A NOTE ON f-DERIVATIONS OF SUBTRACTION ALGEBRAS

KYUNG HO KIM

Received June 29, 2010

Abstract

In this paper, we introduced the concept of f-derivation which is a generalization of derivation in subtraction algebra, and some related properties are investigated.

1. Introduction

B. M. Schein [2] considered systems of the form $(\Phi ; \circ, \backslash)$, where Φ is a set of functions closed under the composition "०" of functions (and hence ($\Phi ; \circ$) is a function semigroup) and the set theoretic subtraction " " (and hence $(\Phi ; \backslash)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [4] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we introduced the concept of f-derivation which is a generalization of derivation in subtraction algebra, and some related properties are investigated.

2. Preliminaries.

We first recall some basic concepts which are used to present the paper.
By a subtraction algebra we mean an algebra ($X ;-$) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,
(S1) $x-(y-x)=x$;
(S2) $x-(x-y)=y-(y-x)$;
(S3) $(x-y)-z=(x-z)-y$.
The last identity permits us to omit parentheses in expressions of the form $(x-y)-z$. The subtraction determines an order relation on $X: a \leq b \Leftrightarrow a-b=0$, where $0=a-a$ is an element that does not depend on the choice of $a \in X$. The ordered set $(X ; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval $[0, a]$ is a Boolean algebra with respect to the induced order. Here $a \wedge b=a-(a-b)$; the complement of an element $b \in[0, a]$ is $a-b$; and if $b, c \in[0, a]$, then

$$
\begin{aligned}
b \vee c & =\left(b^{\prime} \wedge c^{\prime}\right)^{\prime}=a-((a-b) \wedge(a-c)) \\
& =a-((a-b)-((a-b)-(a-c))) .
\end{aligned}
$$

In a subtraction algebra, the following are true:
(p1) $(x-y)-y=x-y$.
(p2) $x-0=x$ and $0-x=0$.
(p3) $(x-y)-x=0$.
(p4) $x-(x-y) \leq y$.
(p5) $(x-y)-(y-x)=x-y$.

[^0](p6) $x-(x-(x-y))=x-y$.
(p7) $(x-y)-(z-y) \leq x-z$.
(p8) $x \leq y$ if and only if $x=y-w$ for some $w \in X$.
(p9) $x \leq y$ implies $x-z \leq y-z$ and $z-y \leq z-x$ for all $z \in X$.
(p10) $x, y \leq z$ implies $x-y=x \wedge(z-y)$.
(p11) $(x \wedge y)-(x \wedge z) \leq x \wedge(y-z)$.
(p12) $(x-y)-z=(x-z)-(y-z)$.
A mapping d from a subtraction algebra X to a subtraction algebra Y is called a morphism if $d(x-y)=d(x)-d(y)$ for all $x, y \in X$. A self map d of a subtraction algebra X which is a morphism is called an endomorphism.
Lemma 2.1 Let X be a subtraction algebra. Then the following properties hold:
(1) $x \wedge y=y \wedge x$, for every $x, y \in X$.
(2) $x-y \leq x$ for all $x, y \in X$.

Lemma 2.2 Every subtraction algebra X satisfies the following property.

$$
(x-y)-(x-z) \leq z-y
$$

for all $x, y, z \in X$.
Proof. Using (S3) and (p 7), we have

$$
\begin{aligned}
((x-y)-(x-z))-(z-y) & =((x-(x-z))-y)-(z-y) \\
& \leq(x-(x-z))-z \\
& (x-z)-(x-z)=0
\end{aligned}
$$

for all $x, y, z \in X$.
Definition 2.3 Let X be a subtraction algebra and Y a non-empty set of X. Then Y is called a subalgebra if $x-y \in Y$ whenever $x, y \in Y$.

3. f-derivations of subtraction algebras.

Definition 3.1. ([3]) Let X be a subtraction algebra. By a derivation of X, a self-map d of X satisfying the identity $d(x-y)=(d(x)-y) \wedge(x-d(y))$ for all $x, y \in X$ is meant.
Example 3.2. Let $X=\{0, a, b\}$ be a subtraction algebra with the following Cayley table

-	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}0 & \text { if } x=0, b \\ b & \text { if } x=a\end{cases}
$$

Then it is easily checked that d is a derivation of subtraction algebra X.
Definition 3.3 Let X be a subtraction algebra. A function $d: X \rightarrow X$ is called an f-derivation on X if there exists a function $f: X \rightarrow X$ such that

$$
d(x-y)=(d(x)-f(y)) \wedge(f(x)-d(y))
$$

for all $x, y \in X$.
Example 3.4. Let $X=\{0,1,2,3\}$ in which "-" is defined by

-	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

It is easy to check that $(X ;-)$ is a subtraction algebra. Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}0 & \text { if } x=0,3 \\ 1 & \text { if } x=2 \\ 2 & \text { if } x=1\end{cases}
$$

and define a map $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0,2 \\ 2 & \text { if } x=1,3\end{cases}
$$

Figure 1. Hesse diagram of Example 3.4
Then it is easily checked that d is an f-derivation of a subtraction algebra X.
Example 3.5. Let $X=\{0, a, b\}$ be a subtraction algebra with the following Cayley table

$$
\begin{array}{c|ccc}
- & 0 & a & b \\
\hline 0 & 0 & 0 & 0 \\
a & a & 0 & a \\
b & b & b & 0
\end{array}
$$

Define a map $d: X \rightarrow X$ by

$$
d(x)= \begin{cases}0 & \text { if } x=0, a \\ b & \text { if } x=b\end{cases}
$$

and define a map $f: X \rightarrow X$ by $f: X \rightarrow X$ by

$$
f(x)= \begin{cases}0 & \text { if } x=0, a \\ b & \text { if } x=b\end{cases}
$$

Then it is easily checked that d is an f-derivation of subtraction algebra X.

Example 3.6. In Example 3.4, f-derivation d is not a derivation of X since $2=d(1)=$ $d(1-2) \neq(d(1)-2) \wedge(1-d(2))=(2-2) \wedge(1-1)=0 \wedge 0=0$.

Proposition 3.7. Let X be a subtraction algebra and d an f-derivation. Then the following identities hold:
(1) $d(x) \leq f(x)$ for all $x, y \in X$,
(2) $d(x-y) \leq f(x)$ for all $x, y \in X$.

Proof. (1). Since $x-0=x$, we get

$$
\begin{aligned}
d(x) & =d(x-0)=(d(x)-f(0)) \wedge(f(x)-d(0)) \\
& =(f(x)-d(0)) \wedge(d(x)-f(0)) \\
& \leq f(x)-d(0) \leq f(x)
\end{aligned}
$$

from (p4) and Lemma 2.1 (2).
(2). By definition of f-derivation, we have

$$
\begin{aligned}
d(x-y) & =(d(x)-f(y)) \wedge(f(x)-d(y)) \\
& \leq f(x)-d(y) \\
& \leq f(x)
\end{aligned}
$$

for all $x, y \in X$.
Proposition 3.8. Let X be a subtraction algebra and d an f-derivation. Then $d(0)=0$.
Proof. By definition of f-derivation, we have

$$
\begin{aligned}
d(0) & =d(0-0)=(d(0)-f(0)) \wedge(f(0)-d(0)) \\
& =(d(0)-f(0))-((d(0)-f(0))-(f(0)-d(0))) \\
& =(d(0)-f(0))-(d(0)-f(0))=0
\end{aligned}
$$

from (p 5).
Proposition 3.9. Let X be a subtraction algebra and d an f-derivation. Then the following identities hold:
(1) $d(x-y) \leq d(x)-d(y)$ for all $x, y \in X$,
(2) $d(x)-f(y) \leq f(x)-d(y)$ for all $x, y \in X$.

Proof. (1) By definition of f-derivation and Proposition 3.7 (1), we have $d(x-y) \leq$ $d(x)-f(y) \leq d(x)-d(y)$ for all $x, y \in X$.
(2) Since $d(x) \leq f(x)$ for all $x \in X$, we have $d(x)-f(y) \leq f(x)-f(y) \leq f(x)-d(y)$.

Theorem 3.10. Let X be a subtraction algebra. If d is an f-derivation of $X, d(x-y)=$ $d(x)-f(y)$ for all $x, y \in X$.
Proof. Suppose that d is an f-derivation of X. Then for any $x, y \in X$, we have $d(x)-f(y) \leq$ $f(x)-d(y)$ by Proposition 3.9 (2) and

$$
d(x-y)=(d(x)-f(y)) \wedge(f(x)-d(y))=d(x)-f(y)
$$

Definition 3.11. Let X be a subtraction algebra and d a derivation on X. If $x \leq y$ implies $d(x) \leq d(y), d$ is called an isotone derivation.
Theorem 3.12. Let d be an f-derivation of X. Then d is an isotone derivation.
Proof. Let $x \leq y$ for all $x, y \in X$. Then by (p8), $x=y-w$ for some $w \in X$. Hence we have

$$
d(x)=d(y-w)=(d(y)-f(w)) \wedge(f(y)-d(w)) \leq d(y)-f(w) \leq d(y)
$$

by Lemma 2.3 (2).
Let d be a f-derivation of X. Define a set by

$$
F:=\{x \mid d(x)=f(x)\}
$$

for all $x \in X$.
Proposition 3.13. Let d be an f-derivation and f an endomorphism. Then F is a subalgebra of X.
Proof. Let $x, y \in F$. Then we get $d(x)=f(x)$ and $d(y)=f(y)$, and so $d(x-y)=$ $d(x)-f(y) \wedge f(x)-d(y)=f(x)-f(y) \wedge f(x)-f(y)=f(x)-f(y)=f(x-y)$. Hence $x-y \in F$. This completes the proof.
Theorem 3.14. Let d be an f-derivation and f an increasing endomorphism. If $x \leq y$ and $y \in F$, then we have $x \in F$.
Proof. Let $x \leq y$ and $y \in F$. Then we obtain $f(x) \leq f(y)$ and $f(y)=d(y)$, and so we have

$$
\begin{aligned}
d(x) & =d(x \wedge y)=d(x-(x-y))=d(y-(y-x)) \\
& =d(y)-f(y-x)=d(y)-(f(y)-f(x)) \quad(\text { by Theorem 3.10) } \\
& =f(y)-(f(y)-f(x))=f(x)-(f(x)-f(y)) \\
& =f(x)-0=f(x)
\end{aligned}
$$

This completes the proof.
Definition 3.15. Let X be a subtraction algebra and d an f-derivation. Define a $K e r d$ by

$$
\text { Kerd }=\{x \in X \mid d(x)=0\} .
$$

Proposition 3.16. Let X be a subtraction algebra and d an f-derivation. Then $K e r d$ is a subalgebra of X.

Proof. Let $x, y \in \operatorname{Kerd}$. Then $d(x)=d(y)=0$, and so $d(x-y) \leq d(x)-d(y)=0-0=0$ by Proposition 3.9 (1). Thus $d(x-y)=0$ that is, $x-y \in$ Kerd. Hence Kerd is a subalgebra of X.
Proposition 3.17. Let X be a subtraction algebra and d an f-derivation. If $x \in K e r d$ and $y \in X$, then $x \wedge y \in K e r d$.
Proof. Let $x \in \operatorname{Kerd}$. Then we get $d(x)=0$, and so

$$
\begin{aligned}
d(x \wedge y) & =d(x-(x-y))=d(x)-f(x-y) \\
& =0-f(x-y) \\
& =0
\end{aligned}
$$

This completes the proof.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.
[2] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153-2169.
[3] K. H. Kim and Y. H. Yon, On derivations of subtraction algebras, (to be submitted)
[4] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445-447.
Department of Mathematics, Chunguu National University, Chungbuk, Chunguu 380-702, KoREA

E-mail address: ghkim@cjnu.ac.kr

[^0]: 2000 Mathematics Subject Classification. 16Y99; 20N20.
 Key words and phrases. Subtraction algebra, derivation, f-ferivation, isotone derivation.

