decreasing, that is,

g(xk) ≤ g(xk−1).
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So g(xk) ↓ r . Now let us prove that the sequence (xk) is contained in S(x0) and is
ρB-Cauchy. By using the triangle inequality and the subadditivity of ϕ we have that

ϕ(ρB(xk − xl)) ≤ ϕ(ρB(xk − xk+1) + ρB(xk+1 − xk+2) + .... + ρB(xl−1 − xl))
≤ ϕ(ρB(xk − xk+1)) + ϕ(ρB(xk+1 − xk+2)) + .... +

+... + ϕ(ρB(xl−1 − xl))
≤ g(xk) − g(xk+1) + g(xk+1) − g(xk+2) + ... + g(xl−1) − g(xl)
= g(xk) − g(xl) < δ if l ≥ k ≥ N(δ) for some N(δ).

Since ϕ−1 is continuous then for every ε > 0 there is a δ > 0 and therefore N(δ) ∈ N,
such that if l ≥ k ≥ N(δ) then g(xk) − g(xl) < δ and ϕ−1(g(xk) − g(xl)) < ε. So
ρB(xk−xl) < ϕ−1(g(xk)−g(xl)) < ε means that (xk) is ρB-Cauchy. So E Locally complete
implies that there is x∗ ∈ EB such that (xk) is ρB-convergent to x∗ . Note that since, x1 is
in S(x0), S(x1) ⊂ S(x0) and in an analogous way S(xk+1) ⊂ S(xk) ⊂ ·· ⊂ S(x0). Now (xk)
is ρB-Cauchy in S(x0) which is ρB-closed and therefore xk → x∗and x∗ ∈ S(x0). Then we
have

g(x∗) + ϕ(ρB(x∗ − x0)) ≤ g(x0).

Now we will prove that S(x∗) = {x∗}. Suppose that x ∈ S(x∗), then x ∈ EB and
g(x) + ϕ(ρB(x− x∗)) ≤ g(x∗) so g(x) ≤ g(x∗). Furthermore using again the sequence (xn)
we have g(x∗) ≤ g(xn) ≤ g(x) + 1

n for every n in N, and since g is lower semicontinuous
and g(xk) ↓ r we get g(x∗) ≤ r ≤ g(x) ≤ g(x∗), then g(x∗) = r = g(x). We have that
x ∈ S(x∗) ⊂ S(xn) so

0 ≤ ϕ(ρB(x − xn)) ≤ g(xn) − g(x) = g(xn) − r → 0.

And since x∗ ∈ S(x∗) ⊂ S(xn), we have

0 ≤ ϕ(ρB(x∗ − xn)) ≤ g(xn) − g(x∗) = g(xn) − r → 0.

By the continuity of ϕ−1 , and the fact that ϕ(0) = 0, we have that

ρB(x − xn) → 0,

ρB(x∗ − xn) → 0.

We can then conclude that x∗ = x then S(x∗) = {x∗} and if x ∈ EB , x �= x∗we get
inequality (b) in the theorem. If x ∈ E � EB , it is clear that the inequality holds, since
ρB(x) = ∞.

Remark 1 The main result in Bosch, Garcia, Garcia [2], is slightly different from the
theorem in this section and this one is not comparable to Corollary 3.1 in Al-Homidan,
Ansari, Yao [7] as themselves pointed it out.

4 Some equivalences
Now we will give the equivalences between a Caristi-Kirk type fixed point theorem, Taka-
hashi type minimization theorem, an equilibrium version of Ekeland-type Variational Prin-
ciple and Theorem 1 for Qiu’s perturbations in the setting of locally complete spaces.
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Theorem 2 Let (E,τ) be a locally complete space, f : E → R be a lower semicontinuous
bounded below function and let ϕ be in Φ. Then the following statements are equivalent to
Theorem 1:

(i) (Caristi-Kirk type fixed point theorem). Let 2E be the set of all subsets of E
and T : E → 2E, be a multivalued map with nonempty values. If there exists a Banach disk
B in E such that for all x ∈ EB and y ∈ Tx we have that

ϕ(ρB(x − y)) ≤ f(x) − f(y) (1)

holds, then T has a stationary point in EB, that is, there exists x∗ ∈ EB such that
{x∗} = Tx∗.

(ii) (Takahashi type minimization theorem). Assume that for each x′ ∈ E with
infz∈E f(z) < f(x′) there exists a Banach disk B in E such that x′ ∈ EB and there exists
x ∈ EB − {x′} such that ϕ(ρB(x′ − x)) ≤ f(x′) − f(x). Then there exists x∗ ∈ EB such
that f(x∗) = infy∈EB f(y)

(iii)(Equilibrium version of Ekeland-type Variational Principle). Let F : E ×
E → R such that

1. For all x, y, z ∈ E , F (x, z) ≤ F (x, y) + F (y, z).
2. For each fixed x ∈ E, F (x, ·) : E → R is lower semi continuous.
3. There exists x′ ∈ E such that infx∈E F (x′, x) > −∞.

Then there exists a Banach disk B in E, x′ ∈ EB and x∗ ∈ EB such that
(a) F (x′, x∗) + ϕ(ρB(x′ − x∗)) ≤ 0
(b) F (x∗, x) + ϕ(ρB(x∗ − x)) > 0 , for all x ∈ EB − {x∗}.

Proof We will prove Theorem 1 =⇒ (i) =⇒ (ii) ⇒ (iii) =⇒ Theorem 1.
From Theorem 1 part (b) there exists x∗ ∈ EB such that

f(x∗) − f(x) < ϕ(ρB(x∗ − x)) for all x ∈ EB − {x∗}.
We claim that {x∗} = Tx∗. Otherwise if y ∈ Tx∗ − {x∗} from (i − 1) we have

ϕ(ρB(x∗ − y)) ≤ f(x∗) − f(y)

which contradicts the previous inequality. Note that from inequality (1), for all x ∈ EB

and y ∈ Tx, we must have ρB(x − y) < ∞, this means y ∈ EB , i.e. Tx ⊂ EB, for all
x ∈ EB.

(i) =⇒ (ii). Define T : E → 2Eas

T (x) =
{ {y ∈ EB : ϕ(ρB(x − y)) ≤ f(x) − f(y)} if x ∈ EB.

E if x ∈ E − EB.
Note that T satisfies inequality (1). Then by (i) there exists x∗ ∈ EB such that

{x∗} = Tx∗. Now by assumption for each x′ ∈ EB there exists x ∈ EB − {x′}, we have
x ∈ Tx′ and then Tx′ − {x′} �= ∅ whenever infz∈E f(z) < f(x′) hence we must have
infz∈EB f(z) = f(x∗).

(ii) =⇒ (iii) Define a function f : E → R by f(x) = F (x′, x) for all x ∈ E where
x′ is the element given in condition (iii − 3). Then we have infx∈E F (x′, x) > −∞ which
means that f is bounded below and by (iii − 2), f is proper lower semicontinuous. Let
B ⊂ E be a Banach disk such that x′ ∈ EB . Now suppose that in (iii) (b) does not hold.
Then for all x ∈ EB there exists y ∈ EB − {x} and F (x, y) + ϕ(ρB(x − y)) ≤ 0 . By
condition (iii − 1), we have F (x′, y) − F (x′, x) ≤ F (x, y) so using this and the previous
inequality :

F (x′, y) − F (x′, x) + ϕ(ρB(x − y)) ≤ F (x, y) + ϕ(ρB(x − y)) ≤ 0 (2)
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that is, for all x ∈ EB there exists y ∈ EB − {x} and

f(y) − f(x) + ϕ(ρB(x − y)) ≤ 0, or equivalently ϕ(ρB(x − y)) ≤ f(x) − f(y).

Then by (ii), there exists x∗ ∈ EB such that f(x∗) ≤ f(z) for all z ∈ EB. By
substituting x by x∗ in inequality (2), we obtain that there exists y ∈ EB − {x∗} and
ϕ(ρB(x∗ − y)) ≤ f(x∗)− f(y). Now since ρB is a norm in EB , ρB(x∗ − y) > 0, and then
f(y) < f(x∗) which is a contradiction.

Finally let us prove that (iii) ⇒ Theorem 1. Define F : E × E → R as F (x, y) =
f(y) − f(x) for all x, y ∈ E, with x′ ∈ dom(f).Then by hypothesis, F satisfies all the
conditions of (iii).Then (iii) implies the existence of x∗ ∈ EB such that (a) and (b) hold.
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3Universidad Autónoma Metropolitana, Cuajimalpa : sergioheranaya@luam.cuj.mx


