ON LEFT FIXED MAPS OF BE-ALGEBRAS

KUNG HO KIM

Received April 22, 2010

ABSTRACT. In this paper, the concept of a left fixed map in an BE-algebra is discussed and some fundamental properties to BE-algebras are discussed.

1. Introduction. Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras([3, 4]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [1, 2], Q. P. Hu and X. Li introduced a wide class of abstracts: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [5], H. S. Kim and Y. H. Kim introduced the notion of a BE-algebra as a dualization of a generation of a BCK-algebras. In this paper, the concept of a left fixed map in an BE-algebra is discussed and some fundamental properties to BE-algebras are discussed.

2. **Preliminaries.** In what follows, let X denote an BE-algebra unless otherwise specified. By an *BE-algebra* we mean an algebra (X; *, 1) of type (2, 0) with a single binary operation "*" that satisfies the following identities: for any $x, y, z \in X$,

(BE1) x * x = 1 for all $x \in X$, (BE2) x * 1 = 1 for all $x \in X$, (BE3) 1 * x = x for all $x \in X$, (BE4) x * (y * z) = y * (x * z) for all $x, y, z \in X$.

We introduce a relation " \leq " on X by $x \leq y$ imply x * y = 1. An BE-algebra (X, *, 1) is said to be *self-distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$. A non-empty subset S of an BE-algebra X is said to be a *subalgebra* of X if $x * y \in S$ whenever $x, y \in S$.

In an BE-algebra, the following identities are true:

- (p1) x * (y * x) = 1.
- (p2) x * ((x * y) * y)) = 1.

Definition 2.1. Let (X, *, 1) be an BE-algebra and F a non-empty subset of X. Then F is said to be a *filter* of X if

(F1) $1 \in F$,

(F2) If $x \in F$ and $x * y \in F$, then $y \in F$.

Example 2.1. Let $X = \{1, a, b, c, d\}$ in which "*" is defined by

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25, 08A30.

Key words and phrases. BE-algebra, self-distributive, filter, left fixed map, commutative, idempotent.

KUNG HO KIM

*	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	c	d
b	1	a	1	c	c
c	1	1	b	1	b
d	1	1	1	1	1

It is easy to know that X is a BE-algebra, and $F_1 = \{1, a\}, F_2 = \{1, b\}, F_3 = \{1, c\}, F_4 = \{1, a, b\}$ are filters of X.

3. Left fixed maps in BE-Algebras.

Definition 3.1. A *left fixed map* α of X is defined to be a self map $\alpha : X \to X$ satisfying $\alpha(x * y) = x * \alpha(y)$ for all $x, y \in X$.

Example 3.1. Let $X = \{1, a, b\}$ in which "*" is defined by

Then X is an BE-algebra. It can be easily very that the self map α of X defined by $\alpha(1) = 1, \alpha(a) = 1$ and $\alpha(b) = b$ is a left fixed map.

Example 3.2. Let $X = \{1, a, b, c\}$ in which "*" is defined by

Then X is an BE-algebra. Let $\alpha : X \to X$ be defined by $\alpha(1) = 1, \alpha(a) = 1, \alpha(b) = c$ and $\alpha(c) = c$. Then α is not a left fixed map of X since $\alpha(b * c) \neq b * \alpha(c)$.

Lemma 3.2. If α is a left fixed map of X, then we have

- (1) $\alpha(1) = 1$,
- (2) $x \leq \alpha(x)$ for all $x \in X$,
- (3) $x \leq y$ implies $x \leq \alpha(y)$ for all $x, y \in X$.

Proof. (1) For every $x, y \in X$, we have

$$\alpha(1) = \alpha(\alpha(1) * 1) = \alpha(1) * \alpha(1) = 1.$$

(2) For every $x \in X$, we have $1 = \alpha(1) = \alpha(x * x) = x * \alpha(x)$, and so $x \le \alpha(x)$.

(3) Suppose that $x \leq y$ for every $x, y \in X$. Then

$$1=\alpha(1)=\alpha(x\ast y)=x\ast\alpha(y),$$

and so $x \leq \alpha(y)$.

Proposition 3.3. If α and β are left fixed maps of X, then $\alpha \circ \beta$ is a left fixed map of X.

Proof. Let α and β be left fixed maps of X. Then

$$(\alpha \circ \beta)(x * y) = \alpha(\beta(x * y)) = \alpha(x * \beta(y)) = x * \alpha(\beta(y)) = x * (\alpha \circ \beta)(y)$$

for all $x, y \in X$.

382

Theorem 3.4. Let α be a left fixed map of X. Then α is one-to-one if and only if α is the identity map.

Proof. Sufficiency is obvious. Suppose that α is one-to-one. For $x \in X$, we have

$$\alpha(\alpha(x) * x) = \alpha(x) * \alpha(x) = 1 = \alpha(1)$$

and so $\alpha(x) * x = 1$, i.e., $\alpha(x) \le x$. Since $x \le \alpha(x)$ for all $x \in X$, it follows that $\alpha(x) = x$ so that α is the identity map.

Let α be a left fixed map of X. Define a set F by

$$F := \{ x \mid \alpha(x) = x \}$$

for all $x \in X$.

Proposition 3.5. Let α be a left fixed map of X. Then F is a subalgebra of X.

Proof. Clearly, $1 \in F$ and so F is nonempty. Let $x, y \in F$. Then we have $\alpha(x) = x$ and $\alpha(y) = y$, and so

$$\alpha(x*y) = x*\alpha(y) = x*y.$$

This implies $x * y \in F$. Hence F is a subalgebra of X.

Proposition 3.6. Let α be a left fixed map of X. If $x \in F$, then we have $(\alpha \circ \alpha)(x) = x$. *Proof.* Let $x \in F$. Then we have

$$(\alpha \circ \alpha)(x) = \alpha(\alpha(x)) = \alpha(x) = x$$

This completes the proof.

Let α be a left fixed map of X. Define a $Ker(\alpha)$ by

$$Ker(\alpha) = \{x \mid \alpha(x) = 1\}$$

for all $x \in X$.

Proposition 3.7. Let α be a left fixed map of X. Then $Ker(\alpha)$ is a subalgebra of X. Proof. Clearly, $1 \in Ker(\alpha)$, and so $Ker(\alpha)$ is nonempty. Let $x, y \in Ker(\alpha)$. Then $\alpha(x) = 1$ and $\alpha(y) = 1$. Hence we have

$$\alpha(x * y) = x * \alpha(y) = x * 1 = 1$$

and so $x * y \in Ker(\alpha)$. Thus $Ker(\alpha)$ is a subalgebra of X.

An BE-algebra X is said to be *commutative* if for all $x, y \in X$,

$$(y * x) * x = (x * y) * y.$$

Proposition 3.8. Let X be a commutative BE-algebra. If $x \in Kerd$ and $x \leq y$, then we have $y \in Ker(\alpha)$.

Proof. Let
$$x \in Ker(\alpha)$$
 and $x \leq y$. Then $\alpha(x) = 1$ and $x * y = 1$.
 $\alpha(y) = \alpha(1 * y) = \alpha((x * y) * y)$

$$= \alpha((y * x) * x)$$

$$= (y * x) * \alpha(x)$$

$$= (y * x) * 1$$

$$= 1,$$

and so $y \in Ker(\alpha)$. This completes the proof.

KUNG HO KIM

Proposition 3.9. Let α be a left fixed map of X and an endomorphism. Then $Ker(\alpha)$ is a filter of X.

Proof. Clearly, $1 \in Ker(\alpha)$. Let $x \in Ker(\alpha)$ and $x * y \in Ker(\alpha)$. Then we have $\alpha(x) = \alpha(x * y) = 1$, and so

$$1 = \alpha(x * y) = \alpha(x) * \alpha(y) = 1 * \alpha(y) = \alpha(y).$$

This implies $y \in Ker(\alpha)$. This completes the proof.

Proposition 3.10. Let α be a left fixed map of X. If α is one-to-one, then $Ker(\alpha) = 1$.

Proof. Suppose that α is one-to-one and $x \in Ker(\alpha)$. Then $\alpha(x) = 1 = \alpha(1)$, and thus x = 1, i.e., $Ker(\alpha) = \{1\}$.

Denote by LF(X) the set of all left fixes maps of X. Let \otimes be a binary operation on LF(X) defined by

$$(\alpha\otimes\beta)(x)=\alpha(x)*\beta(x)$$

for all $\alpha, \beta \in LF(X)$ and $x \in X$. **Proposition 3.11.** Let X be an BE-algebra. Then $(LF(X), \otimes)$ is an BE-algebra of X.

Proof. Let $\alpha \in LF(X)$ and $x \in X$. Then we get $(\alpha \otimes \alpha)(x) = \alpha(x) * \alpha(x) = 1$, which proves (BE1). Similarly, we can prove (BE2), (BE3) and (BE4).

Let ILF(X) denote the set of all idempotent left fixed maps of X.

Theorem 3.12. Let X be a self-distributive BE-algebra of X and $\alpha, \beta \in ILF(X)$. Then we have

(1) $\alpha \otimes \beta \in LF(X)$, (2) If $\alpha(\beta(x)) = \beta(\alpha(x))$ for all $x \in X$, then $\alpha \otimes \beta \in ILF(X)$.

Proof. (1) For every $x, y \in X$, we get

$$\begin{aligned} (\alpha \otimes \beta)(x * y) &= \alpha(x * y) * \beta(x * y) \\ &= (x * \alpha(y)) * (x * \beta(y)) \\ &= x * (\alpha(y) * \beta(y)) \\ &= x * (\alpha \otimes \beta)(y), \end{aligned}$$

and so $\alpha \otimes \beta \in LF(X)$.

(2) Suppose that $\alpha(\beta(x)) = \beta(\alpha(x))$ for all $x \in X$. Then

$$\begin{aligned} (\alpha \otimes \beta)((\alpha \otimes \beta)(x)) &= (\alpha \otimes \beta)(\alpha(x) * \beta(x)) \\ &= \alpha(\alpha(x) * \beta(x)) * \beta(\alpha(x) * \beta(x)) \\ &= (\alpha(x) * \alpha(\beta(x)) * (\alpha(x) * \beta(\beta(x))) \\ &= (\alpha(x) * \alpha(\beta(x)) * (\alpha(x) * (\beta(x))) \\ &= (\alpha(x) * \beta(\alpha(x)) * (\alpha(x) * (\beta(x))) \\ &= (\alpha(x) * \beta(\alpha(x)) * (\alpha(x) * (\beta(x))) \\ &= \beta(\alpha(x) * \alpha(x)) * (\alpha(x) * \beta(x)) \\ &= \beta(1) * (\alpha(x) * \beta(x)) = 1 * (\alpha(x) * \beta(x)) \\ &= \alpha(x) * \beta(x) = (\alpha \otimes \beta)(x), \end{aligned}$$

that is, $\alpha \otimes \beta$ is idempotent. Hence we obtain $(\alpha \otimes \beta) \in ILF(X)$.

ON LEFT FIXED MAPS OF BE-ALGEBRAS

References

- [1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- [2] Q. P. Hu and X. Li, On proper BCH-algebras, Math Japonicae 30 (1985), 659-661.
- [3] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math Japonicae 23 (1978), 1-20.
- [4] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- [5] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japo. 66 (1) (2007), 113-116.
- [6] S. S. Ahn and K. S. So, On ideals and uppers in BE-algebras, Sci. Math. Japo. Online e-2008, 351-357.

Department of Mathematics, Chungk National University, Chungk, Chungking 380-702, Korea E-mail address: ghkim@cjnu.ac.kr