A NOTE ON *f*-DERIVATIONS OF SUBTRACTION ALGEBRAS

KYUNG HO KIM

Received June 29, 2010

ABSTRACT. In this paper, we introduced the concept of f-derivation which is a generalization of derivation in subtraction algebra, and some related properties are investigated.

1. INTRODUCTION

B. M. Schein [2] considered systems of the form $(\Phi; \circ, \backslash)$, where Φ is a set of functions closed under the composition " \circ " of functions (and hence $(\Phi; \circ)$ is a function semigroup) and the set theoretic subtraction "\" (and hence $(\Phi; \setminus)$ is a subtraction algebra in the sense of [1]). He proved that every subtraction semigroup is isomorphic to a difference semigroup of invertible functions. B. Zelinka [4] discussed a problem proposed by B. M. Schein concerning the structure of multiplication in a subtraction semigroup. He solved the problem for subtraction algebras of a special type, called the atomic subtraction algebras. In this paper, we introduced the concept of f-derivation which is a generalization of derivation in subtraction algebra, and some related properties are investigated.

2. Preliminaries.

We first recall some basic concepts which are used to present the paper.

By a subtraction algebra we mean an algebra (X; -) with a single binary operation "-" that satisfies the following identities: for any $x, y, z \in X$,

- (S1) x (y x) = x;
- (S2) x (x y) = y (y x);(S3) (x y) z = (x z) y.

The last identity permits us to omit parentheses in expressions of the form (x - y) - z. The subtraction determines an order relation on X: $a \le b \Leftrightarrow a - b = 0$, where 0 = a - ais an element that does not depend on the choice of $a \in X$. The ordered set $(X; \leq)$ is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced order. Here $a \wedge b = a - (a - b)$; the complement of an element $b \in [0, a]$ is a - b; and if $b, c \in [0, a]$, then

$$b \lor c = (b' \land c')' = a - ((a - b) \land (a - c))$$

= $a - ((a - b) - ((a - b) - (a - c))).$

In a subtraction algebra, the following are true:

- (p1) (x y) y = x y. (p2) x - 0 = x and 0 - x = 0. (p3) (x - y) - x = 0.(p4) $x - (x - y) \le y$.
- (p5) (x-y) (y-x) = x y.

2000 Mathematics Subject Classification. 16Y99; 20N20.

Key words and phrases. Subtraction algebra, derivation, f-ferivation, isotone derivation.

KYUNG HO KIM

(p6) x - (x - (x - y)) = x - y. (p7) $(x - y) - (z - y) \le x - z$. (p8) $x \le y$ if and only if x = y - w for some $w \in X$. (p9) $x \le y$ implies $x - z \le y - z$ and $z - y \le z - x$ for all $z \in X$. (p10) $x, y \le z$ implies $x - y = x \land (z - y)$. (p11) $(x \land y) - (x \land z) \le x \land (y - z)$. (p12) (x - y) - z = (x - z) - (y - z).

A mapping d from a subtraction algebra X to a subtraction algebra Y is called a *morphism* if d(x - y) = d(x) - d(y) for all $x, y \in X$. A self map d of a subtraction algebra X which is a morphism is called an *endomorphism*.

Lemma 2.1 Let X be a subtraction algebra. Then the following properties hold:

- (1) $x \wedge y = y \wedge x$, for every $x, y \in X$.
- (2) $x y \le x$ for all $x, y \in X$.

Lemma 2.2 Every subtraction algebra X satisfies the following property.

$$(x-y) - (x-z) \le z - y$$

for all $x, y, z \in X$.

Proof. Using (S3) and (p7), we have

$$\begin{aligned} ((x-y) - (x-z)) - (z-y) &= ((x - (x-z)) - y) - (z-y) \\ &\leq (x - (x-z)) - z \\ &(x-z) - (x-z) = 0 \end{aligned}$$

for all $x, y, z \in X$.

Definition 2.3 Let X be a subtraction algebra and Y a non-empty set of X. Then Y is called a *subalgebra* if $x - y \in Y$ whenever $x, y \in Y$.

3. f-derivations of subtraction algebras.

Definition 3.1. ([3]) Let X be a subtraction algebra. By a *derivation* of X, a self-map d of X satisfying the identity $d(x - y) = (d(x) - y) \land (x - d(y))$ for all $x, y \in X$ is meant.

Example 3.2. Let $X = \{0, a, b\}$ be a subtraction algebra with the following Cayley table

—	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, b \\ b & \text{if } x = a \end{cases}$$

Then it is easily checked that d is a derivation of subtraction algebra X.

Definition 3.3 Let X be a subtraction algebra. A function $d : X \to X$ is called an f-derivation on X if there exists a function $f : X \to X$ such that

$$d(x-y) = (d(x) - f(y)) \land (f(x) - d(y))$$

for all $x, y \in X$.

Example 3.4. Let $X = \{0, 1, 2, 3\}$ in which "-" is defined by

466

_	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

It is easy to check that (X; -) is a subtraction algebra. Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, 3\\ 1 & \text{if } x = 2\\ 2 & \text{if } x = 1 \end{cases}$$

and define a map $f:X\to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, 2\\ 2 & \text{if } x = 1, 3 \end{cases}$$

FIGURE 1. Hesse diagram of Example 3.4

Then it is easily checked that d is an f-derivation of a subtraction algebra X. Example 3.5. Let $X = \{0, a, b\}$ be a subtraction algebra with the following Cayley table

$$\begin{array}{c|cccccc} - & 0 & a & b \\ \hline 0 & 0 & 0 & 0 \\ a & a & 0 & a \\ b & b & b & 0 \end{array}$$

Define a map $d: X \to X$ by

$$d(x) = \begin{cases} 0 & \text{if } x = 0, a \\ b & \text{if } x = b \end{cases}$$

and define a map $f:X\to X$ by $f:X\to X$ by

$$f(x) = \begin{cases} 0 & \text{if } x = 0, a \\ b & \text{if } x = b \end{cases}$$

Then it is easily checked that d is an f-derivation of subtraction algebra X.

Example 3.6. In Example 3.4, *f*-derivation *d* is not a derivation of *X* since $2 = d(1) = d(1-2) \neq (d(1)-2) \land (1-d(2)) = (2-2) \land (1-1) = 0 \land 0 = 0.$

Proposition 3.7. Let X be a subtraction algebra and d an f-derivation. Then the following identities hold:

(1) $d(x) \le f(x)$ for all $x, y \in X$, (2) $d(x-y) \le f(x)$ for all $x, y \in X$.

Proof. (1). Since x - 0 = x, we get

$$d(x) = d(x - 0) = (d(x) - f(0)) \land (f(x) - d(0))$$

= $(f(x) - d(0)) \land (d(x) - f(0))$
 $\leq f(x) - d(0) \leq f(x)$

from (p4) and Lemma 2.1 (2).

(2). By definition of f-derivation, we have

$$d(x - y) = (d(x) - f(y)) \land (f(x) - d(y))$$
$$\leq f(x) - d(y)$$
$$\leq f(x)$$

for all $x, y \in X$.

Proposition 3.8. Let X be a subtraction algebra and d an f-derivation. Then d(0) = 0. Proof. By definition of f-derivation, we have

$$\begin{aligned} d(0) &= d(0-0) = (d(0) - f(0)) \land (f(0) - d(0)) \\ &= (d(0) - f(0)) - ((d(0) - f(0)) - (f(0) - d(0))) \\ &= (d(0) - f(0)) - (d(0) - f(0)) = 0 \end{aligned}$$

from (p5).

Proposition 3.9. Let X be a subtraction algebra and d an f-derivation. Then the following identities hold:

(1) $d(x-y) \le d(x) - d(y)$ for all $x, y \in X$, (2) $d(x) - f(y) \le f(x) - d(y)$ for all $x, y \in X$.

Proof. (1) By definition of f-derivation and Proposition 3.7 (1), we have $d(x - y) \leq d(x) - f(y) \leq d(x) - d(y)$ for all $x, y \in X$.

(2) Since $d(x) \le f(x)$ for all $x \in X$, we have $d(x) - f(y) \le f(x) - f(y) \le f(x) - d(y)$.

Theorem 3.10. Let X be a subtraction algebra. If d is an f-derivation of X, d(x - y) = d(x) - f(y) for all $x, y \in X$.

Proof. Suppose that d is an f-derivation of X. Then for any $x, y \in X$, we have $d(x) - f(y) \le f(x) - d(y)$ by Proposition 3.9 (2) and

$$d(x - y) = (d(x) - f(y)) \land (f(x) - d(y)) = d(x) - f(y).$$

Definition 3.11. Let X be a subtraction algebra and d a derivation on X. If $x \le y$ implies $d(x) \le d(y)$, d is called an *isotone derivation*.

Theorem 3.12. Let d be an f-derivation of X. Then d is an isotone derivation.

Proof. Let $x \leq y$ for all $x, y \in X$. Then by (p8), x = y - w for some $w \in X$. Hence we have

$$d(x) = d(y - w) = (d(y) - f(w)) \land (f(y) - d(w)) \le d(y) - f(w) \le d(y)$$

by Lemma 2.3 (2).

Let d be a f-derivation of X. Define a set by

$$F := \{ x \mid d(x) = f(x) \}$$

468

for all $x \in X$.

Proposition 3.13. Let d be an f-derivation and f an endomorphism. Then F is a subalgebra of X.

Proof. Let $x, y \in F$. Then we get d(x) = f(x) and d(y) = f(y), and so $d(x - y) = d(x) - f(y) \wedge f(x) - d(y) = f(x) - f(y) \wedge f(x) - f(y) = f(x) - f(y) = f(x - y)$. Hence $x - y \in F$. This completes the proof.

Theorem 3.14. Let d be an f-derivation and f an increasing endomorphism. If $x \leq y$ and $y \in F$, then we have $x \in F$.

Proof. Let $x \le y$ and $y \in F$. Then we obtain $f(x) \le f(y)$ and f(y) = d(y), and so we have $d(x) = d(x \land y) = d(x - (x - y)) = d(y - (y - x))$

$$\begin{aligned} u(x) &= u(x + y) = u(x - (x - y)) = u(y - (y - x)) \\ &= d(y) - f(y - x) = d(y) - (f(y) - f(x)) \quad \text{(by Theorem 3.10)} \\ &= f(y) - (f(y) - f(x)) = f(x) - (f(x) - f(y)) \\ &= f(x) - 0 = f(x). \end{aligned}$$

This completes the proof.

Definition 3.15. Let X be a subtraction algebra and d an f-derivation. Define a Kerd by

$$Kerd = \{x \in X \mid d(x) = 0\}.$$

Proposition 3.16. Let X be a subtraction algebra and d an f-derivation. Then Kerd is a subalgebra of X.

Proof. Let $x, y \in Kerd$. Then d(x) = d(y) = 0, and so $d(x-y) \leq d(x) - d(y) = 0 - 0 = 0$ by Proposition 3.9 (1). Thus d(x-y) = 0 that is, $x - y \in Kerd$. Hence Kerd is a subalgebra of X.

Proposition 3.17. Let X be a subtraction algebra and d an f-derivation. If $x \in Kerd$ and $y \in X$, then $x \wedge y \in Kerd$.

Proof. Let $x \in Kerd$. Then we get d(x) = 0, and so

$$d(x \wedge y) = d(x - (x - y)) = d(x) - f(x - y)$$

= 0 - f(x - y)
= 0.

This completes the proof.

References

[1] J. C. Abbott, Sets, Lattices and Boolean Algebras, Allyn and Bacon, Boston 1969.

[2] B. M. Schein, Difference Semigroups, Comm. in Algebra 20 (1992), 2153–2169.

[3] K. H. Kim and Y. H. Yon, On derivations of subtraction algebras, (to be submitted)

[4] B. Zelinka, Subtraction Semigroups, Math. Bohemica, 120 (1995), 445–447.

DEPARTMENT OF MATHEMATICS, CHUNGJU NATIONAL UNIVERSITY, CHUNGBUK, CHUNGJU 380-702, KOREA

E-mail address: ghkim@cjnu.ac.kr