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Abstract. In this paper, we show a generalized Pólya-Szegö inequality for the
Hadamard product: Let A and B be k × k-positive definite matrices such that mI ≤
A, B ≤ MI for some scalars 0 < m < M . Then

�
(A2x, x)(B2x, x) ≤ k · M2 + m2

2Mm
(A ◦ B x, x)

for every vector x, where I is the identity matrix and the symbol ◦ is the Hadamard
product.

1 Introduction. Let Mk = Mk(C) denote the space of k × k complex matrices. For a
pair A,B of Hermitian matrices the order relation A ≥ B means as usual that A − B is
positive semidefinite. In particular, A > 0 means that A is positive definite. For A = (aij)
and B = (bij), their Hadamard product is the k × k matrix of entrywise products

A ◦ B = (aijbij) .

It is commutative unlike the usual matrix product:

A ◦ B = B ◦ A.

The diagonal matrix formed a matrix A can be obtained by Hadamard multiplication with
the identity matrix A ◦ I. As Styan pointed out in [7], the most widely used and possibly
most important result concerning the Hadamard product is as follows:

Theorem A (Shur). If Ai is positive defnite (i = 1, 2, · · · , n), then so is A1◦A2 ◦· · ·◦An.

It is likely that many matrix inequalities for the Hadamard product is based on this fact.
For example, Ando [1] showed the following Cauchy-Schwarz inequality for the Hadamard
product: If Ai is positive definite (i = 1, 2, · · · , n, n ≥ 2), then

A1 ◦ A2 ◦ · · · ◦ An ≤ (An
1 ◦ I)

1
n (An

2 ◦ I)
1
n · · · (An

n ◦ I)
1
n .(1.1)

In fact, in the case of n = 2, if A and B are diagonal matrices, then we have the Cauchy-
Schwarz inequality:

n∑
i=1

aibi ≤
√√√√ n∑

i=1

a2
i

√√√√ n∑
i=1

b2
i .(1.2)
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In [4], Pólya-Szegö showed a reverse of Cauchy-Schwarz inequality (1.2): If the real
numbers ai and bi (i = 1, 2, · · · , n) satisfies the condition

0 < m ≤ ai, bi ≤ M for i = 1, · · · , n,(1.3)

then √√√√ n∑
i=1

a2
i

√√√√ n∑
i=1

b2
i ≤ M2 + m2

2Mm

n∑
i=1

aibi.(1.4)

In [2], Grueb-Rheinboldt pointed out that the Pólya-Szegö inequality is a direct special-
ization of the following inequality which is equivalent to the Kantorovich inequality: If {ai}
and {bi} (i = 1, 2, · · · ) are two sequences of real numbers with the condition (1.3) and {ξi}
denotes another sequence with

∑∞
i=1 ξ2

i < ∞, then
√√√√ ∞∑

i=1

a2
i ξ

2
i

√√√√ ∞∑
i=1

b2
i ξ

2
i ≤ M2 + m2

2Mm

∞∑
i=1

aibiξ
2
i .(1.5)

From this viewpoint, Grueb-Rheinboldt showed a generalized form of the inequality (1.5),
which is called a generalized Pólya-Szegö inequality: Let A and B be commuting positive
definite matrices such that mI ≤ A,B ≤ MI for some scalars 0 < m < M . Then

√
(A2x, x)(B2x, x) ≤ M2 + m2

2Mm
(ABx,x)(1.6)

for every vector x.

In this paper, we show a generalized Pólya-Szegö inequality for the Hadamard product
and a reverse inequality of n-variables of the Cauchy-Schwarz one (1.1) due to Ando.

2 Hadamard product version The tensor product Mk ⊗ · · · ⊗Mk of n copies of Mk is
identified with Mkn in a natural way. It has been known that the Hadamard product is a
principal square submarix of the tensor product. This fact is formulated as follows:

Lemma 1. For each positive integer n there is a normalized positive linear map Φn from
the open cone of positive definite matirces in Mkn to ones in Mk that satisfies

Φn(A1 ⊗ · · · ⊗ An) = A1 ◦ · · · ◦ An for all Ai ∈ Mk and i = 1, · · · , n.

To prove our main results, we need the following well-known two lemmas. We give a
proof for convenience.

Lemma 2 ([3, 6]). If A is a positive definite matrix in Mk, then A ◦ I ≥ 1
kA.

Proof. Let P be the matrix with all entries 1. We define a linear map by ΦX(A) = A◦X for
a fixed X . Then it follows that ΦX is positive if and only if X is positive semidefinite. If we
put X = I − λP , then we have the desired inequality since 1

k = max{λ : I − λP ≥ 0}.
Lemma 3. Let A and B be commuting positive definite matrices such that mI ≤ A,B ≤
MI for some scalars 0 < m < M . Then

A2 + B2

2
≤ M2 + m2

2Mm
AB.
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Proof. Put C = A−1B and it follows that C is positive definite and m
M I ≤ C ≤ M

m I. Then
(M

m I − C)(C − m
M I) ≥ 0 implies

I + C2

2
≤ M2 + m2

2Mm
C

and hence we have A2+B2

2 ≤ M2+m2

2Mm AB.

We show a generalized Pólya-Szegö inequality for the Hadamard product.

Theorem 4. Let A and B be k×k-positive definite matrices in Mk such that mI ≤ A,B ≤
MI for some scalars 0 < m < M . Then

√
(A2x, x)(B2x, x) ≤ k · M2 + m2

2Mm
(A ◦ Bx, x)

for every vector x.

Proof. Since A ⊗ I and I ⊗ B are commutative and mI ⊗ I ≤ A ⊗ I, I ⊗ B ≤ MI ⊗ I, it
follows from Lemma 3 that

(A ⊗ I)2 + (I ⊗ B)2

2
≤ M2 + m2

2Mm
(A ⊗ I)(I ⊗ B) =

M2 + m2

2Mm
(A ⊗ B).

From Lemma 1 we have

A2 ◦ I + I ◦ B2

2
≤ M2 + m2

2Mm
A ◦ B.

Therefore, by the arithmetic-geometric mean inequality and Lemma 2 we have

√
(A2x, x)(B2x, x) ≤ 1

2
((A2x, x) + (B2x, x)) ≤ k

2
(((A2 ◦ I)x, x) + ((B2 ◦ I)x, x))

= k

(
(
A2 ◦ I + B2 ◦ I

2
)x, x

)

≤ k · M2 + m2

2Mm
(A ◦ B x, x)

for every vector x.

Remark 5. The inequality
√

(A2x, x)(B2x, x) ≤ M2+m2

2Mm (A ◦B x, x) does not hold in gen-
eral. In fact, put

A =
(

2 1
1 2

)
, B =

(
3 0
0 1

)
and x =

(
1
1

)

and I ≤ A,B ≤ 3I. Then we have
√

(A2x, x)(B2x, x) = 6
√

5 = 13.4164. On the other
hand, we have M2+m2

2Mm (A ◦ B x, x) = 5
3 · 8 = 13.33 · · · . Therefore,

√
(A2x, x)(B2x, x) �≤ M2 + m2

2Mm
(A ◦ B x, x).
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3 n-variables version We recall the Specht ratio: As a reverse of the arithmetic-
geometric mean inequality, Specht [5] estimated the ratio of the arithmetic mean to the
geometric one: For x1, · · · , xn ∈ [m, M ] with 0 < m < M ,

x1 + · · · + xn

n
≤ S(h) n

√
x1 · · ·xn(3.1)

where h = M
m and S(h) is defined for h ≥ 1 as

S(h) =
(h − 1)h

1
h−1

e log h
(h > 1) and S(1) = 1.(3.2)

The following lemma is regarded as a reverse of the arithmetic-geometric mean inequality
for the Hadamard product:

Lemma 6. Let Ai be positive definite matrices in Mk such that mI ≤ Ai ≤ MI for some
scalars 0 < m < M and i = 1, 2, · · · , n, n ≥ 2. Put h = M

m . Then

1
n

(A1 ◦ I + · · · + An ◦ I) ≤ S(h)(A
1
n
1 ◦ · · · ◦ A

1
n
n ).

Proof. Since A1 ⊗ I ⊗ · · · ⊗ I, · · · , I ⊗ · · · ⊗ I ⊗ An are mutually commutative and the
spectrum is contained in [m, M ], by the Specht theorem (3.1) it follows that

1
n

(A1 ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ An)

≤ S(h) n
√

(A1 ⊗ I ⊗ · · · ⊗ I) · · · (I ⊗ · · · ⊗ I ⊗ An)

= S(h)(A1 ⊗ · · · ⊗ An)
1
n = S(h)(A

1
n
1 ⊗ · · · ⊗ A

1
n
n )

and hence from Lemma 1
1
n

(A1 ◦ I ◦ · · · ◦ I + · · · I ◦ · · · ◦ I ◦ An) ≤ S(h)(A
1
n
1 ◦ · · · ◦ A

1
n
n ).

Therefore, we have
1
n

(A1 ◦ I + · · · + An ◦ I) ≤ S(h)(A
1
n
1 ◦ · · · ◦ A

1
n
n ).

Now, we show n-variables version of Theorem 4:

Theorem 7. Let Ai be positive definite matrices in Mk such that mI ≤ Ai ≤ MI for some
scalars 0 < m < M and for i = 1, 2, · · · , n, n ≥ 2. Put h = M

m . Then

n

√
(An

1 x, x)(An
2 x, x) · · · (An

nx, x) ≤ k · S(hn)(A1 ◦ A2 ◦ · · · ◦ An x, x)

for every vector x, where the Specht ratio S(h) is defined by (3.2).

Proof. By Lemma 2 and Lemma 6, it follows that

n

√
(An

1 x, x) · · · (An
nx, x) ≤ 1

n
((An

1 x, x) + · · · + (An
nx, x))

≤ k

n
((An

1 ◦ I)x, x) + · · · + ((An
n ◦ I)x, x)

= k

(
1
n

(An
1 ◦ I + · · · + An

n ◦ I)x, x

)

≤ k · S(hn)(A1 ◦ · · · ◦ Anx, x)

for every vector x.
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Remark 8. In the case of n = 2, Theorem 4 is more precise estimates than Theorem 7.
In fact, Yamazaki [8] pointed out that

M2 + m2

2Mm
=

h2 + 1
2h

≤ S(h2) for h = M
m .

Finally, we show an n-variables Pólya-Szegö type inequality for the Cauchy-Schwarz one
(1.1) for the Hadamard product due to Ando:

Theorem 9. Let Ai be positive definite matrices in Mk such that mI ≤ Ai ≤ MI for some
scalars 0 < m < M and for i = 1, 2, · · · , n, n ≥ 2. Put h = M

m . Then

(An
1 ◦ I)

1
n · · · (An

n ◦ I)
1
n ≤ S(hn)(A1 ◦ · · · ◦ An),

where the Specht ratio S(h) is defined by (3.2).

Proof. By the arithmetic-geometric mean inequality and Lemma 6, it follows that

n
√

(A1 ◦ I) · · · (An ◦ I) ≤ 1
n

(A1 ◦ I + · · · + An ◦ I)

≤ S(h)(A
1
n
1 ◦ · · · ◦ A

1
n
n ).

Replacing Ai by An
i , we have the desired inequality.
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