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Abstract. In this paper we introduce the concept of free ordered semigroups as
follows: If (X,≤X) is an ordered set, an ordered semigroup (F, .,≤F ) is said to be a free
ordered semigroup over (X,≤X), if there is an isotone mapping ε : (X,≤X) → (F,≤F )
satisfying the following ”universal” condition: for any ordered semigroup (S, ∗,≤S)
and any isotone mapping f : (X,≤X) → (S,≤S), there exists a unique homomorphism
ϕ : (F, .,≤F ) → (S, ∗,≤S) such that ϕ◦ε = f . Basing on the fact that the mapping ε is
reverse isotone, we find relationships between the mappings ε1 and ε2 which correspond
to free ordered semigroups ((F1, .,≤1), ε1) and ((F2, .,≤2), ε2).

1. Introduction and prerequisites

In the present paper we introduce the concept of free ordered semigroup over an ordered
set as follows: An ordered semigroup (F, .,≤F ) is called a free ordered semigroup over an
ordered set (X,≤X) if there exists an isotone mapping ε of (X,≤X) into (F,≤F ) satisfying
the ”universal” condition: for any ordered semigroup (S, ∗,≤S) and any isotone mapping
f : (X,≤X) → (S,≤S), there exists a unique homomorphism ϕ : (F, .,≤F ) → (S, ∗,≤S)
such that ϕ◦ε = f . Since the free ordered semigroup (F, .,≤F ) depends on the mapping ε, it
is convenient to use the notation ((F, .,≤F ), ε). We first prove that for every ordered set X
we can construct a free ordered semigroup over X. In fact, the set FX := {(x1, x2, ..., xn) |
n ∈ N and xi ∈ X, i = 1, 2, ..., n} is a free ordered semigroup over (X,≤X) unique up to
isomorphism (cf. [5, section 2.1]), the natural number n for the element u = (x1, x2, ..., xn),
denoted by l(u), is the length of u. In the following, we always use the notation FX

for the free ordered semigroup over the ordered set X. We denote by ” ∗ ”, ” ¹ ”, the
multiplication and the order on FX , respectively, the mapping ε in the above construction
being the mapping ε : (X,≤X) → (FX ,¹) | x → (x). We remark that the concept of
free ordered semigroups defined in this paper generalizes the concept of free semigroup
[1] as each free semigroup endowed with the equality relation is a free ordered semigroup.
One of the basic results of this paper is that if ((F, .,≤F ), ε) is a free ordered semigroup
over (X,≤X), then the mapping ε : (X,≤X) → (F,≤F ) is reverse isotone. Moreover, we
prove the following: If ((F1, .,≤1), ε1) and ((F2, ∗,≤2), ε2) are free ordered semigroups over
the ordered set (X,≤X), then there exists an isomorphism g : (F1, .,≤1) → (F2, ∗,≤2)
such that g ◦ ε1 = ε2. If ((F1, .,≤1), ε1) and ((F2, ∗,≤2), ε2) are free ordered semigroups
over the ordered sets (X,≤X) and (Y,≤Y ) respectively, and π : (X,≤X) → (Y,≤Y ) an
isotone, reverse isotone and onto mapping, then there exists an isomorphism g : (F1, .,≤1) →
(F2, ∗,≤2) such that g ◦ ε1 = ε2 ◦ π. If ((F1, .,≤1), ε1) and ((F2, ∗,≤2), ε2) are free ordered
semigroups over the ordered sets (X,≤X) and (Y,≤Y ) respectively, and ϕ : (F1, .,≤1) →
(F2, ∗,≤2) an isomorphism, then the mapping π : (X,≤X) → (Y,≤Y ) | x → y, where y ∈
Y such that (ϕ ◦ ε1)(x) = ε2(y) is an isomorphism as well. As a consequence, two free
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ordered semigroups over the ordered sets X and Y , respectively, are isomorphic if and only
if X and Y are so. So, exactly as in free semigroups, the free ordered semigroup over an
ordered set is unique, up to isomorphism. However, if we have two different orders on X,
then the free ordered semigroups over X are not isomorphic, in general.

If (S, .,≤S) and (T, ∗,≤T ) are two ordered semigroups, a mapping f : (S, .,≤S) →
(T, ∗,≤T ) is called isotone if a, b ∈ S such that a ≤S b implies f(a) ≤T f(b). It is called
reverse isotone if a, b ∈ S such that f(a) ≤T f(b) implies a ≤S b. The mapping f is
called a homomorphism if is isotone and satisfies the condition f(ab) = f(a) ∗ f(b) for each
a, b ∈ S. An onto reverse isotone homomorphism is called isomorphism. Recall that any
reverse isotone mapping is (1–1) [4]. We will also use the following well known

Lemma 1.1. Let (A,≤A), (B,≤B) be ordered sets, f an isotone mapping of (A,≤A) into
(B,≤B) and g a mapping of (B,≤B) into (A,≤A) such that f ◦ g = 1B. Then

(1) The mapping g is reverse isotone and
(2) The mapping f is onto.

2. Main results

Definition 2.1. Let (X,≤X) be an ordered set and (F, .,≤F ) an ordered semigroup.
Suppose there exists an isotone mapping ε : (X,≤X) → (F,≤F ) such that the following
”universal” condition is satisfied: for any ordered semigroup (S, ∗,≤S) and any isotone
mapping f : (X,≤X) → (S,≤S) there exists a unique homomorphism ϕ : (F, .,≤F ) →
(S, ∗,≤S) such that ϕ ◦ ε = f . Then we say that the ordered semigroup (F, .,≤F ) is a free
ordered semigroup over (X,≤X).

Construction 2.2. (cf. also [5; section 2.1]) For each ordered set (X,≤X), we can construct
a free ordered semigroup over (X,≤X). In fact, let (X,≤X) be an ordered set. We consider
the set

FX := {(x1, x2, ..., xn) | n ∈ N and xi ∈ X, i = 1, 2, ..., n}

with the operation and the order on FX defined by:

(x1, x2, ..., xn) ∗ (y1, y2, ..., ym) := (x1, x2, ..., xn, y1, y2, ..., ym)

(x1, x2, ..., xn) ¹ (y1, y2, ..., ym) ⇐⇒ n = m and xi ≤X yi ∀ i = 1, 2, ..., n.

Let now ε be the isotone mapping defined by ε : (X,≤X) → (FX ,¹) | x → (x).
Then the pair ((FX , ∗,¹), ε) is a free ordered semigroup over (X,≤X). In fact, if (S, .,≤S)
is an ordered semigroup and f : (X,≤X) → (S,≤S) an isotone mapping, then the mapping

ϕ : (FX , ∗,¹) → (S, .,≤S) | (x1, x2, ..., xn) → f(x1)f(x2).....f(xn)

is the unique homomorphism of (FX , ∗,¹) into (S, .,≤S) such that ϕ ◦ ε = f . 2

Remark 2.3. Using the technics of Construction 2.2, one can easily prove that the concept
of free ordered semigroups defined in this paper generalizes the concept of free semigroup
(without order). In fact, if (F, .) is a free semigroup over the alphabet X, ≤X := {(x, y) |
x = y} the equality relation on X, ≤F the equality relation on F defined by

(x1, x2, ..., xn) ≤F (y1, y2, ..., yn) ⇐⇒ n = m and xi = yi ∀ i = 1, 2, ..., n

and ε the isotone mapping of (X,≤X) into (F,≤F ) defined by ε(x) := (x), then the ”uni-
versal” condition of Definition 2.1 is satisfied, and the pair ((F, .,≤F ), ε) is a free ordered
semigroup over (X,≤X).
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Throughout the paper we denote by ((FX , ∗,¹), ε) or simply by FX the free ordered
semigroup considered in Construction 2.2. We use the same symbol FX for the free semi-
group (without order) over the alphabet X as well.

Theorem 2.4. Let (X,≤X) be an ordered set and ((F, .,≤F ), ε) a free ordered semigroup
over (X,≤X). Then the mapping

ε : (X,≤X) → (F,≤F )

is reverse isotone.

Proof. Let x, y ∈ X, ε(x) ≤F ε(y). Then x ≤X y. In fact: Suppose x 6≤X y. We consider
the sets:

A := {z ∈ X | x ≤X z}
B := {w ∈ X | y ≤X w}
C := A ∪ B.

Clearly, x ∈ A, y ∈ B, and y 6∈ A. Moreover, we have

X = C ∪ (X\C) = (A ∪ B) ∪ (X\C)
= A ∪ ((B\{y}) ∪ {y}) ∪ (X\C)
= (A ∪ (B\{y})) ∪ ((X\C) ∪ {y}).

(A ∪ (B\{y})) ∩ ((X\C) ∪ {y}) =
= (A ∩ (X\C)) ∪ (A ∩ {y}) ∪ ((B\{y}) ∩ (X\C)) ∪ ((B\{y}) ∩ {y})
= ∅ (since A,B ⊆ C, y 6∈ A).

Let (Z, +,≤) be the ordered semigroup of integers with the usual operation, order. We
consider the mapping:

f : (X,≤X) → (Z,≤) | z →
{

1 if z ∈ A ∪ (B\{y})
0 if z ∈ (X\C) ∪ {y}.

The mapping f is clearly well defined.

The mapping f is isotone: Let a, b ∈ X, a ≤X b. Then f(a) ≤ f(b). Indeed:

1. Let a ∈ A ∪ (B\{y}). Then f(a) := 1, a ∈ A or a ∈ B\{y}.
1.1. If a ∈ A, then x ≤X a. Since x ≤X a, a ≤X b, we have x ≤X b, then b ∈ A ⊆

A ∪ (B\{y}), and f(b) := 1, so f(a) ≤ f(b).
1.2. Let a ∈ B\{y}. Then a ∈ B, a 6= y. Since a ∈ B, we have y ≤X a. Since y ≤X a,

a ≤X b, we have y ≤X b, then b ∈ B. If b = y, then a ≤X b = y. Since a ≤X y, y ≤X a,
we have a = y which is impossible. Thus b 6= y. Since b ∈ B\{y} ⊆ A ∪ (B\{y}), we have
f(b) := 1, so f(a) ≤ f(b).

2. Let a ∈ (X\C) ∪ {y}. Then f(a) := 0. Since b ∈ X, we have f(b) ∈ {0, 1}, so 0 ≤ f(b),
and f(a) ≤ f(b).

Since ((F, .,≤F ), ε) is a free ordered semigroup over (X,≤X), (Z,+,≤) an ordered semi-
group and f : (X,≤X) ≤ (Z,≤) an isotone mapping, from the ”universal” condition, there
exists a (unique) homomorphism

ϕ : (F, .,≤F ) → (Z,+,≤)

such that ϕ ◦ ε = f . Since ε(x) ≤F ε(y) and ϕ is isotone, we obtain

f(x) = (ϕ ◦ ε)(x) = ϕ(ε(x)) ≤ ϕ(ε(y)) = (ϕ ◦ ε)(y) = f(y).
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Since x ∈ A ⊆ A ∪ (B\{y}), we have f(x) := 1. Since y ∈ (X\C) ∪ {y}, we have f(y) = 0.
We get a contradiction. 2

Proposition 2.5. Let ((F, .,≤F ), ε) be a free ordered semigroup over the ordered set (X,≤X

). Suppose
h : (F, .,≤F ) → (F, .,≤F )

is a homomorphism such that h ◦ ε = ε. Then h = 1F .

Proof. Since ((F, .,≤F ), ε) is a free ordered semigroup over (X,≤X), (F, .,≤F ) an ordered
semigroup and ε : (X,≤X) → (F,≤F ) an isotone mapping, from the ”universal” condition,
there exists a unique homomorphism ϕ : (F, .,≤F ) → (F, .,≤F ) such that ϕ ◦ ε = ε. Since
the mapping h and the identity mapping 1F on F are such homomorphisms, we have h = 1F .
2

Theorem 2.6. Let ((F1, .,≤1), ε1), ((F2, ∗,≤2), ε2) be free ordered semigroups over the
ordered set (X,≤X). Then there exists an isomorphism

g : (F1, .,≤1) → (F2, ∗,≤2)

such that g ◦ ε1 = ε2.

Proof. Since ((F1, .,≤1), ε1) is a free ordered semigroup over (X,≤X), (F2, ∗,≤2) an or-
dered semigroup and ε2 : (X,≤X) → (F2,≤2) an isotone mapping, there exists a homomor-
phism

g : (F1, .,≤1) → (F2, ∗,≤2)

such that g ◦ ε1 = ε2. In a similar way, there exists a homomorphism

f : (F2, ∗,≤2) → (F1, .,≤1)

such that f ◦ ε2 = ε1.
The mapping f ◦ g : (F1, .,≤1) → (F1, .,≤1) is a homomorphism (as f and g are so),

and
(f ◦ g) ◦ ε1 = f ◦ (g ◦ ε1) = f ◦ ε2 = ε1.

Since ((F1, .,≤1), ε1) is a free ordered semigroup over (X,≤X), and the mapping f ◦ g is a
homomorphism of (F1, .,≤1) into (F1, .,≤1) such that (f ◦ g) ◦ ε1 = ε1, by Proposition 2.5,
we have f ◦ g = 1F1 . In a similar way we get g ◦ f = 1F2 . Since (F2,≤2) and (F1,≤1) are
ordered sets, f an isotone mapping of (F2,≤2) into (F1,≤1) and g a mapping of (F1,≤1)
into (F2,≤2) such that f ◦ g = 1F1 , by Lemma 1.1, g is reverse isotone. Since (F1,≤1) and
(F2,≤2) are ordered sets, g an isotone mapping of (F1,≤1) into (F2,≤2) and f a mapping
of (F2,≤2) into (F1,≤1) such that g ◦ f = 1F2 , by Lemma 1.1, the mapping g is onto. Since
g is an onto reverse isotone homomorphism, it is an isomorphism. 2

Theorem 2.7. Let ((F1, .,≤1), ε1), ((F2, ∗,≤2), ε2) be free ordered semigroups over the
ordered sets (X,≤X) and (Y,≤Y ) respectively. Suppose

π : (X,≤X) → (Y,≤Y )

is an isotone, reverse isotone and onto mapping. Then there exists an isomorphism

g : (F1, .,≤1) → (F2, ∗,≤2)

such that g ◦ ε1 = ε2 ◦ π.
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Proof. Since ((F1, .,≤1), ε1) is a free ordered semigroup over (X,≤X), (F2, ∗,≤2) an or-
dered semigroup and the mapping ε2 ◦ π : (X,≤X) → (F2,≤2) is isotone (as ε and π are
so), there exists a homomorphism

g : (F1, .,≤1) → (F2, ∗,≤2)

such that g ◦ ε1 = ε2 ◦ π. Since the mapping π is an isomorphism, the mapping π−1 :
(Y,≤Y ) → (X,≤X) is well defined and it is isotone. Since ((F2, ∗,≤2), ε2) is a free ordered
semigroup over (Y,≤Y ), (F1, .,≤1) an ordered semigroup and the mapping ε1 ◦π−1 : (Y,≤Y

) → (F1,≤1) is isotone, there exists a homomorphism

f : (F2, ∗,≤2) → (F1, .,≤1)

such that f ◦ ε2 = ε1 ◦ π−1. The mapping

f ◦ g : (F1, .,≤1) → (F1, .,≤1)

is a homomorphism (as f and g are so) and

(f ◦ g) ◦ ε1 = f ◦ (g ◦ ε1) = f ◦ (ε2 ◦ π) = (f ◦ ε2) ◦ π

= (ε1 ◦ π−1) ◦ π = ε1 ◦ (π−1 ◦ π) = ε1 ◦ 1X = ε1.

By Proposition 2.5, we have f ◦g = 1F1 . In a similar way we obtain g◦f = 1F2 . On the other
hand, f is an isotone mapping of (F2,≤2) into (F1,≤1) and g is a mapping of (F1,≤1) into
(F2,≤2) such that f ◦ g = 1F1 . By Lemma 1.1, the mapping g is reverse isotone. Moreover,
since g is an isotone mapping of (F1,≤1) into (F2,≤2) and f is a mapping of (F2,≤2) into
(F1,≤1) such that g ◦f = 1F2 , by Lemma 1.1, the mapping g is onto. We have already seen
that g is a homomorphism, hence g is an isomorphism. 2

According to Construction 2.2, each u ∈ FX can be written in a unique way as u =
(x1, x2, ..., xn), where n ∈ N and xi ∈ X, i = 1, 2, ..., n. As in free semigroups (without
order), the number n, denoted by l(u), is the length of u.

Order plays no role in Propositions 2.8, 2.9, 2.10 below, so they hold for both free
semigroups (without order) and free ordered semigroups.

Proposition 2.8. For m ∈ N and ui ∈ FX , i = 1, 2, ...,m, we have
l(u1 ∗ u2 ∗ ... ∗ un) = l(u1) + l(u2) + ... + l(un).

Proposition 2.9. If u ∈ F 2
X := FX ∗ FX , then l(u) ≥ 2. Conversely, if u ∈ FX such that

l(u) ≥ 2, then u ∈ F 2
X .

Proof. Let u = a ∗ b for some a, b ∈ FX . Then

l(u) = l(a ∗ b) = l(a) + l(b) ≥ 2 (since l(a), l(b) ∈ N).

Conversely, let l(u) ≥ 2. Since u ∈ FX , there exist x1, x2, ...., xl(u) ∈ X such that u =
(x1, x2, ...., xl(u)). Then we have

u = (x1, x2, ..., xl(u)) = (x1) ∗ (x2) ∗ ..... ∗ (xl(u))
= (x1) ∗ ((x2) ∗ ..... ∗ (xl(u)) (since l(u) ≥ 2)

= (x1) ∗ (x2, ..., xl(u)) ∈ FX ∗ FX := F 2
X .

2
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Proposition 2.10. Let ((FX , ∗,¹), ε) be the free ordered semigroup constructed in Con-
struction 2.2. Then

ε(X) = FX\F 2
X .

Proof. Let a ∈ ε(X). Then there exists x ∈ X such that a = ε(x) = (x) (by the definition
of ε). Then l(x) = 1 and a ∈ FX . If a ∈ F 2

X , then by Proposition 2.9, l(a) ≥ 2 which is
impossible. Thus we have a ∈ FX\F 2

X . Let now b ∈ FX\F 2
X . Then b ∈ ε(X). Indeed: Since

b ∈ FX , there exists x1, x2, ..., xl(b) ∈ X such that b = (x1, x2, ..., xl(b)). If l(b) ≥ 2 then, by
Proposition 2.9, we have b ∈ F 2

X which is impossible. Since l(b) is a natural number such
that l(b) < 2, we have l(b) = 1, so b = (x1). Since x1 ∈ X, we have ε(x1) := (x1). Thus we
have b = ε(x1) ∈ ε(X). 2

In the rest of the paper, we use the following: For any two sets A,B, a mapping f : A →
B and C ⊆ A, we have f(A)\f(C) ⊆ f(A\C). In particular, if the mapping f is (1–1),
then f(A)\f(C) = f(A\C).

Proposition 2.11. Let ((F, .,≤F ), ε) be a free ordered semigroup over the ordered set
(X,≤X). Then

ε(X) = F\F 2.

Proof. We consider the free ordered semigroup ((FX , ∗,¹), ε) considered in Construc-
tion 2.2. By hypothesis, ((F, .,≤F ), ε) is also a free ordered semigroup over (X,≤X). By
Theorem 2.6, there exists an isomorphism

g : (FX , ∗,¹) → (F, .,≤F )

such that g ◦ ε = ε. Then we have

ε(X) = (g ◦ ε)(X) = g(ε(X)) = g(FX\F 2
X) (by Proposition 2.10)

= g(FX)\g(F 2
X) (since g is (1 − 1))

= g(FX)\(g(FX)g(FX)) (since g is a homomorphism)
= F\F 2 (since g is onto).

2

Theorem 2.12. Let ((F1, .,≤1), ε1), ((F2, ∗,≤2), ε2) be free ordered semigroups over the
ordered sets (X,≤X) and (Y,≤Y ) respectively. Suppose

ϕ : (F1, .,≤1) → (F2, ∗,≤2)

is an isomorphism. Then the mapping

π : (X,≤X) → (Y,≤Y ) | x → y, where y ∈ Y such that (ϕ ◦ ε1)(x) = ε2(y)

is an isomorphism as well.

Proof. We have (ϕ ◦ ε1)(X) = ε2(Y ) (∗)
In fact: Since ((F1, .,≤1), ε1), ((F2, ∗,≤2), ε2) are free ordered semigroups over (X,≤X) and
(Y,≤Y ) respectively, by Proposition 2.11, we have ε1(X) = F1\F 2

1 and ε2(Y ) = F2\F 2
2 .

Then we have

(ϕ ◦ ε1)(X) = ϕ(ε1(X)) = ϕ(F1\F 2
1 )

= ϕ(F1)\ϕ(F 2
1 ) (since g is (1 − 1))

= ϕ(F1)\(ϕ(F1) ∗ ϕ(F1)) (since ϕ is a homomorphism)
= F2\(F2 ∗ F2) (since ϕ is onto)
= F2\F 2

2 = ε2(Y ).
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1. The mapping π is well defined: If x ∈ X then, by (∗), there exists y ∈ Y such that
(ϕ ◦ ε1)(x) = ε2(y). If x, z ∈ X, x = z and y, w ∈ Y such that (ϕ ◦ ε1)(x) = ε2(y) and
(ϕ ◦ ε1)(z) = ε2(w), then we have

ε2(y) = (ϕ ◦ ε1)(x) = (ϕ ◦ ε1)(z) = ε2(w).

Since ((F2, ∗,≤2), ε2) is a free ordered semigroup over (Y,≤Y ), by Theorem 2.4, the mapping
ε2 is reverse isotone, so it is a (1–1) mapping. Thus we have y = w.

2. The mapping π is isotone: Let x ≤X z. Since x, z ∈ X, we have
π(x) := y for some y ∈ Y such that (ϕ ◦ ε1)(x) = ε2(y) and
π(z) := w for some w ∈ Y such that (ϕ ◦ ε1)(z) = ε2(w).

Since ((F1, .,≤1), ε1) is a free ordered semigroup over (X,≤X), the mapping

ε1 : (X,≤X) → (F1,≤1)

is isotone. Since x ≤X z, we have ε1(x) ≤1 ε1(z). Since ϕ is isotone, we have ϕ(ε1(x)) ≤2

ϕ(ε1(z)). Then we have

ε2(y) = (ϕ ◦ ε1)(x) = ϕ(ε1(x)) ≤2 ϕ(ε1(z)) = (ϕ ◦ ε1)(z) = ε2(w).

Since ε2 is reverse isotone, we have y ≤Y w, that is π(x) ≤Y π(z).

3. The mapping π is reverse isotone: Let x, z ∈ X such that π(x) ≤Y π(z). Then x ≤X z.
In fact: We have

π(x) := y for some y ∈ Y such that (ϕ ◦ ε1)(x) = ε2(y) and
π(z) := w for some w ∈ Y such that (ϕ ◦ ε1)(z) = ε2(w).

Since π(x) ≤Y π(z), we have y ≤Y w. Since ((F2, ∗,≤2), ε2) is a free ordered semigroup
over (Y,≤Y ), the mapping ε2 : (Y,≤Y ) → (F2,≤2) is isotone. Since y ≤Y w, we have
ε2(y) ≤2 ε2(w), then (ϕ ◦ ε1)(x) ≤2 (ϕ ◦ ε1)(z), that is ϕ(ε1(x)) ≤2 ϕ(ε1(z)). Since the
mapping ϕ is reverse isotone, we get ε1(x) ≤1 ε1(z). Since ((F1, .,≤1), ε1) is a free ordered
semigroup over (X,≤X), by Theorem 2.4, the mapping ε1 is reverse isotone. Hence we have
x ≤X z.

4. The mapping π is onto: Let y ∈ S. Since ε2(y) ∈ ε2(Y ) = (ϕ ◦ ε1)(X), there exists
x ∈ X such that (ϕ ◦ ε1)(x) = ε2(y). By the definition of π, we have π(x) = y. 2

By Theorems 2.7 and 2.12, we have the following

Corollary 2.13. (see also [3; Proposition 2.3]) If (F1, .,≤1) and (F2, ∗,≤2) are free ordered
semigroups over the ordered sets (X,≤X) and (Y,≤Y ) respectively, then we have

(X,≤X) ∼= (Y,≤Y ) ⇐⇒ (F1, .,≤1) ∼= (F2, ∗,≤2).

Remark 2.14. For semigroups (without order) the free semigroups on a set X are isomor-
phic. Exactly as in semigroups, the free ordered semigroups over an ordered set (X,≤) are
isomorphic. However, order plays an essential role for free ordered semigroups. If we have
two different orders over the same set X, that is, if (X,≤) and (X,≤X) are ordered sets with
≤6=≤X , the free ordered semigroup over (X,≤) and the free ordered semigroup over (X,≤X)
are not isomorphic, in general. As an example, consider the set N of natural numbers with
the equality relation ”=” and the usual relation ” ≤ ” on N . Let now (F1, .,≤1) be a free
ordered semigroup over the ordered set (N, =) and (F2, ∗,≤1) a free ordered semigroup over
the ordered set (N,≤) (according to Construction 2.2 such free ordered semigroups exist).
If (F1, .,≤1) ∼= (F2, ∗,≤2) then, by Corollary 2.13, (N, =) ∼= (N,≤), that is, there exists a
mapping π : (N, =) → (N,≤) which is isotone, reverse isotone and onto. As 2, 3 ∈ (N,≤),
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there exist x, y ∈ (N, =) such that π(x) = 2, π(y) = 3. Since π(x) ≤ π(y) and π is reverse
isotone, we have x = y, then π(x) = π(y), that is 2 = 3 which is impossible. Hence we have
(F1, .,≤1) 6∼= (F2, ∗,≤2). 2

Remark 2.15. If u, v ∈ FX such that u ¹ v, then l(u) = l(v). In fact, let u =
(x1, x2, ..., xn), v = (y1, y2, ..., ym) for some n, m ∈ N , xi, yj ∈ X, i = 1, ..., n, j = 1, ...,m.
Since u ¹ v, we have m = n and xi ≤X yi ∀ i = 1, ..., n. Since m = n, we have l(u) = l(v).

If (S, .,≤) is an ordered semigroup and M ⊆ S, we denote by (M ], [M) the subsets of
S defined by

(M ] := {t ∈ S such that t ≤ a for some a ∈ M},

[M) := {t ∈ S such that t ≥ a for some a ∈ M}.

Proposition 2.16. If (X,≤X) is an ordered set and u ∈ FX , then we have the following:
(1) u ∈ (F 2

X ] ⇐⇒ l(u) ≥ 2.
(2) u ∈ [F 2

X) ⇐⇒ l(u) ≥ 2.
(3) (F 2

X ] = F 2
X = [F 2

X).

Proof. (1) =⇒. Let u ¹ a for some a ∈ F 2
X . Since u, a ∈ FX , u ¹ a, by Remark 2.15, we

have l(u) = l(a). Since a ∈ F 2
X , by Proposition 2.9, we get l(a) ≥ 2, so l(u) ≥ 2.

⇐=. If l(u) ≥ 2 then, by Proposition 2.9, u ∈ F 2
X ⊆ (F 2

X ].
The proof of (2) is similar.
(3) If u ∈ (F 2

X ] then, by (1), l(u) ≥ 2. Since u ∈ FX , l(u) ≥ 2, by Proposition 2.9, we
have u ∈ F 2

X . On the other hand, F 2
X ⊆ (F 2

X ], so (F 2
X ] = F 2

X . Similarly we prove that
[F 2

X) = F 2
X . 2

Lemma 2.17. Let (A,≤A), (B,≤B) be ordered sets, f : (A,≤A) → (B,≤B) an onto,
isotone and reverse isotone mapping (that is, (A,≤A) is isomorphic to (B,≤B) under f),
and M ⊆ A. Then the following statements hold true:

(1) f((M ]) = (f(M)].
(2) f([M)) = [f(M)).

Proof. (1) Let y ∈ f((M ]). Then y = f(b) for some b ∈ (M ]. Since b ∈ (M ], b ≤A t for
some t ∈ M . Since f is isotone, we have y = f(b) ≤B f(t) ∈ f(M), so y ∈ (f(M)].
Let y ∈ (f(M)]. Then y ≤B t for some t ∈ f(M). Let a ∈ M such that t = f(a). Since
y ∈ B and f is onto, there exists b ∈ A such that y = f(b). Since f(b) ≤B f(a) and
f is reverse isotone, we get b ≤A a. Since B 3 b ≤A a ∈ M , we have b ∈ (M ]. Then
y = f(b) ∈ f((M ]). The proof of (2) is similar. 2

Proposition 2.18. Let (X,≤X) be an ordered set and ((F, .,≤F ), ε) a free ordered semi-
group over (X,≤X). Then we have

(F 2] = F 2 = [F 2).

Proof. Since ((FX , ∗,¹), ε) and ((F, .,≤F ), ε) are free ordered semigroups over (X,≤X),
by Theorem 2.6, there exists an isomorphism

g : (FX , ∗,¹) → (F, .,≤F ).

We have (F 2] = F 2. In fact,

(F 2] = (FF ] = (g(FX)g(FX)] (since g is onto)
= (g(FX ∗ FX)] (since g is a homomorphism).
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Since (FX ,¹), (F,≤F ) are ordered sets, g : (FX ,¹) → (F,≤F ) an isomorphism and FX ∗
FX ⊆ FX , by Lemma 2.17(1), we have

g((FX ∗ FX ]) = (g(FX ∗ FX)].

On the other hand, by Proposition 2.16(3), we have (FX ∗ FX ] = FX ∗ FX .
Therefore we have

(F 2] = g((FX ∗ FX ]) = g(FX ∗ FX)
= g(FX)g(FX) (since g is a homomorphism)
= FF (since g is onto)
= F 2.

In a similar way we prove that F 2 = [F 2). 2
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