$B C K$-ALGEBRAS OF FRACTIONS

R. A. BORZOOEI AND J. SHOHANI

Received May 2, 2010

Abstract

In this paper, by considering the notion of a \wedge-closed set in $B C K$-algebras, we construct the fractions of $B C K$-algebras and prove some related results. Moreover, we study the notion of a $B C K$-module and prove that any $B C K$-algebra is a $B C K$-module on itself. Finally, we construct the fractions of $B C K$-modules.

1. Introduction

A $B C K$-algebra is an important class of logical algebras introduced by Y. Imai and K. Iséki in $1966[4,5]$. This notion is originated in two different ways: One is based on set theory; another comes from the classical and non-classical propositional calculi. As is well known there is a close relation between the notion of the set difference in set theory and the implication functor in logical systems. Then the following problems arise from this relationship. What is the most essential and fundamental common properties? Can we establish a good theory of general algebras? To give an answer to these problems, Y. Imai and K. Iséki introduced the notion of a new class of general algebras called $B C K$ - algebras. This name is taken from $B C K$-system of C. A. Meredith. The BCK-action was introduced by H. Abujabal, M. Aslam and A. B. Thaheem in 1994 [1] as an action of a $B C K$-algebra over a commutative group. This concept is extended by Z. Perveen, M. Aslam and A. B. Thaheem in 2006 [10], as a $B C K$-module. Now, in this paper we follow [10] and construct the fractions of $B C K$-algebras. Moreover, we prove that any $B C K$-algebras is a $B C K$-module on itself and we construct the fractions of $B C K$-modules. It should be noted that in this paper the main idea is to observe does the $B C K$-algebra has the ability to obtain and prove some well-known concepts and theorems in commutative algebra, especially fraction algebra, by use of the structure and characteristics of $B C K$-algebras.

2. Preliminaries

Definition 2.1. [7] A $B C K$-algebra is a set X with a binary operation " $*$ " and a constant " 0 " satisfying the following axioms:

```
(BCK1) \(\quad((x * y) *(x * z)) *(z * y))=0\),
(BCK2) \(\quad(x *(x * y)) * y=0\),
(BCK3) \(\quad x * x=0\),
(BCK4) \(0 * x=0\),
(BCK5) \(\quad x * y=y * x=1\) imply \(x=y\).
```

A BCK-algebra X is called implicative if $x *(y * x)=x$, commutative if $x *(x * y)=y *(y * x)$, bounded if there exists a unique element $1 \in X$ such that $x * 1=0$, for all $x, y, z \in X$.
Definition 2.2. [6] Let $(X, *, 0)$ be a $B C K$ - algebra, I be a nonempty subset of X and $0 \in I$. Then I is called an ideal of X if $x * y \in I$ and $y \in I$ imply $x \in I$, for any $x, y \in X$. An ideal I is called proper, if $I \neq X$.

1991 Mathematics Subject Classification. 06D99, 08A30.
Key words and phrases. BCK-algebras of fractions, $B C K$-modules of fractions, bounded implicative BCKalgebra(Boolean algebras).

Theorem 2.3. [9] If X is a $B C K$-algebra and $\emptyset \neq A \subseteq X$, then the ideal generated by A (the intersection of all ideals of X containing A) will be denoted by $(A]$ and

$$
(A]=\left\{x \in X \mid \exists a_{1}, a_{2}, \cdots, a_{n} \in A \text { such that }\left(\cdots\left(\left(x * a_{1}\right) * a_{2}\right) * \cdots\right) * a_{n}=0\right\}
$$

Theorem 2.4. [9] Any implicative BCK-algebra is a commutative BCK-algebra.
Theorem 2.5. [9] Let $(X, *, 0)$ be a bounded implicative $B C K$-algebra. Then $(X, \wedge, \vee, 0,1)$ is a complimented distributive lattice and so Boolean algebra, where

$$
x \wedge y=y *(y * x) \quad, \quad x \vee y=N(N x \wedge N y)
$$

and $N x=1 * x$, for any $x, y \in X$.
Theorem 2.6. [9] Let X be a bounded implicative BCK-algebra. Then we have the following properties for all $x, y \in X$:
(i) $N N x=x$,
(ii) $N x \vee N y=N(x \wedge y), N x \wedge N y=N(x \vee y)$,
(iii) $N x * N y=y * x$,
(iv) $x \wedge N x=0$,
(v) $x \vee N x=1$,
(vi) $x *(x * N y)=x * y$, i.e. $N y \wedge x=x * y$,
(x) $x *(x * y)=x * N y$, i.e. $y \wedge x=x * N y$
(xi) $N 0=1, N 1=0$.

From now on, in this paper we let X to be a bounded implicative $B C K$-algebra. Note that these algebra is infact a Boolean algebra.

3. $B C K$-algebras of Fractions

In this section, by using techniques of $B C K$-algebras, we introduce and study the notion of fraction for bounded implicative $B C K$ (Boolean)-algebras.
Definition 3.1. [9] Let S be a non empty subset of X. Then S is called \wedge-closed if $1 \in S$ and $x \wedge y \in S$, for all $x, y \in S$.

From now on, in this paper we let S to be a \wedge-closed subset of X.
Lemma 3.2. If the relation " \sim " on $X \times S$ is defined by:

$$
\left(x_{1}, t_{1}\right) \sim\left(x_{2}, t_{2}\right) \Longleftrightarrow \exists s \in S, s \wedge x_{1} \wedge t_{2}=s \wedge x_{2} \wedge t_{1}
$$

then " \sim " is an equivalence relation.
Proof. By Theorem 2.5, (X, \wedge) is a \wedge-semi lattice. Hence, we prove the equivalence relation properties. Reflexive and symmetric properties are clear.

Transitive property:
Let $\left(x_{1}, t_{1}\right) \sim\left(x_{2}, t_{2}\right)$ and $\left(x_{2}, t_{2}\right) \sim\left(x_{3}, t_{3}\right)$. Then there exist $s_{1}, s_{2} \in S$ such that $s_{1} \wedge x_{1} \wedge t_{2}=$ $s_{1} \wedge x_{2} \wedge t_{1}$ and $s_{2} \wedge x_{2} \wedge t_{3}=s_{2} \wedge x_{3} \wedge t_{2}$. Hence,

$$
s_{1} \wedge s_{2} \wedge t_{2} \wedge t_{3} \wedge x_{1}=s_{1} \wedge s_{2} \wedge t_{1} \wedge t_{3} \wedge x_{2}
$$

and

$$
s_{1} \wedge s_{2} \wedge t_{1} \wedge t_{3} \wedge x_{2}=s_{1} \wedge s_{2} \wedge t_{1} \wedge t_{2} \wedge x_{3}
$$

and so

$$
s_{1} \wedge s_{2} \wedge t_{2} \wedge t_{3} \wedge x_{1}=s_{1} \wedge s_{2} \wedge t_{1} \wedge t_{2} \wedge x_{3}
$$

Now, let $s^{\prime}=s_{1} \wedge s_{2} \wedge t_{2} \in S$. Hence $s^{\prime} \wedge x_{1} \wedge t_{3}=s^{\prime} \wedge x_{3} \wedge t_{1}$, and this implies that $\left(x_{1}, t_{1}\right) \sim$ $\left(x_{3}, t_{3}\right)$.

Notation. From now on, for each element $(x, s) \in X \times S$, the class [(x, s)] will be denoted by x / s and the set $X \times S / \sim$ by $S^{-1} X$. Hence we have $S^{-1} X=\{x / s: x \in X, s \in S\}$.

Corollary 3.3. (i) $x / t=y / s$, for any $x / t, y / s \in S^{-1} X$, if and only if there exists $s^{\prime} \in S$ such that $s^{\prime} \wedge x \wedge s=s^{\prime} \wedge y \wedge t$,
(ii) $0 / s=0 / t$, for any $t, s \in S$.(So, for any $s \in S, 0 / s$ will be denoted by $0_{S^{-1} X}$),
(iii) $x / t=0_{S^{-1} X}$ if and only if there exists $l \in S$ such that $x \wedge l=0$,
(iv) $0 \in S$ if and only if $S^{-1} X=\left\{0_{S^{-1} X}\right\}$.

Proof. The proofs of (i), (ii) and (iv) are clear.
(iii) Let $x / t=0_{S^{-1} X}$, for $x \in X$ and $t \in S$. By (ii), we can let $0_{S^{-1} X}=0 / t$. Then $x / t=0 / t$ and so there exists $s \in S$ such that $x \wedge t \wedge s=0$. Let $l=t \wedge s$. Hence, there is $l \in S$, such that $x \wedge l=0$.

Lemma 3.4. For any $x, y, z \in X$, we have;
(i) $x \wedge(y * z)=(x \wedge y) *(x \wedge z)$,
(ii) $x *(x \wedge y)=x * y$.

Proof. (i) Let $x, y, z \in X$. Then by Theorem 2.6,

$$
\begin{aligned}
(x \wedge y) *(x \wedge z) & =(x \wedge y) \wedge N(x \wedge z) \\
& =(x \wedge y) \wedge(N x \vee N z) \\
& =[(x \wedge y) \wedge N x] \vee[(x \wedge y) \wedge N z], \quad \text { (by Theorem 2.5) } \\
& =[y \wedge(x \wedge N x)] \vee[(x \wedge y) \wedge N z] \\
& =[y \wedge 0)] \vee[(x \wedge y) \wedge N z] \\
& =0 \vee[(x \wedge y) \wedge N z] \\
& =(x \wedge y) \wedge N z, \\
& =x \wedge(y \wedge N z) \\
& =x \wedge(y * z) .
\end{aligned}
$$

(ii) Since X is implicative,

$$
x *(x \wedge y)=x *(x *(x * y))=x * y
$$

Theorem 3.5. If the binary relation " \star " on $S^{-1} X$ is defined by

$$
x / t \star y / s=[(x \wedge s) *(y \wedge t)] /(t \wedge s)
$$

then $\left(S^{-1} X, \star, 0_{S^{-1} X}\right)$ is a bounded implicative BCK-algebra.
Proof. First we show that " \star " is well defined. Let $a / s=a^{\prime} / s^{\prime}$ and $b / t=b^{\prime} / t^{\prime}$. Then there exist $u, v \in S$ such that

$$
u \wedge s^{\prime} \wedge a=u \wedge s \wedge a^{\prime} \quad, \quad v \wedge t^{\prime} \wedge b=v \wedge t \wedge b^{\prime}
$$

and so

$$
v \wedge t \wedge t^{\prime} \wedge u \wedge s^{\prime} \wedge a=v \wedge t \wedge t^{\prime} \wedge u \wedge s \wedge a^{\prime}
$$

and

$$
s \wedge s^{\prime} \wedge u \wedge v \wedge t^{\prime} \wedge b=s \wedge s^{\prime} \wedge u \wedge v \wedge t \wedge b^{\prime}
$$

So, we conclude that

$$
\left[(u \wedge v) \wedge\left(s^{\prime} \wedge t^{\prime}\right) \wedge(t \wedge a)\right]=\left[(u \wedge v) \wedge(s \wedge t) \wedge\left(a^{\prime} \wedge t^{\prime}\right)\right]
$$

and

$$
\left[(u \wedge v) \wedge\left(s^{\prime} \wedge t^{\prime}\right) \wedge(s \wedge b)=\left[(u \wedge v) \wedge(s \wedge t) \wedge\left(s^{\prime} \wedge b^{\prime}\right)\right]\right.
$$

Hence,

$\left[(u \wedge v) \wedge\left(s^{\prime} \wedge t^{\prime}\right) \wedge(t \wedge a)\right] *\left[(u \wedge v) \wedge\left(s^{\prime} \wedge t^{\prime}\right) \wedge(s \wedge b)\right]=\left[(u \wedge v) \wedge(s \wedge t) \wedge\left(a^{\prime} \wedge t^{\prime}\right)\right] *\left[(u \wedge v) \wedge(s \wedge t) \wedge\left(s^{\prime} \wedge b^{\prime}\right)\right]$
Then, by Lemma 3.4, we have,

$$
\left[(u \wedge v) \wedge\left(s^{\prime} \wedge t^{\prime}\right)\right] \wedge[(t \wedge a) *(s \wedge b)]=[(u \wedge v) \wedge(s \wedge t)] \wedge\left[\left(a^{\prime} \wedge t^{\prime}\right) *\left(s^{\prime} \wedge b^{\prime}\right)\right]
$$

Now, let $s^{\prime \prime}=u \wedge v \in S$. Hence, $s^{\prime \prime} \in S$ and

$$
s^{\prime \prime} \wedge\left(s^{\prime} \wedge t^{\prime}\right) \wedge[(t \wedge a) *(s \wedge b)]=s^{\prime \prime} \wedge(s \wedge t) \wedge\left[\left(a^{\prime} \wedge t^{\prime}\right) *\left(s^{\prime} \wedge b^{\prime}\right)\right]
$$

and this implies that

$$
[(t \wedge a) *(s \wedge b)] /(s \wedge t)=\left[\left(a^{\prime} \wedge t^{\prime}\right) *\left(s^{\prime} \wedge b^{\prime}\right)\right] /\left(s^{\prime} \wedge t^{\prime}\right)
$$

Hence,

$$
a / s \star b / t=a^{\prime} / s^{\prime} \star b^{\prime} / t^{\prime}
$$

Therefore, " \star " is well-defined. Now, we show that $\left(S^{-1} X, \star, 0_{S^{-1} X}\right)$ is a $B C K$-algebra. Let $a / s, b / t, d / f \in S^{-1} X$. Then:
(BCK1):

$$
\begin{aligned}
& {[(a / s \star b / t) \star(a / s \star d / f)] \star(d / f \star b / t) } \\
= & {[[((a \wedge t) *(b \wedge s)) /(s \wedge t)] \star[((a \wedge f) *(s \wedge d)) /(s \wedge f)]] \star[((d \wedge t) *(b \wedge f)) /(f \wedge t)]] } \\
= & {[[[(s \wedge f) \wedge((a \wedge t) *(b \wedge s))] *[(s \wedge t) \wedge((a \wedge f) *(s \wedge d))]] /(s \wedge t \wedge f)] \star[((d \wedge t) *(b \wedge f)) /(f \wedge t)] } \\
= & {[[(f \wedge t) \wedge[[(s \wedge f) \wedge((a \wedge t) *(b \wedge s))] *[(s \wedge t) \wedge((a \wedge f) *(s \wedge d))]]]} \\
& *[[(s \wedge t \wedge f) \wedge[(d \wedge t) *(b \wedge f)]] /(s \wedge t \wedge f)] \\
= & {[[(f \wedge t) \wedge[[((s \wedge f) \wedge(a \wedge t)) *((s \wedge f) \wedge(b \wedge s))] *[((s \wedge t) \wedge(a \wedge f)) *((s \wedge t) \wedge(s \wedge d))]]]} \\
& *[((s \wedge t \wedge f) \wedge(d \wedge t)) *((s \wedge t \wedge f) \wedge(b \wedge f))]] /(s \wedge t \wedge f) \\
= & {[[[(f \wedge t) \wedge((s \wedge f) \wedge(a \wedge t))] *[(f \wedge t) \wedge((s \wedge f) \wedge(b \wedge s))]]} \\
& *[((f \wedge t) \wedge((s \wedge t) \wedge(a \wedge f))] *[(f \wedge t) \wedge((s \wedge t) \wedge(s \wedge d))]] \\
& *[((s \wedge t \wedge f) \wedge(d \wedge t)) *((s \wedge t \wedge f) \wedge(b \wedge f))]] /(s \wedge t \wedge f) \\
= & {[[[(f \wedge t \wedge s \wedge a) *(f \wedge t \wedge s \wedge b)] *[(f \wedge t \wedge s \wedge a) *(f \wedge t \wedge s \wedge d)]]} \\
& *[(f \wedge t \wedge s \wedge d) *(f \wedge t \wedge s \wedge b)]] /(s \wedge t \wedge f) \\
= & {[[[(l \wedge a) *(l \wedge b)] *[(l \wedge a) *(l \wedge d)]] *[(l \wedge d) *(l \wedge b)]] /(s \wedge t \wedge f), \quad(\text { if } l=f \wedge t \wedge s) } \\
= & 0 /(s \wedge t \wedge f), \quad(b y(B C K 1)) \\
= & 0_{S^{-1} X}
\end{aligned}
$$

(BCK2):

$$
\begin{aligned}
{[a / s \star(a / s \star b / t)] \star b / t } & =[a / s \star((a \wedge t) *(s \wedge b)) /(s \wedge t)] \star(b / t) \\
& =[(a \wedge s \wedge t) *(s \wedge((a \wedge t) *(s \wedge b))) /(s \wedge t)] \star(b / t) \\
& =[((a \wedge s \wedge t) *((s \wedge a \wedge t) *(s \wedge b))) /(s \wedge t)] \star(b / t), \quad \text { (by Lemma 3.4) } \\
& =[(t \wedge[(a \wedge s \wedge t) *((s \wedge a \wedge t) *(s \wedge b))]) *(b \wedge s \wedge t)] /(s \wedge t) \\
& =[((a \wedge s \wedge t) *((s \wedge a \wedge t) *(s \wedge b \wedge t))] *(b \wedge s \wedge t) /(s \wedge t), \quad \text { (by Lemma 3.4) } \\
& =0 /(s \wedge t) \\
& =0_{S^{-1} X}
\end{aligned}
$$

(BCK3):

$$
a / s \star a / s=((a \wedge s) *(a \wedge s)) / s=0 / s=0_{S^{-1} X}
$$

(BCK4):

$$
0_{S^{-1} X} \star a / s=0 / s \star a / s=[(0 \wedge s) *(a \wedge s)] / s=0 / s=0_{S^{-1} X}
$$

(BCK5): If $a / s \star b / t=0_{S^{-1} X}$ and $b / t \star a / s=0_{S^{-1} X}$, then

$$
((a \wedge t) *(s \wedge b)) /(s \wedge t)=0_{S^{-1} X} \quad, \quad((b \wedge s) *(a \wedge t)) /(s \wedge t)=0_{S^{-1} X}
$$

Hence, there exist $l, l^{\prime} \in S$, such that

$$
l \wedge[(a \wedge t) *(s \wedge b)]=0, \quad l^{\prime} \wedge[(b \wedge s) *(a \wedge t)]=0
$$

and so

$$
\left(l \wedge l^{\prime}\right) \wedge((a \wedge t) *(s \wedge b))=0 \quad\left(l \wedge l^{\prime}\right) \wedge((b \wedge s) *(a \wedge t))=0
$$

Let $h=l \wedge l^{\prime}$. Then, by Lemma 3.4,

$$
(h \wedge(a \wedge t)) *(h \wedge(s \wedge b))=0 \quad, \quad(h \wedge(b \wedge s)) *(h \wedge(a \wedge t))=0
$$

Hence by (BCK5), $h \wedge(a \wedge t)=h \wedge(s \wedge b)$ and so $(h \wedge t) \wedge a=(h \wedge s) \wedge b$ and this implies that $a / s=b / t$.

Therefore, $\left(S^{-1} X, \star, 0_{S^{-1} X}\right)$ is a $B C K$-algebra. Now, we prove that it is implicative. Let $x / t, y / s \in S^{-1} X$. Then,

$$
\begin{aligned}
x / t \star((y / s) \star(x / t)) & =x / t \star[((y \wedge t) *(x \wedge s)) /(s \wedge t)] \\
& =[(x \wedge s \wedge t) *(t \wedge[(y \wedge t) *(x \wedge s)])] /(s \wedge t) \\
& =[(x \wedge s \wedge t) *[(t \wedge y) *(x \wedge s \wedge t)]] /(s \wedge t) \quad \text { (by Lemma 3.4) } \\
& =(x \wedge s \wedge t) /(s \wedge t), \quad(\text { since } X \text { is implicative) } \\
& =x / t
\end{aligned}
$$

So, $S^{-1} X$ is implicative. Finally, we show that it is bounded. In fact, we claim that $1 / 1$ is an upper bound of $S^{-1} X$. For this, let $x / s \in S^{-1} X$. Then, by the definition of " \wedge " and (BCK3), we have;
$x / s \star s / s=((x \wedge s) *(s \wedge s)) /(s \wedge s)=((x \wedge s) * s) / s=((s \wedge x) * s) / s=((x *(x * s)) * s) / s=0 / y=0_{S^{-1} X}$
Now, it is easy to see that, for any $s \in S, s / s=1 / 1$. Hence, for any $x / s \in S^{-1} X, x / s \star 1 / 1=0_{S^{-1} X}$.
Therefore, $\left(S^{-1} X, \star, 0_{S^{-1} X}\right)$ is a bounded implicative $B C K$-algebra.
Corollary 3.6. If the relation " \preceq " on $S^{-1} X$ is defined by:

$$
x / t \preceq y / s \Longleftrightarrow x / t \star y / s=0_{S^{-1} X}
$$

then $\left(S^{-1} X, \preceq\right)$ is a poset.
Proof. By Theorem 3.5, ($\left.S^{-1} X, \star\right)$ is a $B C K$-algebra and so ($S^{-1} X, \preceq$) is a poset(See [5]).
Lemma 3.7. For any $x, y \in X$ and $s, t \in S$, we have;
(i) $(x \wedge s) / s=x / s$,
(ii) $(x \wedge t) /(s \wedge t)=x / s$,
(iii) $x / t \wedge y / s=(x \wedge y) /(t \wedge s)$.

Proof. (i) Since for any $t \in S, x \wedge s \wedge s \wedge t=x \wedge s \wedge t$, so $(x \wedge s) / s=x / s$.
(ii) The proof is similar to (i).
(iii) Let $x / t, y / s \in S^{-1} X$. Since $\left(S^{-1} X, \star\right)$ is a $B C K$-algebra, $x / t \wedge y / s=y / s \star(y / s \star x / t)$.

Hence,

$$
\begin{aligned}
x / t \wedge y / s & =y / s \star(y / s \star x / t) \\
& =y / s \star[((y \wedge t) *(x \wedge s)) /(s \wedge t)] \\
& =((y \wedge s \wedge t) *(((y \wedge t) *(x \wedge s)) \wedge s)) /(s \wedge t) \\
& =((x \wedge s) \wedge(y \wedge s \wedge t)) /(s \wedge t) \\
& =((x \wedge t) \wedge(s \wedge y)) /(s \wedge t) \\
& =(x \wedge y) /(s \wedge t)
\end{aligned}
$$

Lemma 3.8. If I is an ideal of X, then for any $x \in I$ and $y \in X, x \wedge y \in I$.
Theorem 3.9. If I be an ideal of X, then $S^{-1} I=\left\{x / s \in S^{-1} X: x \in I\right\}$ is an ideal of $S^{-1} X$. Moreover, $S^{-1} I$ is proper if and only if $I \cap S=\emptyset$.
Proof. Let $x / t, y / s \in S^{-1} X$ such that $x / t \star y / s \in S^{-1} I$ and $y / s \in S^{-1} I$. Then, there exist $a, b \in I$ and $u, v \in S$ such that $x / t \star y / s=a / u$ and $y / s=b / v$ and so there exist $h, h^{\prime} \in S$ such that $h \wedge u \wedge((x \wedge s) *(y \wedge t))=h \wedge t \wedge s \wedge a$ and $h^{\prime} \wedge y \wedge v=h^{\prime} \wedge s \wedge b$. But, by Lemma 3.4 and some modifications,

$$
\begin{equation*}
\left(h \wedge u \wedge h^{\prime} \wedge v \wedge x \wedge s\right) *\left(h \wedge u \wedge h^{\prime} \wedge v \wedge y \wedge t\right)=h \wedge t \wedge s \wedge h^{\prime} \wedge v \wedge a \tag{1}
\end{equation*}
$$

and

$$
h^{\prime} \wedge y \wedge v \wedge h \wedge u \wedge t=h \wedge s \wedge b \wedge h^{\prime} \wedge u \wedge t
$$

Let $k=h \wedge h^{\prime} \wedge v \wedge u$. Since $h \wedge h^{\prime} \wedge v \wedge t \wedge s \wedge a \leq a \in I$ so $h \wedge h^{\prime} \wedge v \wedge t \wedge s \wedge a \in I$ and so by (1),

$$
(k \wedge s \wedge x) *(k \wedge y \wedge t) \in I
$$

Now, since $k \wedge y \wedge t=h \wedge s \wedge b \wedge h^{\prime} \wedge u \wedge t \leq b \in I$, then $k \wedge y \wedge t \in I$ and so $k \wedge s \wedge x \in I$. Hence, $x / t=(k \wedge s \wedge x) /(k \wedge s \wedge t) \in S^{-1} I$. Therefore, $S^{-1} I$ is an ideal of $S^{-1} X$.

Now, let $S^{-1} I$ be proper, but $t \in I \cap S \neq \emptyset$, one the contrary. Let $x / s \in S^{-1} X$. Then by Lemmas 3.7 and 3.8, $x / s=(x \wedge t) /(s \wedge t) \in S^{-1} X$. Hence $S^{-1} X=S^{-1} I$, which is impossible. Moreover, let $I \cap S=\emptyset$, but $S^{-1} X=S^{-1} I$, one the contrary. Since $1 / 1 \in S^{-1} X$, then $1 / 1 \in S^{-1} I$ and so there exists $a \in I$ and $s \in S$ such that $1 / 1=a / s$ and so there exists $t \in S$ such that $1 \wedge s \wedge t=1 \wedge a \wedge t$. Hence, $s \wedge t=a \wedge t$. Since $s \wedge t \in S$ and by Lemma 3.8, $s \wedge t=a \wedge t \in I$. Hence $s \wedge t \in S \cap I=\emptyset$, which is impossible. Therefore, $S^{-1} I$ is proper.
Definition 3.10. [9] A proper ideal P of X is called prime if $a \wedge b \in P$ implies $a \in P$ or $b \in P$, for any $a, b \in P$.

Theorem 3.11. If J is an ideal of $S^{-1} X$, then there exists an ideal I of X such that $J=S^{-1} I$. Moreover, if J is a prime ideal then I is a prime ideal, too, and $I \cap S=\emptyset$.
Proof. Let J be an ideal of $S^{-1} X$ and $I=\{x \in X: x / 1 \in J\}$. First, we show that I is an ideal of X. Let $x * y \in I$ and $y \in I$. Then $x / 1 \star y / 1=(x * y) / 1 \in J$ and $y / 1 \in J$. Since J is an ideal, then $x / 1 \in J$ and so $x \in I$. Hence, I is an ideal of X. Now, let $x / t \in J$. Since $t / 1 \in S^{-1} X$ then by Lemma 3.8, $x / t \wedge t / 1 \in J$. Since, by Lemma 3.7, $x / t \wedge y / t=(x \wedge t) / t=x / 1$, then $x / 1 \in J$ and so $x \in I$. Hence $x / t \in S^{-1} I$. Therefore, $J \subseteq S^{-1} I$. Now, let $x / t \in S^{-1} I$. Hence there exist $a \in I$ and $s \in S$ such that $x / t=a / s$. Since $a / 1 \in J$ and $1 / s \in S^{-1} X$, then by Lemma 3.8, $a / s=a / 1 \wedge 1 / s \in J$ and so $x / t \in J$. Hence, $S^{-1} I \subseteq J$. Therefore, $J=S^{-1} J$. Now, let J be prime. Then $J=S^{-1} I$ is proper and so by Theorem 3.9, $I \cap S=\emptyset$. Now, let $x \wedge y \in I$, for $x, y \in X$. Then $x / 1 \wedge y / 1=(x \wedge y) / 1 \in S^{-1} I$. Since $S^{-1} I$ is prime, then $x / 1 \in S^{-1} I$ or $y / 1 \in S^{-1} I$ and so by definition of $I, x \in I$ or $y \in I$. Hence, I is a prime ideal.
Theorem 3.12. If P is a prime ideal of X such that $P \cap S=\emptyset$, then $S^{-1} P$ is a prime ideal of $S^{-1} X$.

Proof. Since P is an ideal of $S^{-1} X$, then by Theorem 3.9, $S^{-1} P$ is an ideal of $S^{-1} X$. Now, first we show that $S^{-1} P$ is proper. Let $S^{-1} P=S^{-1} X$, on the contrary. Since $1 / 1 \in S^{-1} X=S^{-1} P$, then there exist $s \in S$ and $p \in P$ such that $1 / 1=p / s$ and so there exists $t \in S$ such that $t \wedge s=p \wedge t$. Since $p \wedge t \leq p \in P$ and P is an ideal, $t \wedge s=p \wedge t \in P$. Moreover, since $t \wedge s \in S$, then $t \wedge s \in P \cap S=\emptyset$, which is a contradiction. Hence, $S^{-1} P \neq S^{-1} X$. Now, let $x / t \wedge y / s \in S^{-1} P$, for $x / t, y / s \in S^{-1} X$. By Lemma 3.7, $x / t \wedge y / s=(x \wedge y) /(t \wedge s)$. Hence, $(x \wedge y) /(t \wedge s) \in S^{-1} P$ and so there exist $q \in P$ and $r \in S$ such that $(x \wedge y) /(t \wedge s)=q / r$ and this means that there exists
$h \in S$ such that $h \wedge r \wedge x \wedge y=h \wedge t \wedge s \wedge q$. Since $q \in P, h \wedge t \wedge s \wedge q \leq q$ and P is an ideal, then $h \wedge r \wedge x \wedge y=h \wedge t \wedge s \wedge q \in P$. Now, since P is prime and $h \wedge r \notin P$, then $x \wedge y \in P$ and so $x \in P$ or $y \in P$. Hence, $x / t \in S^{-1} P$ or $y / s \in S^{-1} P$. Therefore, $S^{-1} P$ is a prime ideal of $S^{-1} X$.

Lemma 3.13. Let $f:(X, *) \longrightarrow\left(S^{-1} X, \star\right)$ be defined by $f(x)=x / 1$. Then;
(i) f is a BCK-homomorphism(that is; $f(0)=0_{S^{-1}(X)}$ and $f(x * y)=f(x) \star f(y)$ for any $x, y \in X$,
(ii) If I is an ideal of X, then $I^{e}\left[(f(I)]=S^{-1} I\right.$;
(iii) If J is an ideal of $S^{-1} X$, then there exists an ideal I of X such that $J^{c}\left[f^{-1}(J)\right]=I$ and $J=S^{-1} I$.

Proof. (i) The proof is clear.
(ii) Since $f(I)=\{x / 1: x \in I\} \subseteq S^{-1} I$ and by Theorem $3.9, S^{-1} I$ is an ideal of $S^{-1} X$, then $I^{e}=[f(I)] \subseteq S^{-1} I$. Now, let $x / s \in S^{-1} I$. Hence, there exists $a \in I$ and $t \in S$ such that $x / s=a / t$. Since $t \wedge a \leq t$, then by Lemma 3.4(i),

$$
(a * t) \wedge t=t \wedge(a * t)=(t \wedge a) *(t \wedge t)=(t \wedge a) \wedge t=0
$$

and so by Corollary 3.3(iii), $(a * t) / t=0_{S^{-1} X}$. Now, by Lemma 3.4(ii) and since $a / 1 \in f(I)$, then

$$
x / s \star a / 1=a / t \star a / 1=((a \wedge 1) *(a \wedge t)) /(t \wedge 1)=(a *(a \wedge t)) / t=(a * t) / t=0_{S^{-1} X}
$$

Hence, $x / s \in(f(I)]=I^{e}$ and so $S^{-1} I \subseteq I^{e}$. Therefore, $S^{-1} I=I^{e}$.
(iii) Let J be an ideal of $S^{-1} X$. Let $I=\{x \in X: x / 1 \in J\}$. Then by Theorem 3.11, I is an ideal of $X, J=S^{-1} I$ and $I=\{x \in X: f(x) \in J\}=f^{-1}(J)=J^{c}$.

Theorem 3.14. Let $\operatorname{Spec}(X)$ be the set of all prime ideals of $X, A=\{P \in \operatorname{Spec}(X) \mid P \cap S=\emptyset\}$ and $B=\left\{J \mid J \in \operatorname{Spec}\left(S^{-1} X\right)\right\}$. Then $A \cong B$.

Proof. Let $\varphi: A \longrightarrow B$ be defined by $\varphi(P)=P^{e}$ and $\psi: B \longrightarrow A$ be defined by $\psi(J)=J^{c}$. By Theorems 3.11 and 3.12 and Lemma 3.13, φ and ψ are well-defined. Now, let $P \in A$. By Lemma 3.13(ii), $P^{e}=S^{-1} P$ and $\left(S^{-1} P\right)^{c}=P$. Hence, $P^{e c}=P$. Moreover, if $J \in B$, then by Theorem 3.9 and Lemma 3.13, $J=S^{-1} P$ such that $J^{c}=P$. Hence, $J^{c e}=p^{e}=S^{-1} P=J$. Thus, $\varphi \circ \psi(J)=\phi\left(J^{c}\right)=J^{c e}=J$ and $\psi \circ \varphi(P)=\psi\left(P^{e}\right)=P^{e c}=P$. Therefore, $A \cong B$.

4. $B C K$-modules of fractions

Definition 4.1. [1] Let $(X, *, 0)$ be a $B C K$-algebra, $(M,+)$ be an Abelian group and $\cdot: X \times M \longrightarrow$ M with $(x, m) \longrightarrow x \cdot m$ be an operation such that:
(i) $(x \wedge y) \cdot m=x \cdot(y \cdot m)$,
(ii) $x \cdot\left(m_{1}+m_{2}\right)=x \cdot m_{1}+x \cdot m_{2}$,
(iii) $0 \cdot m=0$.
for all $x, y \in X$ and $m, m_{1}, m_{2} \in M$, where $x \wedge y=y *(y * x)$. Then M is called a left X-module. Similarly, we can define a right X-module.

Note. If X is a commutative $B C K$-algebra, then the notions of a left X-module and a right X-module quinsied and so, for simplicity, we use of X-module instead of the left X-module. It is clear that in any left X-module $M, s \cdot(-m)=-(s \cdot m)$, for any $s \in S$ and $m \in M$.

Proposition 4.2. Let $(X, *, 0)$ be bounded implicative algebra, if the operation $+: X \times X \longrightarrow X$ is defined as follows:

$$
x+y=(x * y) \vee(y * x)
$$

then $M=(X,+)$ is an Abelian group and M is an X-module. Infact, X is an X-module on itself. Proof. First, we prove that $(X,+)$ is an Abelian group.
(i) Associative law:

Let $x, y, z \in X$. First we prove the following identity:

$$
\begin{equation*}
x \wedge(N y \vee z) \wedge(y \vee N z)=(x \wedge N y \wedge N z) \vee(x \wedge z \wedge y) \tag{1}
\end{equation*}
$$

For this, by Theorems 2.5 and 2.6, we have:

$$
\begin{aligned}
x \wedge(N y \vee z) \wedge(y \vee N z) & =[(x \wedge N y) \vee(x \wedge z)] \wedge(y \vee N z) \\
& =(y \vee N z) \wedge[(x \wedge N y) \vee(x \wedge z)] \\
& =[(y \vee N z) \wedge(x \wedge N y)] \vee[(y \vee N z) \wedge(x \wedge z)] \\
& =[(x \wedge N y) \wedge(y \vee N z)] \vee[(x \wedge z) \wedge(y \vee N z)] \\
& =[(x \wedge N y \wedge y) \vee(x \wedge N y \wedge N z)] \vee[(x \wedge z \wedge y) \vee(x \wedge z \wedge N z)] \\
& =[(x \wedge 0) \vee(x \wedge N y \wedge N z)] \vee[(x \wedge z \wedge y) \vee(x \wedge 0)] \\
& =[0 \vee(x \wedge N y \wedge N z)] \vee[(x \wedge z \wedge y) \vee 0] \\
& =(x \wedge N y \wedge N z) \vee(x \wedge z \wedge y)
\end{aligned}
$$

Hence we have (1). Moreover, we should prove the following identity:

$$
\begin{equation*}
(x \wedge y) \vee(N x \wedge N y)=(N x \vee y) \wedge(N y \vee x) \tag{2}
\end{equation*}
$$

For this, by Theorems 2.5 and 2.6, we have:

$$
\begin{aligned}
(x \wedge y) \vee(N x \wedge N y) & =[(x \wedge y) \vee N x] \wedge[(x \wedge y) \vee N y] \\
& =[N x \vee(x \wedge y)] \wedge[N y \vee(x \wedge y)] \\
& =[(N x \vee x) \wedge(N x \vee y)] \wedge[(N y \vee x) \wedge(N y \vee y)] \\
& =[1 \wedge(N x \vee y)] \wedge[(N y \vee x) \wedge 1] \\
& =(N x \vee y) \wedge(N y \vee x)
\end{aligned}
$$

Hence we have (2).
Now, by Theorem 2.6,(i),(ii) and (vi) we have:

$$
\begin{aligned}
x+(y+z) & =x+[(y * z) \vee(z * y)] \\
& =(x *[(y * z) \vee(z * y)]) \vee([(y * z) \vee(z * y)] * x) \\
& =[x \wedge N[(y \wedge N z) \vee(z \wedge N y)]] \vee[[(y \wedge N z) \vee(z \wedge N y)] \wedge N x] \\
& =[x \wedge[N(y \wedge N z) \wedge N(z \wedge N y)]] \vee[N x \wedge[(y \wedge N z) \vee(z \wedge N y)]] \\
& =[x \wedge[(N y \vee z) \wedge(y \vee N z)]] \vee[[N x \wedge(y \wedge N z)] \vee(N x \wedge(N y \wedge z))] \\
& =[x \wedge N y \wedge N z] \vee[x \wedge y \wedge z] \vee[N x \wedge y \wedge N z] \vee[N x \wedge N y \wedge z],(b y(1)) \\
& =[x \wedge N y \wedge N z] \vee[N x \wedge y \wedge N z] \vee[x \wedge y \wedge z] \vee[N x \wedge N y \wedge z] \\
& =[[(x \wedge N y) \vee(N x \wedge y)] \wedge N z] \vee[[(x \wedge y) \vee(N x \wedge N y)] \wedge z] \\
& =[[(x * y) \vee(y * x)] \wedge N z] \vee[[(N x \vee y) \wedge(N y \vee x)] \wedge z],(b y(2)) \\
& =[[(x * y) \vee(y * x) \wedge N z] \vee[N[(x \wedge N y) \vee(y \wedge N x)] \wedge z] \\
& =[[(x * y) \vee(y * x)] \wedge N z] \vee[N[(x * y) \vee(y * x)] \wedge z] \\
& =[[(x * y) \vee(y * x)] * z] \vee[z *[(x * y) \vee(y * x)]] \\
& =(x+y)+z .
\end{aligned}
$$

Therefore, we have the associative law.
(ii) Identity element: Let $x \in X$. Then, by Theorem 2.6,

$$
x+0=(x * 0) \vee(0 * x)=x \vee 0=N(N x \wedge N 0)=N(N x \wedge 1)=N N x=x
$$

(iii) Inverse element: Let $x \in X$. We claim that x is an inverse of x, since

$$
x+x=(x * x) \vee(x * x)=0 \vee 0=0
$$

(iv) Abelian law: Let $x, y \in X$. Then

$$
x+y=(x * y) \vee(y * x)=(y * x) \vee(x * y)=y+x
$$

Hence $M=(X,+)$ is an Abelian group.
Now, we show that M is an X - module. For this we define the operation $\cdot: X \times M \longrightarrow M$ by $x \cdot m=x \wedge m$. Hence:
(i): $(x \wedge y) \cdot m=(x \wedge y) \wedge m=x \wedge(y \wedge m)=x \wedge(y \cdot m)=x \cdot(y \cdot m)$
(ii) : x $\cdot\left(m_{1}+m_{2}\right)=x \wedge\left(m_{1}+m_{2}\right)$
$=x \wedge\left[\left(m_{1} * m_{2}\right) \vee\left(m_{2} * m_{1}\right)\right]$
$=x \wedge\left[\left(m_{1} \wedge N m_{2}\right) \vee\left(m_{2} \wedge N m_{1}\right)\right]$
$=\left[x \wedge\left(m_{1} \wedge N m_{2}\right)\right] \vee\left[x \wedge\left(m_{2} \wedge N m_{1}\right)\right]$
$=\left[\left(x \wedge m_{1}\right) \wedge N m_{2}\right] \vee\left[\left(x \wedge m_{2}\right) \wedge N m_{1}\right]$
$=\left[0 \vee\left(\left(x \wedge m_{1}\right) \wedge N m_{2}\right)\right] \vee\left[0 \vee\left(\left(x \wedge m_{2}\right) \wedge N m_{1}\right)\right]$
$=\left[\left(x \wedge N x \wedge m_{1}\right) \vee\left(\left(x \wedge m_{1}\right) \wedge N m_{2}\right)\right] \vee\left[\left(x \wedge N x \wedge m_{2}\right) \vee\left(\left(x \wedge m_{2}\right) \wedge N m_{1}\right)\right]$
$=\left[\left[\left(x \wedge m_{1}\right) \wedge N x\right] \vee\left[\left(x \wedge m_{1}\right) \wedge N m_{2}\right]\right] \vee\left[\left[\left(x \wedge m_{2}\right) \wedge N x\right] \vee\left[\left(x \wedge m_{2}\right) \wedge N m_{1}\right]\right]$
$=\left[\left(x \wedge m_{1}\right) \wedge\left(N x \vee N m_{2}\right)\right] \vee\left[\left(x \wedge m_{2}\right) \wedge\left(N x \vee N m_{1}\right)\right]$
$=\left[\left(x \wedge m_{1}\right) \wedge N\left(x \wedge m_{2}\right)\right] \vee\left[\left(x \wedge m_{2}\right) \wedge N\left(x \wedge m_{1}\right)\right]$
$=\left[\left(x \wedge m_{1}\right) *\left(x \wedge m_{2}\right)\right] \vee\left[\left(x \wedge m_{2}\right) *\left(x \wedge m_{1}\right)\right]$
$=\left(x \wedge m_{1}\right)+\left(x \wedge m_{2}\right)$
$=x \cdot m_{1}+x \cdot m_{2}$.
(iii)

$$
0 \cdot m=0 \wedge m=0 \wedge m=m *(m * 0)=m * m=0
$$

for any $m \in M$.
Therefore, M is an X-module.
Lemma 4.3. Let M be an X-module and the relation " \sim " on $M \times S$ be defined by:

$$
(m, s) \sim\left(m^{\prime}, s^{\prime}\right) \Longleftrightarrow \exists t \in S \text { s.t, } t \cdot\left(s^{\prime} \cdot m-s \cdot m^{\prime}\right)=0
$$

Then " ~" is an equivalence relation.
Proof. The proof is straightforward.
Notation. From now on, for each element $(m, s) \in M \times S$, the class [$(m, s)]$ will be denoted by m / s and the set $M \times S / \sim$ will be denoted by $S^{-1} M$. Hence we have $S^{-1} M=\{m / s: m \in$ $M, s \in S\}$.

Theorem 4.4. Let M be a X-module and the operation " \oplus " on $S^{-1} M$ be defined by:

$$
m / s \oplus m^{\prime} / s^{\prime}=\left(s^{\prime} \cdot m+s \cdot m^{\prime}\right) /\left(s \wedge s^{\prime}\right)
$$

Then $\left(S^{-1} M, \oplus\right)$ is an Abelian group.
Proof. First we prove that the operation " \oplus " is well-defined. Let $m_{1} / s_{1}, m_{2} / s_{2}, m_{1}^{\prime} / s_{1}^{\prime}, m_{2}^{\prime} / s_{2}^{\prime} \in$ $S^{-1} M$ such that $m_{1} / s_{1}=m_{2} / s_{2}$ and $m_{1}^{\prime} / s_{1}^{\prime}=m_{2}^{\prime} / s_{2}^{\prime}$. Then, there exist $t, t^{\prime} \in S$ such that

$$
t \cdot\left(s_{2} \cdot m_{1}-s_{1} \cdot m_{2}\right)=0 \quad, \quad t^{\prime} \cdot\left(s_{2}^{\prime} \cdot m_{1}^{\prime}-s_{1}^{\prime} \cdot m_{2}^{\prime}\right)=0
$$

and so

$$
\left(t \wedge s_{2}\right) \cdot m_{1}=\left(t \wedge s_{1}\right) \cdot m_{2} \quad, \quad\left(t^{\prime} \wedge s_{2}^{\prime}\right) \cdot m_{1}^{\prime}=\left(t^{\prime} \wedge s_{1}^{\prime}\right) \cdot m_{2}^{\prime}
$$

Hence, we get that;

$$
\left(t^{\prime} \wedge s_{2}^{\prime} \wedge s_{1}^{\prime}\right) \cdot\left(\left(t \wedge s_{2}\right) \cdot m_{1}\right)=\left(t^{\prime} \wedge s_{2}^{\prime} \wedge s_{1}^{\prime}\right) \cdot\left(\left(t \wedge s_{1}\right) \cdot m_{2}\right)
$$

and

$$
\left(t \wedge s_{2} \wedge s_{1}\right) \cdot\left(\left(t^{\prime} \wedge s_{2}^{\prime}\right) \cdot m_{1}^{\prime}\right)=\left(t \wedge s_{2} \wedge s_{1}\right) \cdot\left(\left(t^{\prime} \wedge s_{1}^{\prime}\right) \cdot m_{2}^{\prime}\right)
$$

Hence;

$$
\left[\left(t^{\prime} \wedge s_{2}^{\prime} \wedge s_{1}^{\prime}\right) \wedge\left(t \wedge s_{2}\right)\right] \cdot m_{1}=\left[\left(t^{\prime} \wedge s_{2}^{\prime} \wedge s_{1}^{\prime}\right) \wedge\left(t \wedge s_{1}\right)\right] \cdot m_{2}
$$

and

$$
\begin{equation*}
\left[\left(t \wedge s_{2} \wedge s_{1}\right) \wedge\left(t^{\prime} \wedge s_{2}^{\prime}\right)\right] \cdot m_{1}^{\prime}=\left[\left(t \wedge s_{2} \wedge s_{1}\right) \wedge\left(t^{\prime} \wedge s_{1}^{\prime}\right)\right] \cdot m_{2}^{\prime} \tag{2}
\end{equation*}
$$

Now, by (1) and (2), we have
$\left(t \wedge t^{\prime} \wedge s_{1}^{\prime} \wedge s_{2}^{\prime} \wedge s_{2}\right) \cdot m_{1}+\left(t \wedge t^{\prime} \wedge s_{1} \wedge s_{2}^{\prime} \wedge s_{2}\right) \cdot m_{1}^{\prime}=\left(t \wedge t^{\prime} \wedge s_{1} \wedge s_{1}^{\prime} \wedge s_{2}^{\prime}\right) \cdot m_{2}+\left(t \wedge t^{\prime} \wedge s_{2} \wedge s_{1} \wedge s_{1}^{\prime}\right) \cdot m_{2}^{\prime}$ and so

$$
\left(t \wedge t^{\prime} \wedge s_{2}^{\prime} \wedge s_{2}\right) \cdot\left(s_{1}^{\prime} \cdot m_{1}+s_{1} \cdot m_{1}^{\prime}\right)=\left(t \wedge t^{\prime} \wedge s_{1} \wedge s_{1}^{\prime}\right) \cdot\left(s_{2}^{\prime} \cdot m_{2}+s_{2} \cdot m_{2}^{\prime}\right)
$$

and this implies that

$$
\left(t \wedge t^{\prime}\right) \cdot\left[\left(s_{2}^{\prime} \wedge s_{2}\right) \cdot\left(s_{1}^{\prime} \cdot m_{1}+s_{1} \cdot m_{1}^{\prime}\right)\right]=\left(t \wedge t^{\prime}\right) \cdot\left[\left(s_{1} \wedge s_{1}^{\prime}\right) \cdot\left(s_{2}^{\prime} \cdot m_{2}+s_{2} \cdot m_{2}^{\prime}\right)\right]
$$

Hence, the definition of " \sim ", we have

$$
\left(s_{1}^{\prime} \cdot m_{1}+s_{1} \cdot m_{1}^{\prime}\right) /\left(s_{1} \wedge s_{1}^{\prime}\right)=\left(s_{2}^{\prime} \cdot m_{2}+s_{2} \cdot m_{2}^{\prime}\right) /\left(s_{2} \wedge s_{2}^{\prime}\right)
$$

and this means that " \oplus " is well-defined. Now, the proof of group properties are easy by some modifications.

Theorem 4.5. Let M be a X-module and the operation $\circ: S^{-1} X \times S^{-1} M \longrightarrow S^{-1} M$ be defined by $x / s \circ m / t=(x \cdot m) /(s \wedge t)$. Then $S^{-1} M$ is an $S^{-1} X$-module.

Proof. First we show that " \circ " is well defined. Let $x_{1} / s_{1}, x_{2} / s_{2} \in S^{-1} X$ and $m_{1} / t_{1}, m_{2} / t_{2} \in S^{-1} M$ such that $x_{1} / s_{1}=x_{2} / s_{2}$ and $m_{1} / t_{1}=m_{2} / t_{2}$. Then, there exist $s, t \in S$, such that

$$
\begin{equation*}
s \wedge s_{2} \wedge x_{1}=s \wedge s_{1} \wedge x_{2} \quad, \quad t \cdot\left(t_{2} \cdot m_{1}-t_{1} \cdot m_{2}\right)=0 \tag{1}
\end{equation*}
$$

By definition of a $B C K$-module and (1), $t \cdot\left(t_{2} \cdot m_{1}\right)=t \cdot\left(t_{1} \cdot m_{2}\right)$ and so $\left(t \wedge t_{2}\right) \cdot m_{1}=\left(t \wedge t_{1}\right) \cdot m_{2}$. Hence, by (1) we have

$$
\left(s \wedge s_{2} \wedge x_{1}\right) \cdot\left(\left(t \wedge t_{2}\right) \cdot m_{1}\right)=\left(s \wedge s_{1} \wedge x_{2}\right) \cdot\left(\left(t \wedge t_{1}\right) \cdot m_{2}\right)
$$

and so

$$
\left(s \wedge s_{2} \wedge x_{1} \wedge t \wedge t_{2}\right) \cdot m_{1}=\left(s \wedge s_{1} \wedge x_{2} \wedge t \wedge t_{1}\right) \cdot m_{2}
$$

Hence, by the definition of $B C K$-module,

$$
\left((s \wedge t) \wedge\left(s_{2} \wedge t_{2}\right)\right) \cdot\left(x_{1} \cdot m_{1}\right)=\left((s \wedge t) \wedge\left(s_{1} \wedge t_{1}\right)\right) \cdot\left(x_{2} \cdot m_{2}\right)
$$

and so

$$
(s \wedge t) \cdot\left(\left(s_{2} \wedge t_{2}\right) \cdot\left(x_{1} \cdot m_{1}\right)\right)=(s \wedge t) \cdot\left(\left(s_{1} \wedge t_{1}\right) \cdot\left(x_{2} \cdot m_{2}\right)\right)
$$

and this implies that

$$
\left(x_{1} \cdot m_{1}\right) /\left(s_{1} \wedge t_{1}\right)=\left(x_{2} \cdot m_{2}\right) /\left(s_{2} \wedge t_{2}\right)
$$

Therefore, the operation "o" is well-defined.
Now, we should prove the axioms of a $B C K$-module.
(i) $(x / t \dot{\wedge} y / s) \circ m / l=x / t \circ(y / s \circ m / l)$:

For this, first we prove the following identity.

$$
\begin{aligned}
(x / t \wedge y / s) & =y / s \star(y / s \star x / t),\left(\text { since } S^{-1} X \text { is commutative }\right) \\
& =y / s \star[((y \wedge t) *(x \wedge s)) /(s \wedge t)] \\
& =[(s \wedge t \wedge y) *(s \wedge((y \wedge t) *(x \wedge s)))] /(s \wedge t) \\
& =[(s \wedge t \wedge y) *((s \wedge y \wedge t) *(x \wedge s))] /(s \wedge t),(\text { by Lemma 3.4) } \\
& =[(x \wedge s) \wedge(s \wedge t \wedge y)] /(s \wedge t)(\text { by definition of } \wedge \text { in } X) \\
& =[(s \wedge t) \wedge(x \wedge y)] /(s \wedge t) \\
& =(x \wedge y) /(s \wedge t)(\text { by Lemma } 3.7(\mathrm{i}))
\end{aligned}
$$

Now, by the above identity, we have:

$$
\begin{aligned}
(x / t \dot{\wedge} y / s) \circ m / l & =[(x \wedge y) /(s \wedge t)] \circ m / l \\
& =((x \wedge y) \cdot m) /(s \wedge t \wedge l) \\
& =(x \cdot(y \cdot m)) /(s \wedge t \wedge l) \\
& =x / s \circ((y \cdot m) /(t \wedge l)) \\
& =x / s \circ(y / t \circ m / l)
\end{aligned}
$$

(ii) $x / s \circ\left(m_{1} / t_{1} \oplus m_{2} / t_{2}\right)=\left(x / s \circ m_{1} / t_{1}\right) \oplus\left(x / s \circ m_{2} / t_{2}\right)$:

$$
\begin{aligned}
x / s \circ\left(m_{1} / t_{1} \oplus m_{2} / t_{2}\right) & =x / s \circ\left[\left(t_{2} \cdot m_{1}+t_{1} \cdot m_{2}\right) /\left(t_{1} \wedge t_{2}\right)\right] \\
& \left.=\left[x \cdot\left(t_{2} \cdot m_{1}+t_{1} \cdot m_{2}\right) /\left(s \wedge t_{1} \wedge t_{2}\right)\right]\right] \\
& =\left[x \cdot\left(t_{2} \cdot m_{1}\right)+x \cdot\left(t_{1} \cdot m_{2}\right)\right] /\left(s \wedge t_{1} \wedge t_{2}\right) \\
& =\left(\left(x \wedge t_{2}\right) \cdot m_{1}\right) /\left(s \wedge t_{1} \wedge t_{2}\right) \oplus\left(\left(x \wedge t_{1}\right) \cdot m_{2}\right) /\left(s \wedge t_{1} \wedge t_{2}\right) \\
& \left.=\left(x \cdot m_{1}\right) /\left(s \wedge t_{1}\right) \oplus\left(x \cdot m_{2}\right) /\left(s \wedge t_{2}\right)\right) \\
& =\left(x / s \circ m_{1} / t_{1}\right) \oplus\left(x / s \circ m_{2} / t_{2}\right)
\end{aligned}
$$

(iii) $0_{S^{-1} X} \circ m / t=0_{S^{-1}} M$:

$$
0_{S^{-1} X} \circ m / t=0 / t \circ m / t=(0 \cdot m) /(t \wedge t)=0 / t=0_{S^{-1} M}
$$

Therefore, $S^{-1} M$ is a $S^{-1} X$-module.

References

[1] H. Abujabal, M. Aslam, A. B. Thaheem, On actions of BCK-Algebras on Groups, Panamerican Mathematical Journal, 4(3) (1994), 43-48.
[2] Day, A. The lattice theory of functional dependencies and normal decompositions,Internat. J. Algebra Compute., 242 (1990), 409-431.
[3] Hu, C. L., Song, Z.m. Foundation Of Lattice Theory, (in Chineese), Henan University Press, Kaifeng, China.
4] Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19-22.
[5] K. Iséki, An algebraic related with a propositional calculus, Proc. Japan Acad. 42 (1996), 26-29.
6] K. Iséki, On some ideals in BCK-algebras with condition (S), Math. Seminar Notes, 3(1975), 65-70.
[7] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica, 23(1978), 1-26.
[8] Ma.J, Lattice- Value Logical System and Atutomated Reasoning Based On Lattice Implication Algebra Ph.D, Thesis, Southwest Jiaotong Univ., China (in Chinese),(2002).
[9] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moonsa, Korea, 1994.
[10] Z. Perveen, M. Aslam, A. B. Thaheem, On BCK-Modules, Southeast Asian Bulletin Of Mathematics, 30, (2006), 317-329.
[11] Wang, S.Q , Theorem of lattice -valued model theory, (in Chineese), Acta Mathematica Sinica, 2(1982), 202-207.
R. A. Borzooei, Department of Mathematics, Shahid Beheshti University, Tehran, Iran.

E-mail address: borzooei@sbu.ac.ir
J. Shohani, Department of Mathematics, Sistan and Baluchestan University, Zahedan, Iran.

