A GENERALIZED PÓLYA-SZEGÖ INEQUALITY FOR THE HADAMARD PRODUCT

Yuki Seo

Received May 23, 2010; revised August 15, 2010

Abstract. In this paper, we show a generalized Pólya-Szegö inequality for the Hadamard product: Let A and B be $k \times k$-positive definite matrices such that $m I \leq$ $A, B \leq M I$ for some scalars $0<m<M$. Then

$$
\sqrt{\left(A^{2} x, x\right)\left(B^{2} x, x\right)} \leq k \cdot \frac{M^{2}+m^{2}}{2 M m}(A \circ B x, x)
$$

for every vector x, where I is the identity matrix and the symbol \circ is the Hadamard product.

1 Introduction. Let $\mathbb{M}_{k}=\mathbb{M}_{k}(\mathbb{C})$ denote the space of $k \times k$ complex matrices. For a pair A, B of Hermitian matrices the order relation $A \geq B$ means as usual that $A-B$ is positive semidefinite. In particular, $A>0$ means that A is positive definite. For $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$, their Hadamard product is the $k \times k$ matrix of entrywise products

$$
A \circ B=\left(a_{i j} b_{i j}\right)
$$

It is commutative unlike the usual matrix product:

$$
A \circ B=B \circ A
$$

The diagonal matrix formed a matrix A can be obtained by Hadamard multiplication with the identity matrix $A \circ I$. As Styan pointed out in [7], the most widely used and possibly most important result concerning the Hadamard product is as follows:

Theorem A (Shur). If A_{i} is positive defnite $(i=1,2, \cdots, n)$, then so is $A_{1} \circ A_{2} \circ \cdots \circ A_{n}$.
It is likely that many matrix inequalities for the Hadamard product is based on this fact. For example, Ando [1] showed the following Cauchy-Schwarz inequality for the Hadamard product: If A_{i} is positive definite $(i=1,2, \cdots, n, n \geq 2)$, then

$$
\begin{equation*}
A_{1} \circ A_{2} \circ \cdots \circ A_{n} \leq\left(A_{1}^{n} \circ I\right)^{\frac{1}{n}}\left(A_{2}^{n} \circ I\right)^{\frac{1}{n}} \cdots\left(A_{n}^{n} \circ I\right)^{\frac{1}{n}} \tag{1.1}
\end{equation*}
$$

In fact, in the case of $n=2$, if A and B are diagonal matrices, then we have the CauchySchwarz inequality:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i} b_{i} \leq \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}} \tag{1.2}
\end{equation*}
$$

2000 Mathematics Subject Classification. 15A45, 15B48 and 47A63 .
Key words and phrases. Positive definite matrix, Hadamard product, Specht ratio, Pólya-Szegö inequality, Cauchy-Schwarz inequality.

In [4], Pólya-Szegö showed a reverse of Cauchy-Schwarz inequality (1.2): If the real numbers a_{i} and $b_{i}(i=1,2, \cdots, n)$ satisfies the condition

$$
\begin{equation*}
0<m \leq a_{i}, b_{i} \leq M \quad \text { for } i=1, \cdots, n \tag{1.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\sqrt{\sum_{i=1}^{n} a_{i}^{2}} \sqrt{\sum_{i=1}^{n} b_{i}^{2}} \leq \frac{M^{2}+m^{2}}{2 M m} \sum_{i=1}^{n} a_{i} b_{i} \tag{1.4}
\end{equation*}
$$

In [2], Grueb-Rheinboldt pointed out that the Pólya-Szegö inequality is a direct specialization of the following inequality which is equivalent to the Kantorovich inequality: If $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}(i=1,2, \cdots)$ are two sequences of real numbers with the condition (1.3) and $\left\{\xi_{i}\right\}$ denotes another sequence with $\sum_{i=1}^{\infty} \xi_{i}^{2}<\infty$, then

$$
\begin{equation*}
\sqrt{\sum_{i=1}^{\infty} a_{i}^{2} \xi_{i}^{2}} \sqrt{\sum_{i=1}^{\infty} b_{i}^{2} \xi_{i}^{2}} \leq \frac{M^{2}+m^{2}}{2 M m} \sum_{i=1}^{\infty} a_{i} b_{i} \xi_{i}^{2} \tag{1.5}
\end{equation*}
$$

From this viewpoint, Grueb-Rheinboldt showed a generalized form of the inequality (1.5), which is called a generalized Pólya-Szegö inequality: Let A and B be commuting positive definite matrices such that $m I \leq A, B \leq M I$ for some scalars $0<m<M$. Then

$$
\begin{equation*}
\sqrt{\left(A^{2} x, x\right)\left(B^{2} x, x\right)} \leq \frac{M^{2}+m^{2}}{2 M m}(A B x, x) \tag{1.6}
\end{equation*}
$$

for every vector x.
In this paper, we show a generalized Pólya-Szegö inequality for the Hadamard product and a reverse inequality of n-variables of the Cauchy-Schwarz one (1.1) due to Ando.

2 Hadamard product version The tensor product $\mathbb{M}_{k} \otimes \cdots \otimes \mathbb{M}_{k}$ of n copies of \mathbb{M}_{k} is identified with $\mathbb{M}_{k^{n}}$ in a natural way. It has been known that the Hadamard product is a principal square submarix of the tensor product. This fact is formulated as follows:

Lemma 1. For each positive integer n there is a normalized positive linear map Φ_{n} from the open cone of positive definite matirces in $\mathbb{M}_{k^{n}}$ to ones in \mathbb{M}_{k} that satisfies

$$
\Phi_{n}\left(A_{1} \otimes \cdots \otimes A_{n}\right)=A_{1} \circ \cdots \circ A_{n} \quad \text { for all } A_{i} \in \mathbb{M}_{k} \text { and } i=1, \cdots, n
$$

To prove our main results, we need the following well-known two lemmas. We give a proof for convenience.

Lemma $2([3,6])$. If A is a positive definite matrix in \mathbb{M}_{k}, then $A \circ I \geq \frac{1}{k} A$.
Proof. Let P be the matrix with all entries 1 . We define a linear map by $\Phi_{X}(A)=A \circ X$ for a fixed X. Then it follows that Φ_{X} is positive if and only if X is positive semidefinite. If we put $X=I-\lambda P$, then we have the desired inequality since $\frac{1}{k}=\max \{\lambda: I-\lambda P \geq 0\}$.

Lemma 3. Let A and B be commuting positive definite matrices such that $m I \leq A, B \leq$ $M I$ for some scalars $0<m<M$. Then

$$
\frac{A^{2}+B^{2}}{2} \leq \frac{M^{2}+m^{2}}{2 M m} A B
$$

Proof. Put $C=A^{-1} B$ and it follows that C is positive definite and $\frac{m}{M} I \leq C \leq \frac{M}{m} I$. Then $\left(\frac{M}{m} I-C\right)\left(C-\frac{m}{M} I\right) \geq 0$ implies

$$
\frac{I+C^{2}}{2} \leq \frac{M^{2}+m^{2}}{2 M m} C
$$

and hence we have $\frac{A^{2}+B^{2}}{2} \leq \frac{M^{2}+m^{2}}{2 M m} A B$.
We show a generalized Pólya-Szegö inequality for the Hadamard product.
Theorem 4. Let A and B be $k \times k$-positive definite matrices in \mathbb{M}_{k} such that $m I \leq A, B \leq$ $M I$ for some scalars $0<m<M$. Then

$$
\sqrt{\left(A^{2} x, x\right)\left(B^{2} x, x\right)} \leq k \cdot \frac{M^{2}+m^{2}}{2 M m}(A \circ B x, x)
$$

for every vector x.
Proof. Since $A \otimes I$ and $I \otimes B$ are commutative and $m I \otimes I \leq A \otimes I, I \otimes B \leq M I \otimes I$, it follows from Lemma 3 that

$$
\frac{(A \otimes I)^{2}+(I \otimes B)^{2}}{2} \leq \frac{M^{2}+m^{2}}{2 M m}(A \otimes I)(I \otimes B)=\frac{M^{2}+m^{2}}{2 M m}(A \otimes B)
$$

From Lemma 1 we have

$$
\frac{A^{2} \circ I+I \circ B^{2}}{2} \leq \frac{M^{2}+m^{2}}{2 M m} A \circ B
$$

Therefore, by the arithmetic-geometric mean inequality and Lemma 2 we have

$$
\begin{aligned}
\sqrt{\left(A^{2} x, x\right)\left(B^{2} x, x\right)} & \leq \frac{1}{2}\left(\left(A^{2} x, x\right)+\left(B^{2} x, x\right)\right) \leq \frac{k}{2}\left(\left(\left(A^{2} \circ I\right) x, x\right)+\left(\left(B^{2} \circ I\right) x, x\right)\right) \\
& =k\left(\left(\frac{A^{2} \circ I+B^{2} \circ I}{2}\right) x, x\right) \\
& \leq k \cdot \frac{M^{2}+m^{2}}{2 M m}(A \circ B x, x)
\end{aligned}
$$

for every vector x.

Remark 5. The inequality $\sqrt{\left(A^{2} x, x\right)\left(B^{2} x, x\right)} \leq \frac{M^{2}+m^{2}}{2 M m}(A \circ B x, x)$ does not hold in general. In fact, put

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \quad, \quad B=\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad x=\binom{1}{1}
$$

and $I \leq A, B \leq 3 I$. Then we have $\sqrt{\left(A^{2} x, x\right)\left(B^{2} x, x\right)}=6 \sqrt{5}=13.4164$. On the other hand, we have $\frac{M^{2}+m^{2}}{2 M m}(A \circ B x, x)=\frac{5}{3} \cdot 8=13.33 \cdots$. Therefore,

$$
\sqrt{\left(A^{2} x, x\right)\left(B^{2} x, x\right)} \not \leq \frac{M^{2}+m^{2}}{2 M m}(A \circ B x, x) .
$$

$3 n$-variables version We recall the Specht ratio: As a reverse of the arithmeticgeometric mean inequality, Specht [5] estimated the ratio of the arithmetic mean to the geometric one: For $x_{1}, \cdots, x_{n} \in[m, M]$ with $0<m<M$,

$$
\begin{equation*}
\frac{x_{1}+\cdots+x_{n}}{n} \leq S(h) \sqrt[n]{x_{1} \cdots x_{n}} \tag{3.1}
\end{equation*}
$$

where $h=\frac{M}{m}$ and $\mathrm{S}(\mathrm{h})$ is defined for $h \geq 1$ as

$$
\begin{equation*}
S(h)=\frac{(h-1) h^{\frac{1}{h-1}}}{e \log h} \quad(h>1) \quad \text { and } \quad S(1)=1 \tag{3.2}
\end{equation*}
$$

The following lemma is regarded as a reverse of the arithmetic-geometric mean inequality for the Hadamard product:
Lemma 6. Let A_{i} be positive definite matrices in \mathbb{M}_{k} such that $m I \leq A_{i} \leq M I$ for some scalars $0<m<M$ and $i=1,2, \cdots, n, n \geq 2$. Put $h=\frac{M}{m}$. Then

$$
\frac{1}{n}\left(A_{1} \circ I+\cdots+A_{n} \circ I\right) \leq S(h)\left(A_{1}^{\frac{1}{n}} \circ \cdots \circ A_{n}^{\frac{1}{n}}\right) .
$$

Proof. Since $A_{1} \otimes I \otimes \cdots \otimes I, \cdots, I \otimes \cdots \otimes I \otimes A_{n}$ are mutually commutative and the spectrum is contained in $[m, M]$, by the Specht theorem (3.1) it follows that

$$
\begin{aligned}
& \frac{1}{n}\left(A_{1} \otimes I \otimes \cdots \otimes I+\cdots+I \otimes \cdots \otimes I \otimes A_{n}\right) \\
& \leq S(h) \sqrt[n]{\left(A_{1} \otimes I \otimes \cdots \otimes I\right) \cdots\left(I \otimes \cdots \otimes I \otimes A_{n}\right)} \\
& =S(h)\left(A_{1} \otimes \cdots \otimes A_{n}\right)^{\frac{1}{n}}=S(h)\left(A_{1}^{\frac{1}{n}} \otimes \cdots \otimes A_{n}^{\frac{1}{n}}\right)
\end{aligned}
$$

and hence from Lemma 1

$$
\frac{1}{n}\left(A_{1} \circ I \circ \cdots \circ I+\cdots I \circ \cdots \circ I \circ A_{n}\right) \leq S(h)\left(A_{1}^{\frac{1}{n}} \circ \cdots \circ A_{n}^{\frac{1}{n}}\right) .
$$

Therefore, we have

$$
\frac{1}{n}\left(A_{1} \circ I+\cdots+A_{n} \circ I\right) \leq S(h)\left(A_{1}^{\frac{1}{n}} \circ \cdots \circ A_{n}^{\frac{1}{n}}\right) .
$$

Now, we show n-variables version of Theorem 4:
Theorem 7. Let A_{i} be positive definite matrices in \mathbb{M}_{k} such that $m I \leq A_{i} \leq M I$ for some scalars $0<m<M$ and for $i=1,2, \cdots, n, n \geq 2$. Put $h=\frac{M}{m}$. Then

$$
\sqrt[n]{\left(A_{1}^{n} x, x\right)\left(A_{2}^{n} x, x\right) \cdots\left(A_{n}^{n} x, x\right)} \leq k \cdot S\left(h^{n}\right)\left(A_{1} \circ A_{2} \circ \cdots \circ A_{n} x, x\right)
$$

for every vector x, where the Specht ratio $S(h)$ is defined by (3.2).
Proof. By Lemma 2 and Lemma 6, it follows that

$$
\begin{aligned}
\sqrt[n]{\left(A_{1}^{n} x, x\right) \cdots\left(A_{n}^{n} x, x\right)} & \leq \frac{1}{n}\left(\left(A_{1}^{n} x, x\right)+\cdots+\left(A_{n}^{n} x, x\right)\right) \\
& \leq \frac{k}{n}\left(\left(A_{1}^{n} \circ I\right) x, x\right)+\cdots+\left(\left(A_{n}^{n} \circ I\right) x, x\right) \\
& =k\left(\frac{1}{n}\left(A_{1}^{n} \circ I+\cdots+A_{n}^{n} \circ I\right) x, x\right) \\
& \leq k \cdot S\left(h^{n}\right)\left(A_{1} \circ \cdots \circ A_{n} x, x\right)
\end{aligned}
$$

for every vector x.

Remark 8. In the case of $n=2$, Theorem 4 is more precise estimates than Theorem 7. In fact, Yamazaki [8] pointed out that

$$
\frac{M^{2}+m^{2}}{2 M m}=\frac{h^{2}+1}{2 h} \leq S\left(h^{2}\right) \quad \text { for } h=\frac{M}{m}
$$

Finally, we show an n-variables Pólya-Szegö type inequality for the Cauchy-Schwarz one (1.1) for the Hadamard product due to Ando:

Theorem 9. Let A_{i} be positive definite matrices in \mathbb{M}_{k} such that $m I \leq A_{i} \leq M I$ for some scalars $0<m<M$ and for $i=1,2, \cdots, n, n \geq 2$. Put $h=\frac{M}{m}$. Then

$$
\left(A_{1}^{n} \circ I\right)^{\frac{1}{n}} \cdots\left(A_{n}^{n} \circ I\right)^{\frac{1}{n}} \leq S\left(h^{n}\right)\left(A_{1} \circ \cdots \circ A_{n}\right)
$$

where the Specht ratio $S(h)$ is defined by (3.2).
Proof. By the arithmetic-geometric mean inequality and Lemma 6, it follows that

$$
\begin{aligned}
& \sqrt[n]{\left(A_{1} \circ I\right) \cdots\left(A_{n} \circ I\right)} \leq \frac{1}{n}\left(A_{1} \circ I+\cdots+A_{n} \circ I\right) \\
& \leq S(h)\left(A_{1}^{\frac{1}{n}} \circ \cdots \circ A_{n}^{\frac{1}{n}}\right)
\end{aligned}
$$

Replacing A_{i} by A_{i}^{n}, we have the desired inequality.

References

[1] T.Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203-241.
[2] W. Greub and W. Rheinboldt, On a generalization of an inequality of L.V.Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407-415.
[3] V.I.Paulsen, S.C.Powe and R.R.Smith, Schur products and matrix completions, J.Functional Anal., 85 (1989), 151-178.
[4] G.Pólya and G.Szegö, Aufgaben und Lehrsätze der Analysis, 1, Berlin, 1925.
[5] W. Specht, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
[6] D. Stojanoff, Index of Hadamard multiplication by positive matrices, Linear Algebra Appl., 290 (1999), 95-108.
[7] G.P.H.Styan, Hadamard Products and Multivariate Statistical Analysis, Linear Algebra Appl., 6 (1973), 217-240.
[8] T. Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias, Linear Alg. Appl., 416 (2006) 688-695.

Faculty of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minumaku, Saitama-City, Saitama 337-8570, Japan.
E-mail address: yukis@sic.shibaura-it.ac.jp

