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Abstract. In this paper, by considering the notion of a ∧-closed set in BCK-algebras, we
construct the fractions of BCK-algebras and prove some related results. Moreover, we study the
notion of a BCK-module and prove that any BCK-algebra is a BCK-module on itself. Finally,

we construct the fractions of BCK-modules.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced by Y. Imai and K. Iséki in
1966 [4, 5]. This notion is originated in two different ways: One is based on set theory; another
comes from the classical and non-classical propositional calculi. As is well known there is a close
relation between the notion of the set difference in set theory and the implication functor in logical
systems. Then the following problems arise from this relationship. What is the most essential
and fundamental common properties? Can we establish a good theory of general algebras? To
give an answer to these problems, Y. Imai and K. Iséki introduced the notion of a new class of
general algebras called BCK- algebras. This name is taken from BCK-system of C. A. Meredith.
The BCK-action was introduced by H. Abujabal, M. Aslam and A. B. Thaheem in 1994 [1] as
an action of a BCK-algebra over a commutative group. This concept is extended by Z. Perveen,
M. Aslam and A. B. Thaheem in 2006 [10], as a BCK-module. Now, in this paper we follow [10]
and construct the fractions of BCK-algebras. Moreover, we prove that any BCK-algebras is a
BCK-module on itself and we construct the fractions of BCK-modules. It should be noted that
in this paper the main idea is to observe does the BCK-algebra has the ability to obtain and prove
some well-known concepts and theorems in commutative algebra, especially fraction algebra, by
use of the structure and characteristics of BCK-algebras.

2. Preliminaries

Definition 2.1. [7] A BCK-algebra is a set X with a binary operation “∗” and a constant “0”
satisfying the following axioms:
(BCK1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y)) = 0,
(BCK2) (x ∗ (x ∗ y)) ∗ y = 0,
(BCK3) x ∗ x = 0,
(BCK4) 0 ∗ x = 0,
(BCK5) x ∗ y = y ∗ x = 1 imply x = y.

A BCK-algebra X is called implicative if x ∗ (y ∗ x) = x, commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x),
bounded if there exists a unique element 1 ∈ X such that x ∗ 1 = 0, for all x, y, z ∈ X.

Definition 2.2. [6] Let (X, ∗, 0) be a BCK- algebra, I be a nonempty subset of X and 0 ∈ I.
Then I is called an ideal of X if x ∗ y ∈ I and y ∈ I imply x ∈ I, for any x, y ∈ X. An ideal I is
called proper, if I 6= X.
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Theorem 2.3. [9] If X is a BCK-algebra and ∅ 6= A ⊆ X, then the ideal generated by A (the
intersection of all ideals of X containing A) will be denoted by (A] and

(A] = {x ∈ X|∃a1, a2, · · · , an ∈ A such that (· · · ((x ∗ a1) ∗ a2) ∗ · · · ) ∗ an = 0}

Theorem 2.4. [9] Any implicative BCK-algebra is a commutative BCK-algebra.

Theorem 2.5. [9] Let (X, ∗, 0) be a bounded implicative BCK-algebra. Then (X,∧,∨, 0, 1) is a
complimented distributive lattice and so Boolean algebra, where

x ∧ y = y ∗ (y ∗ x) , x ∨ y = N(Nx ∧ Ny)

and Nx = 1 ∗ x, for any x, y ∈ X.

Theorem 2.6. [9] Let X be a bounded implicative BCK-algebra. Then we have the following
properties for all x, y ∈ X:
(i) NNx = x,
(ii) Nx ∨ Ny = N(x ∧ y) , Nx ∧ Ny = N(x ∨ y),
(iii) Nx ∗ Ny = y ∗ x,
(iv) x ∧ Nx = 0,
(v) x ∨ Nx = 1,
(vi) x ∗ (x ∗ Ny) = x ∗ y, i.e. Ny ∧ x = x ∗ y,
(x) x ∗ (x ∗ y) = x ∗ Ny, i.e. y ∧ x = x ∗ Ny
(xi) N0 = 1, N1 = 0.

From now on, in this paper we let X to be a bounded implicative BCK-algebra. Note that
these algebra is infact a Boolean algebra.

3. BCK-algebras of Fractions

In this section, by using techniques of BCK-algebras, we introduce and study the notion of
fraction for bounded implicative BCK(Boolean)-algebras.

Definition 3.1. [9] Let S be a non empty subset of X. Then S is called ∧-closed if 1 ∈ S and
x ∧ y ∈ S, for all x, y ∈ S.

From now on, in this paper we let S to be a ∧-closed subset of X.

Lemma 3.2. If the relation “ ∼ ” on X × S is defined by:

(x1, t1) ∼ (x2, t2) ⇐⇒ ∃s ∈ S, s ∧ x1 ∧ t2 = s ∧ x2 ∧ t1,

then “ ∼ ” is an equivalence relation.

Proof. By Theorem 2.5, (X,∧) is a ∧-semi lattice. Hence, we prove the equivalence relation
properties. Reflexive and symmetric properties are clear.

Transitive property:
Let (x1, t1) ∼ (x2, t2) and (x2, t2) ∼ (x3, t3). Then there exist s1, s2 ∈ S such that s1 ∧ x1 ∧ t2 =
s1 ∧ x2 ∧ t1 and s2 ∧ x2 ∧ t3 = s2 ∧ x3 ∧ t2. Hence,

s1 ∧ s2 ∧ t2 ∧ t3 ∧ x1 = s1 ∧ s2 ∧ t1 ∧ t3 ∧ x2

and
s1 ∧ s2 ∧ t1 ∧ t3 ∧ x2 = s1 ∧ s2 ∧ t1 ∧ t2 ∧ x3

and so
s1 ∧ s2 ∧ t2 ∧ t3 ∧ x1 = s1 ∧ s2 ∧ t1 ∧ t2 ∧ x3

Now, let s′ = s1 ∧ s2 ∧ t2 ∈ S. Hence s′ ∧ x1 ∧ t3 = s′ ∧ x3 ∧ t1, and this implies that (x1, t1) ∼
(x3, t3). ¤
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Notation. From now on, for each element (x, s) ∈ X × S, the class [(x, s)] will be denoted by
x/s and the set X × S/ ∼ by S−1X. Hence we have S−1X = {x/s : x ∈ X, s ∈ S}.

Corollary 3.3. (i) x/t = y/s, for any x/t, y/s ∈ S−1X, if and only if there exists s′ ∈ S such
that s′ ∧ x ∧ s = s′ ∧ y ∧ t,
(ii) 0/s = 0/t, for any t, s ∈ S.(So, for any s ∈ S, 0/s will be denoted by 0S−1X),
(iii) x/t = 0S−1X if and only if there exists l ∈ S such that x ∧ l = 0,
(iv) 0 ∈ S if and only if S−1X = {0S−1X}.

Proof. The proofs of (i), (ii) and (iv) are clear.
(iii) Let x/t = 0S−1X , for x ∈ X and t ∈ S. By (ii), we can let 0S−1X = 0/t. Then x/t = 0/t

and so there exists s ∈ S such that x ∧ t ∧ s = 0. Let l = t ∧ s. Hence, there is l ∈ S, such that
x ∧ l = 0. ¤

Lemma 3.4. For any x, y, z ∈ X, we have;
(i) x ∧ (y ∗ z) = (x ∧ y) ∗ (x ∧ z),
(ii) x ∗ (x ∧ y) = x ∗ y.

Proof. (i) Let x, y, z ∈ X. Then by Theorem 2.6,

(x ∧ y) ∗ (x ∧ z) = (x ∧ y) ∧ N(x ∧ z),
= (x ∧ y) ∧ (Nx ∨ Nz)
= [(x ∧ y) ∧ Nx] ∨ [(x ∧ y) ∧ Nz] , (by Theorem 2.5)
= [y ∧ (x ∧ Nx)] ∨ [(x ∧ y) ∧ Nz]
= [y ∧ 0)] ∨ [(x ∧ y) ∧ Nz]
= 0 ∨ [(x ∧ y) ∧ Nz]
= (x ∧ y) ∧ Nz,

= x ∧ (y ∧ Nz),
= x ∧ (y ∗ z).

(ii) Since X is implicative,

x ∗ (x ∧ y) = x ∗ (x ∗ (x ∗ y)) = x ∗ y

¤

Theorem 3.5. If the binary relation “ ? ” on S−1X is defined by

x/t ? y/s = [(x ∧ s) ∗ (y ∧ t)]/(t ∧ s)

then (S−1X, ?, 0S−1X) is a bounded implicative BCK-algebra.

Proof. First we show that “?” is well defined. Let a/s = a′/s′ and b/t = b′/t′. Then there exist
u, v ∈ S such that

u ∧ s′ ∧ a = u ∧ s ∧ a′ , v ∧ t′ ∧ b = v ∧ t ∧ b′

and so
v ∧ t ∧ t′ ∧ u ∧ s′ ∧ a = v ∧ t ∧ t′ ∧ u ∧ s ∧ a′

and
s ∧ s′ ∧ u ∧ v ∧ t′ ∧ b = s ∧ s′ ∧ u ∧ v ∧ t ∧ b′

So, we conclude that

[(u ∧ v) ∧ (s′ ∧ t′) ∧ (t ∧ a)] = [(u ∧ v) ∧ (s ∧ t) ∧ (a′ ∧ t′)]

and
[(u ∧ v) ∧ (s′ ∧ t′) ∧ (s ∧ b) = [(u ∧ v) ∧ (s ∧ t) ∧ (s′ ∧ b′)]



474 R. A. BORZOOEI AND J. SHOHANI

Hence,

[(u∧v)∧(s′∧t′)∧(t∧a)]∗[(u∧v)∧(s′∧t′)∧(s∧b)] = [(u∧v)∧(s∧t)∧(a′∧t′)]∗[(u∧v)∧(s∧t)∧(s′∧b′)]

Then, by Lemma 3.4, we have,

[(u ∧ v) ∧ (s′ ∧ t′)] ∧ [(t ∧ a) ∗ (s ∧ b)] = [(u ∧ v) ∧ (s ∧ t)] ∧ [(a′ ∧ t′) ∗ (s′ ∧ b′)]

Now, let s′′ = u ∧ v ∈ S. Hence, s′′ ∈ S and

s′′ ∧ (s′ ∧ t′) ∧ [(t ∧ a) ∗ (s ∧ b)] = s′′ ∧ (s ∧ t) ∧ [(a′ ∧ t′) ∗ (s′ ∧ b′)]

and this implies that

[(t ∧ a) ∗ (s ∧ b)]/(s ∧ t) = [(a′ ∧ t′) ∗ (s′ ∧ b′)]/(s′ ∧ t′)

Hence,
a/s ? b/t = a′/s′ ? b′/t′

Therefore, “?” is well-defined. Now, we show that (S−1X, ?, 0S−1X) is a BCK-algebra. Let
a/s, b/t, d/f ∈ S−1X. Then:

(BCK1):

[(a/s ? b/t) ? (a/s ? d/f)] ? (d/f ? b/t)
= [[((a ∧ t) ∗ (b ∧ s))/(s ∧ t)] ? [((a ∧ f) ∗ (s ∧ d))/(s ∧ f)]] ? [((d ∧ t) ∗ (b ∧ f))/(f ∧ t)]]
= [[[(s ∧ f) ∧ ((a ∧ t) ∗ (b ∧ s))] ∗ [(s ∧ t) ∧ ((a ∧ f) ∗ (s ∧ d))]]/(s ∧ t ∧ f)] ? [((d ∧ t) ∗ (b ∧ f))/(f ∧ t)]
= [[(f ∧ t) ∧ [[(s ∧ f) ∧ ((a ∧ t) ∗ (b ∧ s))] ∗ [(s ∧ t) ∧ ((a ∧ f) ∗ (s ∧ d))]]]

∗[[(s ∧ t ∧ f) ∧ [(d ∧ t) ∗ (b ∧ f)]]/(s ∧ t ∧ f)]
= [[(f ∧ t) ∧ [[((s ∧ f) ∧ (a ∧ t)) ∗ ((s ∧ f) ∧ (b ∧ s))] ∗ [((s ∧ t) ∧ (a ∧ f)) ∗ ((s ∧ t) ∧ (s ∧ d))]]]

∗[((s ∧ t ∧ f) ∧ (d ∧ t)) ∗ ((s ∧ t ∧ f) ∧ (b ∧ f))]]/(s ∧ t ∧ f)
= [[[(f ∧ t) ∧ ((s ∧ f) ∧ (a ∧ t))] ∗ [(f ∧ t) ∧ ((s ∧ f) ∧ (b ∧ s))]]

∗[[(f ∧ t) ∧ ((s ∧ t) ∧ (a ∧ f))] ∗ [(f ∧ t) ∧ ((s ∧ t) ∧ (s ∧ d))]]
∗[((s ∧ t ∧ f) ∧ (d ∧ t)) ∗ ((s ∧ t ∧ f) ∧ (b ∧ f))]]/(s ∧ t ∧ f)

= [[[(f ∧ t ∧ s ∧ a) ∗ (f ∧ t ∧ s ∧ b)] ∗ [(f ∧ t ∧ s ∧ a) ∗ (f ∧ t ∧ s ∧ d)]]
∗[(f ∧ t ∧ s ∧ d) ∗ (f ∧ t ∧ s ∧ b)]]/(s ∧ t ∧ f)

= [[[(l ∧ a) ∗ (l ∧ b)] ∗ [(l ∧ a) ∗ (l ∧ d)]] ∗ [(l ∧ d) ∗ (l ∧ b)]]/(s ∧ t ∧ f) , ( if l = f ∧ t ∧ s)
= 0/(s ∧ t ∧ f) , (by (BCK1))
= 0S−1X

(BCK2):

[a/s ? (a/s ? b/t)] ? b/t = [a/s ? ((a ∧ t) ∗ (s ∧ b))/(s ∧ t)] ? (b/t)
= [(a ∧ s ∧ t) ∗ (s ∧ ((a ∧ t) ∗ (s ∧ b)))/(s ∧ t)] ? (b/t)
= [((a ∧ s ∧ t) ∗ ((s ∧ a ∧ t) ∗ (s ∧ b)))/(s ∧ t)] ? (b/t) , (by Lemma 3.4)
= [(t ∧ [(a ∧ s ∧ t) ∗ ((s ∧ a ∧ t) ∗ (s ∧ b))]) ∗ (b ∧ s ∧ t)]/(s ∧ t)
= [[(a ∧ s ∧ t) ∗ ((s ∧ a ∧ t) ∗ (s ∧ b ∧ t))] ∗ (b ∧ s ∧ t)/(s ∧ t) , (by Lemma 3.4)
= 0/(s ∧ t)
= 0S−1X

(BCK3):
a/s ? a/s = ((a ∧ s) ∗ (a ∧ s))/s = 0/s = 0S−1X

(BCK4):
0S−1X ? a/s = 0/s ? a/s = [(0 ∧ s) ∗ (a ∧ s)]/s = 0/s = 0S−1X
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(BCK5): If a/s ? b/t = 0S−1X and b/t ? a/s = 0S−1X , then

((a ∧ t) ∗ (s ∧ b))/(s ∧ t) = 0S−1X , ((b ∧ s) ∗ (a ∧ t))/(s ∧ t) = 0S−1X

Hence, there exist l, l′ ∈ S, such that

l ∧ [(a ∧ t) ∗ (s ∧ b)] = 0 , l′ ∧ [(b ∧ s) ∗ (a ∧ t)] = 0

and so
(l ∧ l′) ∧ ((a ∧ t) ∗ (s ∧ b)) = 0 (l ∧ l′) ∧ ((b ∧ s) ∗ (a ∧ t)) = 0

Let h = l ∧ l′. Then, by Lemma 3.4,

(h ∧ (a ∧ t)) ∗ (h ∧ (s ∧ b)) = 0 , (h ∧ (b ∧ s)) ∗ (h ∧ (a ∧ t)) = 0

Hence by (BCK5), h ∧ (a ∧ t) = h ∧ (s ∧ b) and so (h ∧ t) ∧ a = (h ∧ s) ∧ b and this implies that
a/s = b/t.

Therefore, (S−1X, ?, 0S−1X) is a BCK-algebra. Now, we prove that it is implicative. Let
x/t, y/s ∈ S−1X. Then,

x/t ? ((y/s) ? (x/t)) = x/t ? [((y ∧ t) ∗ (x ∧ s))/(s ∧ t)],
= [(x ∧ s ∧ t) ∗ (t ∧ [(y ∧ t) ∗ (x ∧ s)])]/(s ∧ t)
= [(x ∧ s ∧ t) ∗ [(t ∧ y) ∗ (x ∧ s ∧ t)]]/(s ∧ t) (by Lemma 3.4)
= (x ∧ s ∧ t)/(s ∧ t) , (since X is implicative)
= x/t.

So, S−1X is implicative. Finally, we show that it is bounded. In fact, we claim that 1/1 is an
upper bound of S−1X. For this, let x/s ∈ S−1X. Then, by the definition of “∧” and (BCK3), we
have;

x/s?s/s = ((x∧s)∗(s∧s))/(s∧s) = ((x∧s)∗s)/s = ((s∧x)∗s)/s = ((x∗(x∗s))∗s)/s = 0/y = 0S−1X

Now, it is easy to see that, for any s ∈ S, s/s = 1/1. Hence, for any x/s ∈ S−1X, x/s?1/1 = 0S−1X .
Therefore, (S−1X, ?, 0S−1X) is a bounded implicative BCK-algebra. ¤

Corollary 3.6. If the relation “ ¹ ” on S−1X is defined by:

x/t ¹ y/s ⇐⇒ x/t ? y/s = 0S−1X

then (S−1X,¹) is a poset.

Proof. By Theorem 3.5, (S−1X, ?) is a BCK-algebra and so (S−1X,¹) is a poset(See [5]). ¤
Lemma 3.7. For any x, y ∈ X and s, t ∈ S, we have;
(i) (x ∧ s)/s = x/s,
(ii) (x ∧ t)/(s ∧ t) = x/s,
(iii) x/t ∧ y/s = (x ∧ y)/(t ∧ s) .

Proof. (i) Since for any t ∈ S, x ∧ s ∧ s ∧ t = x ∧ s ∧ t, so (x ∧ s)/s = x/s.
(ii) The proof is similar to (i).
(iii) Let x/t, y/s ∈ S−1X. Since (S−1X, ?) is a BCK-algebra, x/t ∧ y/s = y/s ? (y/s ? x/t).

Hence,

x/t ∧ y/s = y/s ? (y/s ? x/t)
= y/s ? [((y ∧ t) ∗ (x ∧ s))/(s ∧ t)]
= ((y ∧ s ∧ t) ∗ (((y ∧ t) ∗ (x ∧ s)) ∧ s))/(s ∧ t)
= ((x ∧ s) ∧ (y ∧ s ∧ t))/(s ∧ t)
= ((x ∧ t) ∧ (s ∧ y))/(s ∧ t)
= (x ∧ y)/(s ∧ t)
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Lemma 3.8. If I is an ideal of X, then for any x ∈ I and y ∈ X, x ∧ y ∈ I.

Theorem 3.9. If I be an ideal of X, then S−1I = {x/s ∈ S−1X : x ∈ I} is an ideal of S−1X.
Moreover, S−1I is proper if and only if I ∩ S = ∅.

Proof. Let x/t, y/s ∈ S−1X such that x/t?y/s ∈ S−1I and y/s ∈ S−1I. Then, there exist a, b ∈ I
and u, v ∈ S such that x/t ? y/s = a/u and y/s = b/v and so there exist h, h′ ∈ S such that
h ∧ u ∧ ((x ∧ s) ∗ (y ∧ t)) = h ∧ t ∧ s ∧ a and h′ ∧ y ∧ v = h′ ∧ s ∧ b. But, by Lemma 3.4 and some
modifications,

(h ∧ u ∧ h′ ∧ v ∧ x ∧ s) ∗ (h ∧ u ∧ h′ ∧ v ∧ y ∧ t) = h ∧ t ∧ s ∧ h′ ∧ v ∧ a , (1)

and
h′ ∧ y ∧ v ∧ h ∧ u ∧ t = h ∧ s ∧ b ∧ h′ ∧ u ∧ t

Let k = h∧ h′ ∧ v ∧ u. Since h∧ h′ ∧ v ∧ t∧ s∧ a ≤ a ∈ I so h∧ h′ ∧ v ∧ t∧ s∧ a ∈ I and so by (1),

(k ∧ s ∧ x) ∗ (k ∧ y ∧ t) ∈ I

Now, since k ∧ y ∧ t = h∧ s∧ b∧ h′ ∧ u∧ t ≤ b ∈ I, then k ∧ y ∧ t ∈ I and so k ∧ s∧ x ∈ I. Hence,
x/t = (k ∧ s ∧ x)/(k ∧ s ∧ t) ∈ S−1I. Therefore, S−1I is an ideal of S−1X.

Now, let S−1I be proper, but t ∈ I ∩ S 6= ∅, one the contrary. Let x/s ∈ S−1X. Then by
Lemmas 3.7 and 3.8, x/s = (x ∧ t)/(s ∧ t) ∈ S−1X. Hence S−1X = S−1I, which is impossible.
Moreover, let I ∩S = ∅, but S−1X = S−1I, one the contrary. Since 1/1 ∈ S−1X, then 1/1 ∈ S−1I
and so there exists a ∈ I and s ∈ S such that 1/1 = a/s and so there exists t ∈ S such that
1 ∧ s ∧ t = 1 ∧ a ∧ t. Hence, s ∧ t = a ∧ t. Since s ∧ t ∈ S and by Lemma 3.8, s ∧ t = a ∧ t ∈ I.
Hence s ∧ t ∈ S ∩ I = ∅, which is impossible. Therefore, S−1I is proper. ¤

Definition 3.10. [9] A proper ideal P of X is called prime if a ∧ b ∈ P implies a ∈ P or b ∈ P ,
for any a, b ∈ P .

Theorem 3.11. If J is an ideal of S−1X, then there exists an ideal I of X such that J = S−1I.
Moreover, if J is a prime ideal then I is a prime ideal, too, and I ∩ S = ∅.

Proof. Let J be an ideal of S−1X and I = {x ∈ X : x/1 ∈ J}. First, we show that I is an ideal
of X. Let x ∗ y ∈ I and y ∈ I. Then x/1 ? y/1 = (x ∗ y)/1 ∈ J and y/1 ∈ J . Since J is an ideal,
then x/1 ∈ J and so x ∈ I. Hence, I is an ideal of X. Now, let x/t ∈ J . Since t/1 ∈ S−1X then
by Lemma 3.8, x/t ∧ t/1 ∈ J . Since, by Lemma 3.7, x/t ∧ y/t = (x ∧ t)/t = x/1, then x/1 ∈ J
and so x ∈ I. Hence x/t ∈ S−1I. Therefore, J ⊆ S−1I. Now, let x/t ∈ S−1I. Hence there
exist a ∈ I and s ∈ S such that x/t = a/s. Since a/1 ∈ J and 1/s ∈ S−1X, then by Lemma
3.8, a/s = a/1 ∧ 1/s ∈ J and so x/t ∈ J . Hence, S−1I ⊆ J . Therefore, J = S−1J . Now, let
J be prime. Then J = S−1I is proper and so by Theorem 3.9, I ∩ S = ∅. Now, let x ∧ y ∈ I,
for x, y ∈ X. Then x/1 ∧ y/1 = (x ∧ y)/1 ∈ S−1I. Since S−1I is prime, then x/1 ∈ S−1I or
y/1 ∈ S−1I and so by definition of I, x ∈ I or y ∈ I. Hence, I is a prime ideal. ¤

Theorem 3.12. If P is a prime ideal of X such that P ∩ S = ∅, then S−1P is a prime ideal of
S−1X.

Proof. Since P is an ideal of S−1X, then by Theorem 3.9, S−1P is an ideal of S−1X. Now, first we
show that S−1P is proper. Let S−1P = S−1X, on the contrary. Since 1/1 ∈ S−1X = S−1P , then
there exist s ∈ S and p ∈ P such that 1/1 = p/s and so there exists t ∈ S such that t ∧ s = p ∧ t.
Since p ∧ t ≤ p ∈ P and P is an ideal, t ∧ s = p ∧ t ∈ P . Moreover, since t ∧ s ∈ S, then
t ∧ s ∈ P ∩ S = ∅, which is a contradiction. Hence, S−1P 6= S−1X. Now, let x/t ∧ y/s ∈ S−1P ,
for x/t, y/s ∈ S−1X. By Lemma 3.7, x/t ∧ y/s = (x ∧ y)/(t ∧ s). Hence, (x ∧ y)/(t ∧ s) ∈ S−1P
and so there exist q ∈ P and r ∈ S such that (x∧ y)/(t∧ s) = q/r and this means that there exists
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h ∈ S such that h ∧ r ∧ x ∧ y = h ∧ t ∧ s ∧ q. Since q ∈ P , h ∧ t ∧ s ∧ q ≤ q and P is an ideal, then
h∧ r∧x∧ y = h∧ t∧ s∧ q ∈ P . Now, since P is prime and h∧ r 6∈ P , then x∧ y ∈ P and so x ∈ P
or y ∈ P . Hence, x/t ∈ S−1P or y/s ∈ S−1P . Therefore, S−1P is a prime ideal of S−1X. ¤

Lemma 3.13. Let f : (X, ∗) −→ (S−1X, ?) be defined by f(x) = x/1. Then;
(i) f is a BCK-homomorphism( that is; f(0) = 0S−1(X) and f(x∗y) = f(x)?f(y) for any x, y ∈ X,
(ii) If I is an ideal of X, then Ie[(f(I)] = S−1I;
(iii) If J is an ideal of S−1X, then there exists an ideal I of X such that Jc[f−1(J)] = I and
J = S−1I.

Proof. (i) The proof is clear.
(ii) Since f(I) = {x/1 : x ∈ I} ⊆ S−1I and by Theorem 3.9, S−1I is an ideal of S−1X, then

Ie = [f(I)] ⊆ S−1I. Now, let x/s ∈ S−1I. Hence, there exists a ∈ I and t ∈ S such that x/s = a/t.
Since t ∧ a ≤ t, then by Lemma 3.4(i),

(a ∗ t) ∧ t = t ∧ (a ∗ t) = (t ∧ a) ∗ (t ∧ t) = (t ∧ a) ∧ t = 0

and so by Corollary 3.3(iii), (a ∗ t)/t = 0S−1X . Now, by Lemma 3.4(ii) and since a/1 ∈ f(I), then

x/s ? a/1 = a/t ? a/1 = ((a ∧ 1) ∗ (a ∧ t))/(t ∧ 1) = (a ∗ (a ∧ t))/t = (a ∗ t)/t = 0S−1X

Hence, x/s ∈ (f(I)] = Ie and so S−1I ⊆ Ie. Therefore, S−1I = Ie.
(iii) Let J be an ideal of S−1X. Let I = {x ∈ X : x/1 ∈ J}. Then by Theorem 3.11, I is an

ideal of X, J = S−1I and I = {x ∈ X : f(x) ∈ J} = f−1(J) = Jc. ¤

Theorem 3.14. Let Spec(X) be the set of all prime ideals of X, A = {P ∈ Spec(X)|P ∩ S = ∅}
and B = {J |J ∈ Spec(S−1X)}. Then A ∼= B.

Proof. Let ϕ : A −→ B be defined by ϕ(P ) = P e and ψ : B −→ A be defined by ψ(J) = Jc.
By Theorems 3.11 and 3.12 and Lemma 3.13, ϕ and ψ are well-defined. Now, let P ∈ A. By
Lemma 3.13(ii), P e = S−1P and (S−1P )c = P . Hence, P ec = P . Moreover, if J ∈ B, then by
Theorem 3.9 and Lemma 3.13, J = S−1P such that Jc = P . Hence, Jce = pe = S−1P = J . Thus,
ϕ ◦ ψ(J) = φ(Jc) = Jce = J and ψ ◦ ϕ(P ) = ψ(P e) = P ec = P . Therefore, A ∼= B. ¤

4. BCK-modules of fractions

Definition 4.1. [1] Let (X, ∗, 0) be a BCK-algebra, (M, +) be an Abelian group and · : X×M −→
M with (x,m) −→ x · m be an operation such that:
(i) (x ∧ y) · m = x · (y · m),
(ii) x · (m1 + m2) = x · m1 + x · m2,
(iii) 0 · m = 0.
for all x, y ∈ X and m,m1, m2 ∈ M , where x ∧ y = y ∗ (y ∗ x). Then M is called a left X-module.
Similarly, we can define a right X-module.

Note. If X is a commutative BCK-algebra, then the notions of a left X-module and a right
X-module quinsied and so, for simplicity, we use of X-module instead of the left X-module. It is
clear that in any left X-module M , s · (−m) = −(s · m), for any s ∈ S and m ∈ M .

Proposition 4.2. Let (X, ∗, 0) be bounded implicative algebra, if the operation + : X × X −→ X
is defined as follows:

x + y = (x ∗ y) ∨ (y ∗ x)
then M = (X, +) is an Abelian group and M is an X-module. Infact, X is an X-module on itself.

Proof. First, we prove that (X, +) is an Abelian group.

(i) Associative law:
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Let x, y, z ∈ X. First we prove the following identity:

(1) x ∧ (Ny ∨ z) ∧ (y ∨ Nz) = (x ∧ Ny ∧ Nz) ∨ (x ∧ z ∧ y)

For this, by Theorems 2.5 and 2.6, we have:

x ∧ (Ny ∨ z) ∧ (y ∨ Nz) = [(x ∧ Ny) ∨ (x ∧ z)] ∧ (y ∨ Nz)
= (y ∨ Nz) ∧ [(x ∧ Ny) ∨ (x ∧ z)]
= [(y ∨ Nz) ∧ (x ∧ Ny)] ∨ [(y ∨ Nz) ∧ (x ∧ z)]
= [(x ∧ Ny) ∧ (y ∨ Nz)] ∨ [(x ∧ z) ∧ (y ∨ Nz)]
= [(x ∧ Ny ∧ y) ∨ (x ∧ Ny ∧ Nz)] ∨ [(x ∧ z ∧ y) ∨ (x ∧ z ∧ Nz)]
= [(x ∧ 0) ∨ (x ∧ Ny ∧ Nz)] ∨ [(x ∧ z ∧ y) ∨ (x ∧ 0)]
= [0 ∨ (x ∧ Ny ∧ Nz)] ∨ [(x ∧ z ∧ y) ∨ 0]
= (x ∧ Ny ∧ Nz) ∨ (x ∧ z ∧ y)

Hence we have (1). Moreover, we should prove the following identity:

(2) (x ∧ y) ∨ (Nx ∧ Ny) = (Nx ∨ y) ∧ (Ny ∨ x)

For this, by Theorems 2.5 and 2.6, we have:

(x ∧ y) ∨ (Nx ∧ Ny) = [(x ∧ y) ∨ Nx] ∧ [(x ∧ y) ∨ Ny]
= [Nx ∨ (x ∧ y)] ∧ [Ny ∨ (x ∧ y)]
= [(Nx ∨ x) ∧ (Nx ∨ y)] ∧ [(Ny ∨ x) ∧ (Ny ∨ y)]
= [1 ∧ (Nx ∨ y)] ∧ [(Ny ∨ x) ∧ 1]
= (Nx ∨ y) ∧ (Ny ∨ x)

Hence we have (2).
Now, by Theorem 2.6,(i),(ii) and (vi) we have:

x + (y + z) = x + [(y ∗ z) ∨ (z ∗ y)]
= (x ∗ [(y ∗ z) ∨ (z ∗ y)]) ∨ ([(y ∗ z) ∨ (z ∗ y)] ∗ x)
= [x ∧ N [(y ∧ Nz) ∨ (z ∧ Ny)]] ∨ [[(y ∧ Nz) ∨ (z ∧ Ny)] ∧ Nx]
= [x ∧ [N(y ∧ Nz) ∧ N(z ∧ Ny)]] ∨ [Nx ∧ [(y ∧ Nz) ∨ (z ∧ Ny)]]
= [x ∧ [(Ny ∨ z) ∧ (y ∨ Nz)]] ∨ [[Nx ∧ (y ∧ Nz)] ∨ (Nx ∧ (Ny ∧ z))]
= [x ∧ Ny ∧ Nz] ∨ [x ∧ y ∧ z] ∨ [Nx ∧ y ∧ Nz] ∨ [Nx ∧ Ny ∧ z] , (by (1))
= [x ∧ Ny ∧ Nz] ∨ [Nx ∧ y ∧ Nz] ∨ [x ∧ y ∧ z] ∨ [Nx ∧ Ny ∧ z]
= [[(x ∧ Ny) ∨ (Nx ∧ y)] ∧ Nz] ∨ [[(x ∧ y) ∨ (Nx ∧ Ny)] ∧ z]
= [[(x ∗ y) ∨ (y ∗ x)] ∧ Nz] ∨ [[(Nx ∨ y) ∧ (Ny ∨ x)] ∧ z] , (by (2))
= [[(x ∗ y) ∨ (y ∗ x) ∧ Nz] ∨ [N [(x ∧ Ny) ∨ (y ∧ Nx)] ∧ z]
= [[(x ∗ y) ∨ (y ∗ x)] ∧ Nz] ∨ [N [(x ∗ y) ∨ (y ∗ x)] ∧ z]
= [[(x ∗ y) ∨ (y ∗ x)] ∗ z] ∨ [z ∗ [(x ∗ y) ∨ (y ∗ x)]]
= (x + y) + z.

Therefore, we have the associative law.
(ii) Identity element: Let x ∈ X. Then, by Theorem 2.6,

x + 0 = (x ∗ 0) ∨ (0 ∗ x) = x ∨ 0 = N(Nx ∧ N0) = N(Nx ∧ 1) = NNx = x
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(iii) Inverse element: Let x ∈ X. We claim that x is an inverse of x, since

x + x = (x ∗ x) ∨ (x ∗ x) = 0 ∨ 0 = 0

(iv) Abelian law: Let x, y ∈ X. Then

x + y = (x ∗ y) ∨ (y ∗ x) = (y ∗ x) ∨ (x ∗ y) = y + x

Hence M = (X, +) is an Abelian group.
Now, we show that M is an X- module. For this we define the operation · : X × M −→ M by

x · m = x ∧ m. Hence:

(i) : (x ∧ y) · m = (x ∧ y) ∧ m = x ∧ (y ∧ m) = x ∧ (y · m) = x · (y · m)

(ii) : x · (m1 + m2) = x ∧ (m1 + m2)
= x ∧ [(m1 ∗ m2) ∨ (m2 ∗ m1)]
= x ∧ [(m1 ∧ Nm2) ∨ (m2 ∧ Nm1)]
= [x ∧ (m1 ∧ Nm2)] ∨ [x ∧ (m2 ∧ Nm1)]
= [(x ∧ m1) ∧ Nm2] ∨ [(x ∧ m2) ∧ Nm1]
= [0 ∨ ((x ∧ m1) ∧ Nm2)] ∨ [0 ∨ ((x ∧ m2) ∧ Nm1)]
= [(x ∧ Nx ∧ m1) ∨ ((x ∧ m1) ∧ Nm2)] ∨ [(x ∧ Nx ∧ m2) ∨ ((x ∧ m2) ∧ Nm1)]
= [[(x ∧ m1) ∧ Nx] ∨ [(x ∧ m1) ∧ Nm2]] ∨ [[(x ∧ m2) ∧ Nx] ∨ [(x ∧ m2) ∧ Nm1]]
= [(x ∧ m1) ∧ (Nx ∨ Nm2)] ∨ [(x ∧ m2) ∧ (Nx ∨ Nm1)]
= [(x ∧ m1) ∧ N(x ∧ m2)] ∨ [(x ∧ m2) ∧ N(x ∧ m1)]
= [(x ∧ m1) ∗ (x ∧ m2)] ∨ [(x ∧ m2) ∗ (x ∧ m1)]
= (x ∧ m1) + (x ∧ m2)
= x · m1 + x · m2.

(iii)
0 · m = 0 ∧ m = 0 ∧ m = m ∗ (m ∗ 0) = m ∗ m = 0

for any m ∈ M .
Therefore, M is an X-module. ¤

Lemma 4.3. Let M be an X-module and the relation “ ∼ ” on M × S be defined by:

(m, s) ∼ (m′, s′) ⇐⇒ ∃t ∈ S s.t, t · (s′ · m − s · m′) = 0

Then “ ∼ ” is an equivalence relation.

Proof. The proof is straightforward. ¤

Notation. From now on, for each element (m, s) ∈ M × S, the class [(m, s)] will be denoted
by m/s and the set M × S/ ∼ will be denoted by S−1M . Hence we have S−1M = {m/s : m ∈
M, s ∈ S}.

Theorem 4.4. Let M be a X-module and the operation “ ⊕ ” on S−1M be defined by:

m/s ⊕ m′/s′ = (s′ · m + s · m′)/(s ∧ s′).

Then (S−1M,⊕) is an Abelian group.

Proof. First we prove that the operation “ ⊕ ” is well-defined. Let m1/s1,m2/s2, m
′
1/s′1,m

′
2/s′2 ∈

S−1M such that m1/s1 = m2/s2 and m′
1/s′1 = m′

2/s′2. Then, there exist t, t′ ∈ S such that

t · (s2 · m1 − s1 · m2) = 0 , t′ · (s′2 · m′
1 − s′1 · m′

2) = 0
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and so
(t ∧ s2) · m1 = (t ∧ s1) · m2 , (t′ ∧ s′2) · m′

1 = (t′ ∧ s′1) · m′
2

Hence, we get that;

(t′ ∧ s′2 ∧ s′1) · ((t ∧ s2) · m1) = (t′ ∧ s′2 ∧ s′1) · ((t ∧ s1) · m2)

and
(t ∧ s2 ∧ s1) · ((t′ ∧ s′2) · m′

1) = (t ∧ s2 ∧ s1) · ((t′ ∧ s′1) · m′
2)

Hence;
[(t′ ∧ s′2 ∧ s′1) ∧ (t ∧ s2)] · m1 = [(t′ ∧ s′2 ∧ s′1) ∧ (t ∧ s1)] · m2 , (1)

and
[(t ∧ s2 ∧ s1) ∧ (t′ ∧ s′2)] · m′

1 = [(t ∧ s2 ∧ s1) ∧ (t′ ∧ s′1)] · m′
2 , (2)

Now, by (1) and (2), we have

(t∧t′∧s′1∧s′2∧s2) ·m1 +(t∧t′∧s1∧s′2∧s2) ·m′
1 = (t∧t′∧s1∧s′1∧s′2) ·m2 +(t∧t′∧s2∧s1∧s′1) ·m′

2

and so
(t ∧ t′ ∧ s′2 ∧ s2) · (s′1 · m1 + s1 · m′

1) = (t ∧ t′ ∧ s1 ∧ s′1) · (s′2 · m2 + s2 · m′
2)

and this implies that

(t ∧ t′) · [(s′2 ∧ s2) · (s′1 · m1 + s1 · m′
1)] = (t ∧ t′) · [(s1 ∧ s′1) · (s′2 · m2 + s2 · m′

2)]

Hence, the definition of “∼”, we have

(s′1 · m1 + s1 · m′
1)/(s1 ∧ s′1) = (s′2 · m2 + s2 · m′

2)/(s2 ∧ s′2)

and this means that “⊕” is well-defined. Now, the proof of group properties are easy by some
modifications. ¤

Theorem 4.5. Let M be a X-module and the operation ◦ : S−1X × S−1M −→ S−1M be defined
by x/s ◦ m/t = (x · m)/(s ∧ t). Then S−1M is an S−1X-module.

Proof. First we show that “◦” is well defined. Let x1/s1, x2/s2 ∈ S−1X and m1/t1,m2/t2 ∈ S−1M
such that x1/s1 = x2/s2 and m1/t1 = m2/t2. Then, there exist s, t ∈ S, such that

s ∧ s2 ∧ x1 = s ∧ s1 ∧ x2 , t · (t2 · m1 − t1 · m2) = 0 , (1)

By definition of a BCK-module and (1), t · (t2 ·m1) = t · (t1 ·m2) and so (t∧ t2) ·m1 = (t∧ t1) ·m2.
Hence, by (1) we have

(s ∧ s2 ∧ x1) · ((t ∧ t2) · m1) = (s ∧ s1 ∧ x2) · ((t ∧ t1) · m2)

and so
(s ∧ s2 ∧ x1 ∧ t ∧ t2) · m1 = (s ∧ s1 ∧ x2 ∧ t ∧ t1) · m2

Hence, by the definition of BCK-module,

((s ∧ t) ∧ (s2 ∧ t2)) · (x1 · m1) = ((s ∧ t) ∧ (s1 ∧ t1)) · (x2 · m2)

and so
(s ∧ t) · ((s2 ∧ t2) · (x1 · m1)) = (s ∧ t) · ((s1 ∧ t1) · (x2 · m2))

and this implies that
(x1 · m1)/(s1 ∧ t1) = (x2 · m2)/(s2 ∧ t2)

Therefore, the operation “◦” is well-defined.
Now, we should prove the axioms of a BCK-module.
(i) (x/t∧̇y/s) ◦ m/l = x/t ◦ (y/s ◦ m/l):
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For this, first we prove the following identity.

(x/t∧̇y/s) = y/s ? (y/s ? x/t), (since S−1X is commutative )
= y/s ? [((y ∧ t) ∗ (x ∧ s))/(s ∧ t)]
= [(s ∧ t ∧ y) ∗ (s ∧ ((y ∧ t) ∗ (x ∧ s)))]/(s ∧ t)
= [(s ∧ t ∧ y) ∗ ((s ∧ y ∧ t) ∗ (x ∧ s))]/(s ∧ t), (by Lemma 3.4)
= [(x ∧ s) ∧ (s ∧ t ∧ y)]/(s ∧ t) (by definition of ∧ in X)
= [(s ∧ t) ∧ (x ∧ y)]/(s ∧ t)
= (x ∧ y)/(s ∧ t) (by Lemma 3.7(i))

Now, by the above identity, we have:

(x/t∧̇y/s) ◦ m/l = [(x ∧ y)/(s ∧ t)] ◦ m/l

= ((x ∧ y) · m)/(s ∧ t ∧ l)
= (x · (y · m))/(s ∧ t ∧ l)
= x/s ◦ ((y · m)/(t ∧ l))
= x/s ◦ (y/t ◦ m/l)

(ii) x/s ◦ (m1/t1 ⊕ m2/t2) = (x/s ◦ m1/t1) ⊕ (x/s ◦ m2/t2):

x/s ◦ (m1/t1 ⊕ m2/t2) = x/s ◦ [(t2 · m1 + t1 · m2)/(t1 ∧ t2)]
= [x · (t2 · m1 + t1 · m2)/(s ∧ t1 ∧ t2)]]
= [x · (t2 · m1) + x · (t1 · m2)]/(s ∧ t1 ∧ t2)
= ((x ∧ t2) · m1)/(s ∧ t1 ∧ t2) ⊕ ((x ∧ t1) · m2)/(s ∧ t1 ∧ t2)
= (x · m1)/(s ∧ t1) ⊕ (x · m2)/(s ∧ t2))
= (x/s ◦ m1/t1) ⊕ (x/s ◦ m2/t2)

(iii) 0S−1X ◦ m/t = 0S−1M :

0S−1X ◦ m/t = 0/t ◦ m/t = (0 · m)/(t ∧ t) = 0/t = 0S−1M

Therefore, S−1M is a S−1X-module. ¤
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