COMMENTS ON "ON A CERTAIN REPEATING PROCESSES PROBLEM IN ARITHMETIC"

Paul Cull

Received June 25, 2010

Abstract. We show that the iteration

$$
A_{n+1}= \begin{cases}A_{n} / 3 & \text { if } A_{n} \equiv 0 \\ {\left[\sum a_{i}\right]^{2}} & \text { if } A_{n} \not \equiv 0 \\ (\bmod 3) \\ {[\bmod 3)}\end{cases}
$$

converges for every positive integer A_{0}, and that for $A_{0}=3^{i} B,(B \not \equiv 0(\bmod 3))$
A_{n} converges to the fixed point 1 when $B \equiv 1$ or $8(\bmod 9)$ and,
A_{n} converges to the cycle $169 \longleftrightarrow 256$ when $B \equiv 2$ or 4 or 5 or $7(\bmod 9)$.
Further, this convergence takes $i+O\left(\log ^{*} B\right)$ steps.

A recent paper [1] deals with iterates of the function:

$$
f(A)=\left\{\begin{array}{llr}
A / 3 & \text { if } A \equiv 0 & (\bmod 3) \\
{\left[\sum a_{i}\right]^{2}} & \text { if } A \not \equiv 0 & (\bmod 3)
\end{array}\right.
$$

where $A=a_{k-1} 10^{k-1}+\ldots+a_{1} 10^{1}+a_{0}$.
$\left\{\right.$ There is a typo in the abstract where $\sum\left(a_{i}\right)^{2}$ is written instead of $\left.\left[\sum a_{i}\right]^{2}.\right\}$
The point of this note is to show that the results of [1] can be obtained more easily and, in fact, a more refined theorem can be proven. A complete description of the discrete dynamical system $x_{t+1}=f\left(x_{t}\right)$ is given by the following theorem.

Theorem 1. For every positive integer $A=3^{i} B$, ($\left.B \not \equiv 0(\bmod 3)\right)$
$f^{(n)}(A)$ converges to the fixed point 1 when $B \equiv 1$ or $8(\bmod 9)$ and,
$f^{(n)}(A)$ converges to the cycle $169 \longleftrightarrow 256$ when $B \equiv 2$ or 4 or 5 or $7(\bmod 9)$.
This convergence takes $i+O\left(\log ^{*} B\right)$ steps.
A fairly general statement can be made about mappings like $f(A)$, namely:
Let $f(A)$ be a mapping from the positive integers to the positive integers. If $f(A)<A$ for all big enough A, then there are a finite number of finite length cycles of iterates of f, and for each A_{0} the sequence $\left\langle f^{(n)}\left(A_{0}\right)\right\rangle$ converges to one of these cycles.

This statement can be proved by noting that f must map a finite subset of the integers to itself, and that each A_{0} is eventually mapped to this subset.

For our specific f, this convergence takes $i+O\left(\log ^{*} B\right)$ steps. The powers of 3 disappear in i steps and the squaring operation can never produce a multiple of 3 from a non-multiple of 3 . For $B \not \equiv 0(\bmod 3)$, the squaring operation takes a k digit number to at most $(9 k)^{2}$ which has at most $O(\log k)$ digits. So, f maps B to the finite subset in at most $O\left(\log ^{*} B\right)$

[^0]steps. (Here, $\log ^{*}$ is the iterated logarithm.) Of course, the mapping on a finite subset can only take a constant number of steps to map any of its members to a cycle.

The following three observations can be easily demonstrated by considering the largest possible digit sums and using induction if necessary:
(a) If A has k digits where $k \geq 5$ then $f(A)<A$. More strongly, if $A \not \equiv 0(\bmod 3)$, then $f(A)$ has at most $k-1$ digits.
(b) For $k=4, A \not \equiv 0(\bmod 3), f^{(2)}(A)$ has at most 3 digits.
(c) If A has at most 3 dgits, then $f(A)$ has at most 3 digits.

Hence, only numbers with at most 3 digits can form cycles. One could use a computer to search for the behavior of iterates starting from each of these numbers, but the search can be greatly simplified.

A useful observation is that $A \equiv\left[\sum a_{i}\right](\bmod 9)$.
\{ This is the familar "casting out 9's " used in bookkeeping. \} So, $A^{2} \equiv\left[\sum a_{i}\right]^{2}(\bmod 9)$ and one can simply look at iterated squaring $\bmod 9$. Considering numbers $\not \equiv 0(\bmod 3)$ we find the following dynamics:

$$
8 \rightarrow 1 \hookleftarrow \quad \text { and } \quad 2 \rightarrow 4 \longleftrightarrow 7 \longleftarrow 5
$$

That is, there is a fixed point 1 , and a cycle consisting of 4 and 7 .
Hence any cycle for f must contain either a number $\equiv 1(\bmod 9)$ or a number $\equiv 4$ $(\bmod 9)$. To find the cycles of f we need only consider 3 digit numbers whose digit sum is 1 or $4(\bmod 9)$ and this means that the only digit sums we need to look at are 1 and 10 and 19 which are $\equiv 1(\bmod 9)$, and 4 and 13 and 22 which are $\equiv 4(\bmod 9)$. The first three posibilities quicky map to the fixed point 1 . The other three possibilities quicky map to the the period 2 cycle $169 \longleftrightarrow 256$.

Finally, the dynamics $\bmod 9$ tell us that the numbers $\equiv 1 \operatorname{or} 8(\bmod 9)$ must eventually map to the fixed point 1 , and that the numbers $\equiv 2$ or 4 or 5 or $7(\bmod 9)$ must eventually map to the cycle $169 \longleftrightarrow 256$.

References

[1] Susumu Oda and Junro Sato. On A Certain Repeating Processes Problem in Arithmetic. Scientiae Mathematicae Japonicae, 71(260): 217-222, March 2010.

Computer Science, Oregon State University, Corvallis, OR 97331 USA
E-mail address : pc@cs.orst.edu

[^0]: 2000 Mathematics Subject Classification. 11A99
 Key words and phrases. repeating process.

