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Abstract. We bridge between submanifold theory and contact geometry. We give a
geometric meaning of some fundamental notions such as Sasakian, nearly Sasakian, K-
contact from the viewpoint of the result in [3] (Theorem 1). Moreover, motivated by
the notion of totally η-umbilic hypersurfaces in a nonflat complex space form, we give a

new notion in contact geometry (Theorem 2).

1. Introduction

We denote by M̃n(c) a complex n-dimensional connected and simply connected Kähler
manifold of constant holomorphic sectional curvature c(�= 0), namely it is holomorphically
isometric to either an n-dimensional complex projective space CP n(c) of constant holo-
morphic sectional curvature c or an n-dimensional complex hyperbolic space of constant
holomorphic sectional curvature c according as c is positive or negative. M̃n(c) is so-called
a nonflat complex space form of constant holomorphic sectional curvature c.

In this paper we consider real hypersurfaces M2n−1 of M̃n(c) furnished with the standard
Kähler structure J and Riemannian metric g through an isometric immersion. In the
following, we recall some fundamental notions in contact geometry such as Sasakian, nearly
Sasakian, K-contact for the real hypersurface M . We take and fix a unit normal vector N
on M . On M it is well-known that an almost contact metric structure (φ, ξ, η, g) associated
with N is canonically induced from the structure (J, g) of the ambient space M̃n(c), which
is defined by

g(φX,Y ) = g(JX, Y ), ξ = −JN and η(X) = g(ξ,X) = g(JX,N ).

On the other hand, (φ,−ξ,−η, g) is clearly also an almost contact metric structure by taking
a unit normal −N on M . Hence it is natural to say that a real hypersurface M is Sasakian
if one of these induced structures is a Sasakian structure. That is, if we fix a unit normal
N of M , this real hypersurface is a Sasakian manifold if and only if the structure tensor φ
of M satisfies either the equation (∇Xφ)Y = g(X, Y )ξ − η(Y )X for all vectors X, Y ∈ TM
or (∇Xφ)Y = −g(X, Y )ξ + η(Y )X for all vectors X, Y ∈ TM . A Sasakian manifold M is
called a Sasakian space form if every φ-sectional curvature K(u, φu) := g(R(u, φu)φu, u)
associated to a unit vector u(∈ TM ) orthogonal to ξ does not depend on the choice of u,
where R is the curvature tensor of M . We next review the notion of nearly Sasakian for a
real hypersurface M in M̃n(c). M is called a nearly Sasakian manifold if M satisfies either
the equation (∇Xφ)Y + (∇Y φ)X = 2g(X, Y )ξ − η(X)Y − η(Y )X for all X, Y ∈ TM or
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(∇Xφ)Y +(∇Y φ)X = −2g(X, Y )ξ+η(X)Y +η(Y )X for all X, Y ∈ TM . A real hypersurface
M of M̃ is called a contact manifold if the exterior differentiation dη of the contact form η
on M satisfies either dη(X, Y ) = g(X, φY ) for all X, Y ∈ TM or dη(X, Y ) = −g(X, φY ) for
all X, Y ∈ TM , where dη is defined by dη(X, Y ) = (1/2){X(η(Y ))−Y (η(X))− η([X, Y ])}.
When M is contact and Lξg = 0, M is called a K-contact manifold. Here, L is the Lie
derivative on M .

In contact geometry, it is known that Sasakian always implies nearly Sasakian and K-
contact. But, in general the converses do not hold (cf. [2]). However, in the theory of real
hypersurfaces M in M̃n(c) we emphasize that these notions are equivalent (see Theorem 1).
Moreover, in Theorem 1 we give a geometric characterization of such notions by observing
some geodesics on M .

In order to describe Theorem 2, we present a new notion. A real hypersurface M is
called an α-nearly Sasakian manifold if M satisfies either the equation (∇Xφ)Y +(∇Y φ)X =
α(2g(X, Y )ξ−η(X)Y −η(Y )X) for all X, Y ∈ TM or (∇Xφ)Y +(∇Y φ)X = α(−2g(X, Y )ξ+
η(X)Y + η(Y )X) for all X, Y ∈ TM , where α is a positive constant. Using this notion,
we obtain a characterization of all totally η-umbilic hypersurfaces in M̃n(c) which are the
simplest examples in the theory of real hypersurfaces (see Theorem 2).

2. Fundamental theory of real hypersurfaces in M̃n(c)

Let M2n−1 be a real hypersurface with a unit normal local vector field N of an n-
dimensional nonflat complex space form M̃n(c) with the standard Riemannian metric g and
the canonical Kähler structure J . The Riemannian connections ∇̃ of M̃n(c) and ∇ of M
are related by the following formulas of Gauss and Weingarten:

∇̃XY = ∇XY + g(AX,Y )N ,(2.1)

∇̃XN = −AX(2.2)

for arbitrary vector fields X and Y on M , where g is the Riemannian metric of M induced
from the ambient space M̃n(c) and A is the shape operator of M in M̃n(c). An eigenvector of
the shape operator A is called a principal curvature vector of M in M̃n(c) and an eigenvalue
of A is called a principal curvature of M in M̃n(c). We set Vλ = {v ∈ TM | Av = λv} which
is called the principal foliation associated to the principal curvature λ.

M has an almost contact metric structure (φ, ξ, η, g) (see Introduction). It follows from
(2.1), (2.2) and ∇̃J = 0 that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ,(2.3)

∇Xξ = φAX.(2.4)

Denoting the curvature tensor of M by R, we have the equation of Gauss given by
g(R(X, Y )Z, W )

= (c/4){g(Y, Z)g(X, W )− g(X, Z)g(Y, W ) + g(φY, Z)g(φX,W )

− g(φX,Z)g(φY, W ) − 2g(φX,Y )g(φZ,W )}
+ g(AY, Z)g(AX,W ) − g(AX,Z)g(AY, W ).

(2.5)

We usually call M a Hopf hypersurface if the characteristic vector ξ of M is a principal
curvature vector at each point of M . We remark that the principal curvature δ associated
with ξ is automatically constant on M in local.

Furthermore, every tube of sufficiently small constant radius around each Kähler sub-
manifold of a nonflat complex space form M̃n(c) is a Hopf hypersurface. This fact means
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that the notion of Hopf hypersurfaces is natural in the theory of real hypersurfaces in a
nonflat complex space form.

In CP n(c) (n � 2), a Hopf hypersurface all of whose principal curvatures are constant is
locally congruent to one of the following (cf. [4]):
(A1) A geodesic sphere of radius r, where 0 < r < π/

√
c ;

(A2) A tube of radius r around totally geodesic CP �(c) (1 � � � n − 2), where 0 < r <
π/

√
c ;

(B) A tube of radius r around complex hyperquadric CQn−1, where 0 < r < π/(2
√

c );
(C) A tube of radius r around CP 1(c)×CP (n−1)/2(c), where 0 < r < π/(2

√
c ) and n (� 5)

is odd;
(D) A tube of radius r around complex Grassmann CG2,5, where 0 < r < π/(2

√
c ) and

n = 9;
(E) A tube of radius r around Hermitian symmetric space SO(10)/U (5), where 0 < r <

π/(2
√

c ) and n = 15.
These real hypersurfaces are said to be of types (A1), (A2), (B), (C), (D) and (E). Summing
up real hypersurfaces of types (A1) and (A2), we call them hypersurfaces of type (A).
The numbers of distinct principal curvatures of these real hypersurfaces are 2, 3, 3, 5, 5, 5,
respectively. The principal curvatures of these real hypersurfaces in CP n(c) are given as
follows:
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√
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√
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One should notice that in CP n(c) a tube of radius r (0 < r < π/
√

c ) around totally geodesic
CP �(c) (0 � � � n−1) is congruent to a tube of radius

(
(π/

√
c )−r

)
around totally geodesic

CP n−�−1(c).
In CHn(c) (n � 2), a Hopf hypersurface all of whose principal curvatures are constant

is locally congruent to one of the following (cf. [4]):
(A0) A horosphere in CHn(c);

(A1,0) A geodesic sphere of radius r (0 < r < ∞);
(A1,1) A tube of radius r around totally geodesic CHn−1(c), where 0 < r < ∞;
(A2) A tube of radius r around totally geodesic CH�(c) (1 � � � n− 2), where 0 < r < ∞;
(B) A tube of radius r around totally real totally geodesic RHn(c/4), where 0 < r < ∞.

These real hypersurfaces are said to be of types (A0), (A1), (A1), (A2) and (B). Here, type
(A1) means either type (A1,0) or type (A1,1). Summing up real hypersurfaces of types
(A0), (A1) and (A2), we call them hypersurfaces of type (A). A real hypersurface of type
(B) with radius r = (1/

√|c| ) loge(2 +
√

3 ) has two distinct constant principal curvatures
λ1 = δ =

√
3|c| /2 and λ2 =

√
c /(2

√
3 ). Except for this real hypersurface, the numbers of

distinct principal curvatures of Hopf hypersurfaces with constant principal curvatures are
2, 2, 2, 3, 3, respectively. The principal curvatures of these real hypersurfaces in CHn(c) are
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given as follows:

(A0) (A1,0) (A1,1) (A2) (B)
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In this paper, real hypersurfaces of types (A), (B), (C), (D) and (E) in M̃n(c) are said
to be standard real hypersurfaces. It is well-known that every standard real hypersurface
M is a homogeneous real hypersurface of M̃n(c), namely M is an orbit of some subgroup
of the full isometry group I(M̃n(c)) of M̃n(c).

It is well-known that our ambient manifold M̃n(c) admits no totally umbilic real hyper-
surfaces. In this context, we recall the notion of totally η-umbilic. A real hypersurface M of
a nonflat complex space form M̃n(c), n � 2 is called totally η-umbilic if its shape operator
A is of the form A = αI +βη⊗ ξ for some smooth functions α and β on M . This definition
is equivalent to saying that Au = αu for each vector u on M which is orthogonal to the
characteristic vector ξ of M , where α is a smooth function on M . It is known that every
totally η-umbilic hypersurface is a member of Hopf hypersurfaces with two distinct constant
principal curvatures α and α + β.

A totally η-umbilic hypersurface M2n−1, n � 2 with shape operator A = αI + βη ⊗ ξ of
a nonflat complex space form M̃n(c) is locally congruent to one of the following:
(P) A geodesic sphere of radius r (0 < r < π/

√
c ) in CP n(c), where

α = (
√

c /2) cot(
√

c r/2) and β = −(
√

c /2) tan(
√

c r/2);
(Hi) A horosphere in CHn(c), where α = β =

√|c| /2;
(Hii) A geodesic sphere of radius r (0 < r < ∞) in CHn(c), where

α = (
√|c| /2) coth(

√|c| r/2) and β = (
√|c| /2) tanh(

√|c| r/2);
(Hiii) A tube of radius r (0 < r < ∞) around totally geodesic complex hyperplane CHn−1(c)

in CHn(c), where
α = (

√|c| /2) tanh(
√|c| r/2) and β = (

√|c| /2) coth(
√|c| r/2).

Totally η-umbilic hypersurfaces are interesting examples of Riemannian manifolds. The
length spectrum of such a hypersurface was studied in detail (see [1]). Moreover, it is well-
known that every geodesic sphere G(r) of radius r (0 < r < π/

√
c ) with tan2(

√
c r/2) > 2

in CP n(c) is a Berger sphere ([5]).
For later use we prepare the following two lemmas ([4]).

Lemma 1. For a real hypersurface M in a nonflat complex space form M̃n(c) (n � 2), the
following conditions are mutually equivalent.

1. M is of type (A).
2. φA = Aφ holds on M .
3. g((∇XA)Y, Z) = (c/4)(−η(Y )g(φX,Z) − η(Z)g(φX,Y )) for all X, Y and Z ∈ TM .

Lemma 2. A real hypersurface M in a nonflat complex space form M̃n(c) (n � 2) is of
either type (A0), type (A1) or type (B) if and only if M satisfies φA + Aφ = kφ, where k is
a nonzero constant.

At the end of this section we review the definition of circles in Riemannian geometry. A
real smooth curve γ = γ(s) parametrized by its arclength s in a Riemannian manifold M
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with Riemannian connection ∇ is called a circle of curvature k if it satisfies the ordinary
differential equations ∇γ̇ γ̇ = kYs and ∇γ̇Ys = −kγ̇, where k is a nonnegative constant and
Ys is the unit normal vector of γ. A circle of null curvature is nothing but a geodesic. The
definition of circles is equivalent to the equation

∇γ̇(∇γ̇ γ̇) + g(∇γ̇ γ̇,∇γ̇ γ̇)γ̇ = 0.(2.6)

3. Statements of results

Theorem 1. For a real hyperaurface M in a nonflat complex space form M̃n(c) (n � 2),
the following six conditions are mutually equivalent.

1. M is a Sasakian space form of constant φ-sectional curvature. Here, it has automat-
ically constant φ-sectional curvature c + 1.

2. M is a Sasakian manifold.
3. M is a K-contact manifold.
4. M is a nearly Sasakian manifold.
5. M is locally congruent to one of the following totally η-umbilic hypersurfaces in the

ambient space M̃n(c) :
5i) A geodesic sphere G(r) of radius r with tan(

√
c r/2) =

√
c /2

(0 < r < π/
√

c ) in CP n(c);
5ii) A horosphere in CHn(−4);

5iii) A geodesic sphere G(r) of radius r with tanh(
√|c| r/2) =

√|c| /2
(0 < r < ∞) in CHn(c) (−4 < c < 0);

5iv) A tube of radius r around totally gedesic CHn−1(c) with tanh(
√|c| r/2) = 2/

√|c| (0 <
r < ∞) in CHn(c) (c < −4).

In these cases, the shape operator A of M is of the form A = I − (c/4)η ⊗ ξ.
6. There exist orthonormal vectors v1, v2, . . . , v2n−2 orthogonal to ξ at each point p of

M satisfying the following two conditions:
6i) All geodesics γ = γi(s) (1 � i � 2n − 2) on M with γi(0) = p and γ̇i(0) = vi are

mapped to circles of the same curvature 1 in the ambient space M̃n(c);
6ii) All geodesics γij = γij(s) (1 � i < j � 2n − 2) on M with γij(0) = p and

γ̇ij(0) = (vi+vj)/
√

2 are mapped to circles of the same curvature 1 in the ambient
space M̃n(c).

Proof. We first show that Condition (3) implies Condition (5). It follows from dη(X, Y ) =
±g(X, φY ) that

X(g(ξ, Y )) − Y (g(ξ,X)) − g(∇XY −∇Y X, ξ) ∓ 2g(X, φY ) = 0.

This, together with (2.4), shows that

0 = g(φAX,Y ) − g(φAY, X) ∓ 2g(X, φY )

= g((φA + Aφ ± 2φ)X, Y ).

Hence we can see that

φA + Aφ = ∓2φ.(3.1)

So M is one of types (A0), (A1) and (B) (see Lemma 2). On the other hand, from
(Lξg)(X,Y ) = 0 and (2.4) we have

0 = g(∇Xξ, Y ) + g(X,∇Y ξ) = g(φAX,Y ) + g(X, φAY )

= g((φA − Aφ)X,Y ),
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so that

φA = Aφ.(3.2)

Then M is of type (A) (see Lemma 1). Therefore from (3.1) and (3.2) we find that M is
one of types (A0) and (A1) satisfying Aφ = ∓φ. This implies that M is a totally η-umbilic
hypersurface with coefficient α = ∓1. Thus, from the classification theorem of totally η-
umbilic hypersurfaces in a nonflat complex space form we see that the shape operator A
of M satisfies either A = −I + (c/4)η ⊗ ξ or A = I − (c/4)η ⊗ ξ. Hence we can obtain
Condition (5).

We next show that Condition (4) implies Condition (5). In consideration of (∇Xφ)Y +
(∇Y φ)X = ±(2g(X, Y )ξ − η(X)Y − η(Y )X) and (2.4) we find that

η(X)AY + η(Y )AX − 2g(AX,Y )ξ = ±(2g(X, Y )ξ − η(X)Y − η(Y )X).(3.3)

Setting X = Y = ξ in (3.3), we get Aξ = g(Aξ, ξ), so that ξ is principal. Next, putting X
as an arbitrary vector orthogonal to ξ and Y = ξ in (3.3), we know that either AX = −X
for all X(⊥ ξ) ∈ TM or AX = X for all X(⊥ ξ) ∈ TM . Hence we get Condition (5).

We here compute φ-sectional curvatures of each real hypersurface M in the list of Condi-
tion (5). It follows from (2.5) and the expression of the shape operator A of M with either
A = −I + (c/4)η ⊗ ξ or A = I − (c/4)η ⊗ ξ that K(u, φu) = g(R(u, φu)φu, u) = c + 1 for
each unit vector u perpendicular to ξ.

Therefore we find that each of Conditions (1), (2), (3) and (4) is equivalent to Condition
(5).

In the following, we shall verify that Condition (5) is equivalent to Condition (6). We
suppose Condition (5). Without loss of generality we assume that A = I − (c/4)η ⊗ ξ. We
take a point p ∈ M and a unit vector u(⊥ ξp). Let γ = γ(s) denote a geodesic parametrized
by its arclength s on M satisfying the initial condition that γ(0) = p and γ̇(0) = u. In view
of (2.4), Lemma 1, the symmetry of A and the skew-symmetry of φ we have

∇γ̇

(
g(γ̇(s), ξ)

)
= g(γ̇(s),∇γ̇ξ) = g(γ̇(s), φAγ̇(s))

= g(γ̇(s), Aφγ̇(s)) = −g(φAγ̇(s), γ̇(s)) = 0,

which, together with g(γ̇(0), ξp) = 0, yields g(γ̇(s), ξ) = 0 for each s ∈ (−∞,∞). That
is, we see that Aγ̇(s) = γ̇(s) for every s. This, combined with (2.1) and (2.2), shows that
∇̃γ̇ γ̇ = N and ∇̃γ̇N = −γ̇. Thus we get Condition (6).

We finally suppose Condition (6). We take the orthonormal vectors v1, . . . , v2n−2 or-
thogonal to ξp at an arbitrary fixed point p of M . Then, from Condition 6i) and (2.6) they
satisfy

∇̃γ̇i∇̃γ̇i γ̇i = −γ̇i.(3.4)

On the other hand, from (2.1) and (2.2) we have

∇̃γ̇i∇̃γ̇i γ̇i = g((∇γ̇iA)γ̇i, γ̇i)N − g(Aγ̇i, γ̇i)Aγ̇i.(3.5)

Comparing the tangential components of (3.4) and (3.5), we see that

g(Aγ̇i, γ̇i)Aγ̇i = γ̇i,

so that at s = 0 we get

g(Avi, vi)Avi = vi for each i = 1, . . . , 2n − 2,

which yields that

Avi = vi or Avi = −vi for each i = 1, . . . , 2n − 2.(3.6)
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This implies that ξ is a principal curvature vector, because 〈Aξ, vi〉 = 〈ξ,Avi〉 = 0 for
each i = 1, . . . , 2n − 2. Therefore M is a Hopf hypersurface with at most three distinct
constant principal curvatures 1,−1 and δ = g(Aξ, ξ) at its each point. On the other hand,
applying the same discussion as above to Condition 6ii), we get the following corresponding
to Equation (3.6):

A((vi + vj)/
√

2 ) = (vi + vj)/
√

2 or A((vi + vj)/
√

2 ) = −(vi + vj)/
√

2(3.7)

for 1 � i < j � 2n − 2. Thus, from (3.6) and (3.7) we can see that either Avi = vi (1 �
i � 2n − 2) or Avi = −vi (1 � i � 2n − 2) holds. This implies that our real hypersurface
M is totally η-umbilic with coefficient α = ±1 in the ambient space M̃n(c). We hence get
Condition (5).

As an immediate consequence of the proof of Theorem 1, we get the following.

Theorem 2. For a real hypersurface M in a nonflat complex space form M̃n(c) (n � 2),
the following three conditions are mutually equivalent.

1. M is an α-nearly Sasakian manifold.
2. M is totally η-umbilic in M̃n(c) satisfying Au = αu for all u(⊥ ξ) ∈ TM .
3. There exist orthonormal vectors v1, v2, . . . , v2n−2 orthogonal to ξ at each point p of

M satisfying the following two conditions:
3i) All geodesics γ = γi(s) (1 � i � 2n − 2) on M with γi(0) = p and γ̇i(0) = vi are

mapped to circles of the same curvature α in the ambient space M̃n(c);
3ii) All geodesics γij = γij(s) (1 � i < j � 2n − 2) on M with γij(0) = p and

γ̇ij(0) = (vi + vj)/
√

2 are mapped to circles of the same curvature α in the
ambient space M̃n(c).

If we remove Conditions 6ii) and 3ii), then Theorems 1 and 2 are no longer true. The
following example is worth mentioning.

Example. Let M2n−1 be a tube of radius π/(2
√

c ) around totally geodesic Kähler subman-
ifold CP �(c) (1 � � � n − 2) in the ambient space CP n(c), n � 3. We remark that this
hypersurface is of type (A2). The tangent bundle TM is decomposed as: TM = {ξ}R ⊕
V√

c /2⊕V−√
c /2 with Aξ = 0, dimV√

c /2 = 2n−2�−2, dimV−√
c /2 = 2�, φV√

c /2 = V√
c /2 and

φV−√
c /2 = V−√

c /2. We emphasize that there exist orthonormal vectors v1, v2, . . . , vn−2

orthonormal to ξ at each point p of M satisfying Condition 3i) in Theorem 2. In fact,
if we take orthonormal vectors v1, . . . , v2� and v2�+1, . . . , v2n−2 in V−√

c /2 and V√
c /2, re-

spectively, then all geodesics γi = γi(s) (1 � i � 2n − 2) on M with γi(0) = p and
γ̇i(0) = vi are mapped to circles of the same positive curvature

√
c /2 in CP n(c) (for de-

tails, see [3]). However these vectors do not satisfy Condition 3ii) in Theorem 2. Indeed,
for unit vectors vi ∈ V−√

c /2 and vj ∈ V√
c /2 if we take a geodesic γij = γij(s) on M with

γ̇ij(0) = (vi + vj)/
√

2 , then the geodesic γij is mapped to a geodesic in the ambient space
CP n(c) (see Lemma 1).

Needless to say, when c = 4, our real hypersurfaces show that Theorem 1 is not true
without Condition 6ii).

Finally we present the following remarks.

Remark. 1. Theorems 1 and 2 are local results. If we add the condition that M is
complete and simply connected to the hypothesis, then these theorems are global
results.

2. In Conditions (6) of Theorem 1 and (3) of Theorem 2 we do need to take vectors
v1, . . . , v2n−2 orthogonal to ξ as a smooth local field of orthonormal frames on M .
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We only to take such vectors at each point of M in the hypothesis of Theorems 1 and
2.

3. As a matter of course our example is not a K-contact manifold. However the proof of
Theorem 1 shows that its characteristic vector ξ is a Killing vector field.
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