A GENERALIZED PÓLYA-SZEGÖ INEQUALITY FOR THE HADAMARD PRODUCT

Yuki Seo

Received May 23, 2010; revised August 15, 2010

ABSTRACT. In this paper, we show a generalized Pólya-Szegö inequality for the Hadamard product: Let A and B be $k \times k$ -positive definite matrices such that $mI \leq A, B \leq MI$ for some scalars 0 < m < M. Then

$$\sqrt{(A^2x,x)(B^2x,x)} \le k \cdot \frac{M^2 + m^2}{2Mm} (A \circ B x, x)$$

for every vector x, where I is the identity matrix and the symbol \circ is the Hadamard product.

1 Introduction. Let $\mathbb{M}_k = \mathbb{M}_k(\mathbb{C})$ denote the space of $k \times k$ complex matrices. For a pair A, B of Hermitian matrices the order relation $A \geq B$ means as usual that A - B is positive semidefinite. In particular, A > 0 means that A is positive definite. For $A = (a_{ij})$ and $B = (b_{ij})$, their Hadamard product is the $k \times k$ matrix of entrywise products

$$A \circ B = (a_{ij}b_{ij}).$$

It is commutative unlike the usual matrix product:

$$A \circ B = B \circ A.$$

The diagonal matrix formed a matrix A can be obtained by Hadamard multiplication with the identity matrix $A \circ I$. As Styan pointed out in [7], the most widely used and possibly most important result concerning the Hadamard product is as follows:

Theorem A (Shur). If A_i is positive definite $(i = 1, 2, \dots, n)$, then so is $A_1 \circ A_2 \circ \dots \circ A_n$.

It is likely that many matrix inequalities for the Hadamard product is based on this fact. For example, Ando [1] showed the following Cauchy-Schwarz inequality for the Hadamard product: If A_i is positive definite $(i = 1, 2, \dots, n, n \ge 2)$, then

(1.1)
$$A_1 \circ A_2 \circ \cdots \circ A_n \le (A_1^n \circ I)^{\frac{1}{n}} (A_2^n \circ I)^{\frac{1}{n}} \cdots (A_n^n \circ I)^{\frac{1}{n}}.$$

In fact, in the case of n = 2, if A and B are diagonal matrices, then we have the Cauchy-Schwarz inequality:

(1.2)
$$\sum_{i=1}^{n} a_i b_i \le \sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2}.$$

 $^{2000\} Mathematics\ Subject\ Classification.$ $15A45,\ 15B48\ and\ 47A63$.

Key words and phrases. Positive definite matrix, Hadamard product, Specht ratio, Pólya-Szegö inequality, Cauchy-Schwarz inequality.

Y. SEO

In [4], Pólya-Szegö showed a reverse of Cauchy-Schwarz inequality (1.2): If the real numbers a_i and b_i $(i = 1, 2, \dots, n)$ satisfies the condition

(1.3)
$$0 < m \le a_i, b_i \le M \quad \text{for } i = 1, \cdots, n,$$

then

(1.4)
$$\sqrt{\sum_{i=1}^{n} a_i^2} \sqrt{\sum_{i=1}^{n} b_i^2} \le \frac{M^2 + m^2}{2Mm} \sum_{i=1}^{n} a_i b_i.$$

In [2], Grueb-Rheinboldt pointed out that the Pólya-Szegö inequality is a direct specialization of the following inequality which is equivalent to the Kantorovich inequality: If $\{a_i\}$ and $\{b_i\}$ $(i = 1, 2, \dots)$ are two sequences of real numbers with the condition (1.3) and $\{\xi_i\}$ denotes another sequence with $\sum_{i=1}^{\infty} \xi_i^2 < \infty$, then

(1.5)
$$\sqrt{\sum_{i=1}^{\infty} a_i^2 \xi_i^2} \sqrt{\sum_{i=1}^{\infty} b_i^2 \xi_i^2} \le \frac{M^2 + m^2}{2Mm} \sum_{i=1}^{\infty} a_i b_i \xi_i^2$$

From this viewpoint, Grueb-Rheinboldt showed a generalized form of the inequality (1.5), which is called a generalized Pólya-Szegö inequality: Let A and B be commuting positive definite matrices such that $mI \leq A, B \leq MI$ for some scalars 0 < m < M. Then

(1.6)
$$\sqrt{(A^2x, x)(B^2x, x)} \le \frac{M^2 + m^2}{2Mm}(ABx, x)$$

for every vector x.

In this paper, we show a generalized Pólya-Szegö inequality for the Hadamard product and a reverse inequality of n-variables of the Cauchy-Schwarz one (1.1) due to Ando.

2 Hadamard product version The tensor product $\mathbb{M}_k \otimes \cdots \otimes \mathbb{M}_k$ of *n* copies of \mathbb{M}_k is identified with \mathbb{M}_{k^n} in a natural way. It has been known that the Hadamard product is a principal square submarix of the tensor product. This fact is formulated as follows:

Lemma 1. For each positive integer n there is a normalized positive linear map Φ_n from the open cone of positive definite matirces in \mathbb{M}_{k^n} to ones in \mathbb{M}_k that satisfies

 $\Phi_n(A_1 \otimes \cdots \otimes A_n) = A_1 \circ \cdots \circ A_n \quad \text{for all } A_i \in \mathbb{M}_k \text{ and } i = 1, \cdots, n.$

To prove our main results, we need the following well-known two lemmas. We give a proof for convenience.

Lemma 2 ([3, 6]). If A is a positive definite matrix in \mathbb{M}_k , then $A \circ I \geq \frac{1}{k}A$.

Proof. Let P be the matrix with all entries 1. We define a linear map by $\Phi_X(A) = A \circ X$ for a fixed X. Then it follows that Φ_X is positive if and only if X is positive semidefinite. If we put $X = I - \lambda P$, then we have the desired inequality since $\frac{1}{k} = \max\{\lambda : I - \lambda P \ge 0\}$. \Box

Lemma 3. Let A and B be commuting positive definite matrices such that $mI \le A, B \le MI$ for some scalars 0 < m < M. Then

$$\frac{A^2+B^2}{2} \leq \frac{M^2+m^2}{2Mm}AB$$

Proof. Put $C = A^{-1}B$ and it follows that C is positive definite and $\frac{m}{M}I \leq C \leq \frac{M}{m}I$. Then $(\frac{M}{m}I - C)(C - \frac{m}{M}I) \geq 0$ implies

$$\frac{I+C^2}{2} \leq \frac{M^2+m^2}{2Mm}C$$

and hence we have $\frac{A^2+B^2}{2} \leq \frac{M^2+m^2}{2Mm}AB$.

We show a generalized Pólya-Szegö inequality for the Hadamard product.

Theorem 4. Let A and B be $k \times k$ -positive definite matrices in \mathbb{M}_k such that $mI \leq A, B \leq MI$ for some scalars 0 < m < M. Then

$$\sqrt{(A^2x,x)(B^2x,x)} \le k \cdot \frac{M^2 + m^2}{2Mm} (A \circ Bx, x)$$

for every vector x.

Proof. Since $A \otimes I$ and $I \otimes B$ are commutative and $mI \otimes I \leq A \otimes I, I \otimes B \leq MI \otimes I$, it follows from Lemma 3 that

$$\frac{(A\otimes I)^2 + (I\otimes B)^2}{2} \le \frac{M^2 + m^2}{2Mm} (A\otimes I)(I\otimes B) = \frac{M^2 + m^2}{2Mm} (A\otimes B).$$

From Lemma 1 we have

$$\frac{A^2 \circ I + I \circ B^2}{2} \le \frac{M^2 + m^2}{2Mm} A \circ B.$$

Therefore, by the arithmetic-geometric mean inequality and Lemma 2 we have

$$\begin{split} \sqrt{(A^2x,x)(B^2x,x)} &\leq \frac{1}{2}((A^2x,x) + (B^2x,x)) \leq \frac{k}{2}(((A^2 \circ I)x,x) + ((B^2 \circ I)x,x)) \\ &= k\left((\frac{A^2 \circ I + B^2 \circ I}{2})x,x\right) \\ &\leq k \cdot \frac{M^2 + m^2}{2Mm}(A \circ B \ x,x) \end{split}$$

for every vector x.

Remark 5. The inequality $\sqrt{(A^2x, x)(B^2x, x)} \leq \frac{M^2 + m^2}{2Mm}(A \circ B x, x)$ does not hold in general. In fact, put

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \quad , \quad B = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \qquad and \qquad x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

and $I \leq A, B \leq 3I$. Then we have $\sqrt{(A^2x, x)(B^2x, x)} = 6\sqrt{5} = 13.4164$. On the other hand, we have $\frac{M^2 + m^2}{2Mm}(A \circ B \ x, x) = \frac{5}{3} \cdot 8 = 13.33 \cdots$. Therefore,

$$\sqrt{(A^2x,x)(B^2x,x)} \not\leq \frac{M^2+m^2}{2Mm} (A \circ B \ x,x).$$

Y. SEO

3 *n*-variables version We recall the Specht ratio: As a reverse of the arithmeticgeometric mean inequality, Specht [5] estimated the ratio of the arithmetic mean to the geometric one: For $x_1, \dots, x_n \in [m, M]$ with 0 < m < M,

(3.1)
$$\frac{x_1 + \dots + x_n}{n} \le S(h) \sqrt[n]{x_1 \cdots x_n}$$

where $h = \frac{M}{m}$ and S(h) is defined for $h \ge 1$ as

(3.2)
$$S(h) = \frac{(h-1)h^{\frac{1}{h-1}}}{e \log h} \quad (h > 1) \quad \text{and} \quad S(1) = 1.$$

The following lemma is regarded as a reverse of the arithmetic-geometric mean inequality for the Hadamard product:

Lemma 6. Let A_i be positive definite matrices in \mathbb{M}_k such that $mI \leq A_i \leq MI$ for some scalars 0 < m < M and $i = 1, 2, \dots, n, n \geq 2$. Put $h = \frac{M}{m}$. Then

$$\frac{1}{n}(A_1 \circ I + \dots + A_n \circ I) \le S(h)(A_1^{\frac{1}{n}} \circ \dots \circ A_n^{\frac{1}{n}}).$$

Proof. Since $A_1 \otimes I \otimes \cdots \otimes I, \cdots, I \otimes \cdots \otimes I \otimes A_n$ are mutually commutative and the spectrum is contained in [m, M], by the Specht theorem (3.1) it follows that

$$\frac{1}{n}(A_1 \otimes I \otimes \cdots \otimes I + \cdots + I \otimes \cdots \otimes I \otimes A_n)$$

$$\leq S(h) \sqrt[n]{(A_1 \otimes I \otimes \cdots \otimes I) \cdots (I \otimes \cdots \otimes I \otimes A_n)}$$

$$= S(h)(A_1 \otimes \cdots \otimes A_n)^{\frac{1}{n}} = S(h)(A_1^{\frac{1}{n}} \otimes \cdots \otimes A_n^{\frac{1}{n}})$$

and hence from Lemma 1

$$\frac{1}{n}(A_1 \circ I \circ \cdots \circ I + \cdots I \circ \cdots \circ I \circ A_n) \le S(h)(A_1^{\frac{1}{n}} \circ \cdots \circ A_n^{\frac{1}{n}}).$$

Therefore, we have

$$\frac{1}{n}(A_1 \circ I + \dots + A_n \circ I) \le S(h)(A_1^{\frac{1}{n}} \circ \dots \circ A_n^{\frac{1}{n}}).$$

Now, we show n-variables version of Theorem 4:

Theorem 7. Let A_i be positive definite matrices in \mathbb{M}_k such that $mI \leq A_i \leq MI$ for some scalars 0 < m < M and for $i = 1, 2, \dots, n, n \geq 2$. Put $h = \frac{M}{m}$. Then

$$\sqrt[n]{(A_1^n x, x)(A_2^n x, x)\cdots(A_n^n x, x)} \le k \cdot S(h^n)(A_1 \circ A_2 \circ \cdots \circ A_n x, x)$$

for every vector x, where the Specht ratio S(h) is defined by (3.2). Proof. By Lemma 2 and Lemma 6, it follows that

$$\sqrt[n]{(A_1^n x, x) \cdots (A_n^n x, x)} \leq \frac{1}{n} ((A_1^n x, x) + \dots + (A_n^n x, x))$$
$$\leq \frac{k}{n} ((A_1^n \circ I)x, x) + \dots + ((A_n^n \circ I)x, x))$$
$$= k \left(\frac{1}{n} (A_1^n \circ I + \dots + A_n^n \circ I)x, x\right)$$
$$\leq k \cdot S(h^n) (A_1 \circ \dots \circ A_n x, x)$$

for every vector x.

Remark 8. In the case of n = 2, Theorem 4 is more precise estimates than Theorem 7. In fact, Yamazaki [8] pointed out that

$$\frac{M^2 + m^2}{2Mm} = \frac{h^2 + 1}{2h} \le S(h^2) \qquad \text{for } h = \frac{M}{m}.$$

Finally, we show an n-variables Pólya-Szegö type inequality for the Cauchy-Schwarz one (1.1) for the Hadamard product due to Ando:

Theorem 9. Let A_i be positive definite matrices in \mathbb{M}_k such that $mI \leq A_i \leq MI$ for some scalars 0 < m < M and for $i = 1, 2, \dots, n, n \geq 2$. Put $h = \frac{M}{m}$. Then

$$(A_1^n \circ I)^{\frac{1}{n}} \cdots (A_n^n \circ I)^{\frac{1}{n}} \le S(h^n)(A_1 \circ \cdots \circ A_n),$$

where the Specht ratio S(h) is defined by (3.2).

Proof. By the arithmetic-geometric mean inequality and Lemma 6, it follows that

$$\sqrt[n]{(A_1 \circ I) \cdots (A_n \circ I)} \leq \frac{1}{n} (A_1 \circ I + \dots + A_n \circ I)$$
$$\leq S(h) (A_1^{\frac{1}{n}} \circ \dots \circ A_n^{\frac{1}{n}}).$$

Replacing A_i by A_i^n , we have the desired inequality.

References

- T.Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra Appl., 26 (1979), 203–241.
- W. Greub and W. Rheinboldt, On a generalization of an inequality of L.V.Kantorovich, Proc. Amer. Math. Soc., 10 (1959), 407–415.
- [3] V.I.Paulsen, S.C.Powe and R.R.Smith, Schur products and matrix completions, J.Functional Anal., 85 (1989), 151–178.
- [4] G.Pólya and G.Szegö, Aufgaben und Lehrsätze der Analysis, 1, Berlin, 1925.
- [5] W. Specht, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91-98.
- [6] D. Stojanoff, Index of Hadamard multiplication by positive matrices, Linear Algebra Appl., 290 (1999), 95–108.
- [7] G.P.H.Styan, Hadamard Products and Multivariate Statistical Analysis, Linear Algebra Appl., 6 (1973), 217–240.
- [8] T. Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias, Linear Alg. Appl., 416 (2006) 688–695.

FACULTY OF ENGINEERING, SHIBAURA INSTITUTE OF TECHNOLOGY, 307 FUKASAKU, MINUMA-KU, SAITAMA-CITY, SAITAMA 337-8570, JAPAN. *E-mail address*: yukis@sic.shibaura-it.ac.jp