ON VAGUE SUBALGEBRA OF *d*-ALGEBRA

KUNG HO KIM

Received April 13, 2010

ABSTRACT. In this paper, the notion of vague subalgebra of a *d*-algebra is introduced and some properties are investigated. Using subsets with some conditions, vague subalgebras are constructed and also using a given vague subalgebra, a new vague subalgebra is established.

1. Introduction. Y. Imai and Iseki [3, 4] introduced two classes of abstract: BCK-algebras and BCI-algebras. J. Negges [5] introduced the class of d-algebras which is another generalization of BCK-algebras, and investigated relations between d-algebras and BCK-algebras. The notion of vague set theory is introduced by Gau and Buehrer [2]. Using the vague set in the sense of Gau and Buehrer, Biawas[1] studied vague groups. In this paper, the notion of vague subalgebra of a d-algebra is introduced and some properties are investigated. Using subsets with some conditions, vague subalgebras are constructed and also using a given vague subalgebra, a new vague subalgebra is established.

2. **Preliminaries.** In this section we include some elementary aspects that are necessary for this paper.

A d-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

- (a1) x * x = 0,
- (a2) 0 * x = 0,

(a3) x * y = 0 and $y * x = 0 \Rightarrow x = y$ for all $x, y \in X$.

Let S be a nonempty subset of a d-algebra X. Then S is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$. A map f from a d-algebra X to a d-algebra Y is called a homomorphism if f(x * y) = f(x) * f(y) for all $x, y \in X$.

Definition 2.1. ([1]) A vague set A in the universe of discourse U is characterized by two membership functions given by :

1. A true membership function

$$t_A: U \to [0,1]$$

and

2. A false membership function

 $f_A: U \to [0,1],$

where $t_A(u)$ is a lower bound on the grade of membership of u derived from the "evidence for u", $f_A(u)$ is a lower bound on the negation of u derived from the "evidence against u", and $t_A(u) + f_A(u) \le 1$.

²⁰⁰⁰ Mathematics Subject Classification. 06F35, 03G25, 03E72.

Key words and phrases. d-algebra, subalgebra, vague set. vague subalgebra, vague-cut.

KUNG HO KIM

Thus the grade of membership of u in the vague set A is bounded by a subinterval $[t_A(u), 1 - f_A(u)]$ of [0, 1]. This indicates that if the actual grade of membership of u is $\mu(u)$, then $t_A(u) \leq \mu(u) \leq 1 - f_A(u)$. The vague set A is written as $A = \{\langle u, [t_A(u), f_A(u)] \rangle \mid u \in U\}$, where the interval $[t_A(u), 1 - f_A(u)]$ of [0, 1] is called the *vague value* of u in A, denoted by $V_A(u)$. For $\alpha, \beta \in [0, 1]$, we now define (α, β) -cut and α -cut of a vague set.

Definition 2.2. ([1]) A vague set A of a set U is called

- 1. the zero vague set of U if $t_A(u) = 0$ and $f_A(u) = 1$ for all $u \in U$,
- 2. the unit vague set of U if $t_A(u) = 1$ and $f_A(u) = 0$ for all $u \in U$,
- 3. the α -vague set of U if $t_A(u) = \alpha$ and $f_A(u) = 1 \alpha$ for all $u \in U$, where $\alpha \in [0, 1]$.

For $\alpha, \beta \in [0, 1]$ we define (α, β) -cut and α -cut of a vague set.

Definition 2.3. ([1]) Let A be a vague set of a universe X with the true-membership function t_A and the false-membership function f_A . The (α, β) -cut of the vague set A is a crisp subset $A_{(\alpha,\beta)}$ of the set X is a crisp subset $A_{(\alpha,\beta)}$ of the set X given by

$$A_{(\alpha,\beta)} = \{ x \in X \mid V_A(x) \ge [\alpha,\beta] \}.$$

Clearly $A_{(0,0)} = X$. The (α, β) -cuts are also vague-cuts of the vague set A.

Definition 2.4. ([1]) The α -cut of the vague set A is a crisp subset A_{α} of the set X given by $A_{\alpha} = A_{(\alpha,\alpha)}$.

Note that $A_0 = X$, and if $\alpha \ge \beta$ then $A_\beta \subseteq A_\alpha$ and $A_{(\alpha,\beta)} = A_\alpha$. Equivalently, we can define the α -cut as

$$A_{\alpha} = \{ x \in X \mid t_A(x) \ge \alpha \}.$$

We shall use the following notations, which are given in [3], on interval arithmetic.

Let I[0, 1] denote the family of all closed subintervals of [0, 1]. if $I_1 = [a_1, b_1]$ and $I_2 = [a_2b_2]$ are two elements of [0, 1], we call $I_1 \ge I_2$ if $a_1 \ge a_2$ and $b_1 \ge b_2$. Similarly we understand the relations $I_1 \le I_2$ and $I_1 = I_2$. Clearly the relation $I_1 \ge I_2$ does not necessarily imply that $I_1 \ge I_2$ and conversely. We define the term "imax" to mean the maximum of two intervals as

$$imax(I_1, I_2) = [max(a_1, a_2), max(b_1, b_2)].$$

Similarly we define "imin". could be extended to define "isup" and "iinf" of infinite number of elements of I[0, 1].

It is clear that $L = \{I[0,1], isup, iinf, \leq\}$ is a lattice with universal bounds [0,0] and [1,1] (see [1]).

3. Vague subalgebra of d-algebra. In what follows, we use X to denote a d-algebra unless otherwise specified.

Definition 3.1. A vague set A of a d-algebra X is called a *vague subalgebra* of X if

$$(\forall x, y \in R) \quad (V_A(x * y) \ge \min\{V_A(x), V_A(y)\},$$

that is,

$$t_A(x * y) \ge \min\{t_A(x), t_A(y)\}, \quad 1 - f_A(x * y) \ge \min\{1 - f_A(x), 1 - f_A(y)\},$$

for all $x, y \in X$.

Example 3.1. Consider a *d*-algebra $X = \{0, 1, 2\}$ having the following Cayley table:

*	0	1	2
0	0	0	0
1	2	0	2
2	1	1	0

Let A be the vague set in X defined as follows:

$$A = \{ \langle 0, [0.7, 0.3] \rangle, \langle 1, [0.2, 0.5] \rangle, \langle 2, [0.2, 0.5] \rangle \}.$$

It is routine to verify that A is a vague subalgebra of d-algebra X.

Lemma 3.2. Every vague subalgebra A of X satisfies

 $(\forall x \in R) \quad (V_A(0) \ge V_A(x)),$

that is, $t_A(0) \ge t_A(x)$ and $1 - f_A(0) \ge 1 - f_A(x)$ for all $x \in X$.

Proof. Let $x \in X$. Then $t_A(0) = t_A(x * x) \ge \min\{t_A(x), t_A(x)\} = t_A(x)$ and $1 - f_A(0) = 1 - f_A(x * x) \ge \min\{1 - f_A(x), 1 - f_A(x)\} = 1 - f_A(x)$. Hence we have $V_A(0) \ge V_A(x)$. \Box

Clearly the following proposition is straightforward.

Proposition 3.3. The necessary and sufficient condition for a vague set $A = (x, t_A, f_A)$ of X to be a vague subalgebra of X is that t_A and $1 - f_A$ are fuzzy subalgebras of X.

Proposition 3.4. If A is an vague subalgebra of X, then the set

$$T := \{ x \in X \mid V_A(x) = V_A(0) \}$$

is a subalgebra of X.

Proof. Let $x, y \in T$. Then we have $V_A(x) = V_A(y) = V_A(0)$, and so $V_A(x * y) \ge \min\{V_A(x), V_A(y)\} = \min\{V_A(0), V_A(0)\} = V_A(0)$. Hence by Lemma 3.3, we get $V_A(x * y) = V_A(0)$, i. e., $x * y \in T$. Hence T is a subalgebra of X.

Theorem 3.5. Let A be a vague subalgebra of X. Then for $\alpha \in [0,1]$, the α -cut A_{α} is a crisp subalgebra of X.

Proof. Let $x, y \in A_{\alpha}$. Then we get $t_A(x) \geq \alpha$ and $t_A(y) \geq \alpha$, and so $t_A(x * y) \geq \min\{t_A(x), t_A(y)\} = \min\{\alpha, \alpha\} = \alpha$. Thus $x * y \in A_{\alpha}$. Therefore A_{α} is a crisp subalgebra of X.

Theorem 3.6. Let A be a vague subalgebra of X. Then for any $\alpha, \beta \in [0, 1]$, the vague-cut $A_{(\alpha,\beta)}$ is a crisp subalgebra of X.

Proof. Let $x, y \in A_{(\alpha,\beta)}$. Then $t_A(x) \ge \alpha$, $t_A(y) \ge \alpha$, $1 - f_A(x) \ge \beta$ and $1 - f_A(y) \ge \beta$. Thus $t_A(x * y) \ge \min\{t_A(x), t_A(y)\} \ge \min\{\alpha, \alpha\} = \alpha$ and $1 - f_A(x * y) \ge \min\{1 - f_A(x), 1 - f_A(y)\} = \min\{\beta, \beta\} = \beta$. Therefore $x * y \in A_{(\alpha,\beta)}$. This completes the proof. \Box

This subalgebras like $A_{(\alpha,\beta)}$ are also called *vague-cut subalgebras* of X. Clearly we have the following result.

Proposition 3.7. Let A be a vague subalgebra of X. Two vague-cut subalgebras $A_{(\alpha,\beta)}$ and $A_{(\omega,\gamma)}$ with $[\alpha,\beta] < [\omega,\gamma]$ are equal if and only if there is no $x \in X$ such that

$$[\alpha,\beta] \le V_A(x) \le [\omega,\gamma].$$

KUNG HO KIM

Theorem 3.8. Let X be a finite and let A be a vague subalgebra of X. Consider the set V(A) given by

$$V(A) := \{ V_A(x) \mid x \in X \}.$$

Then A_i are the only vague-cut subalgebras of X, where $i \in V(A)$.

Proof. Let $[a_1, a_2] \in I[0, 1]$ with $[a_1, a_2] \notin V_A$. If $[\alpha, \beta] < [a_1, a_2] < [\omega, \gamma]$ with $[\alpha, \beta], [\omega, \gamma] \in I$ V_A , then we have $A_{(\alpha,\beta)} = A_{(a_1,a_1)} = A_{(\omega,\gamma)}$. If $[a_1, a_2] < [a_1, a_3]$ where

$$[a_1, a_3] = imin\{x \mid x \in V(A)\},\$$

then $A_{(a_1,a_3)}t = X = A_{(a_1,a_2)}$. Hence for any $[a_1,a_2] \in I[0,1]$, the vague-cut subalgebra $A_{(a_1,a_2)}$ is one of A_i for $i \in V(A)$. This completes the proof. \square

Theorem 3.9. Any subalgebra Q of a near-ring X is a vague-cut subalgebra of some vague subalgebra of X.

Proof. Consider the vague set A of X given by

$$V_A(x) := \begin{cases} [\alpha_1, \alpha_2] & \text{if } x \in Q\\ [0, 0] & \text{if } x \notin Q \end{cases}$$

where $\alpha_1, \alpha_2 \in (0, 1]$ with $\alpha_1 < \alpha_2$. It is clear that $Q = A_{(\alpha, \alpha_2)}$. We will show that A is an vague subalgebra of X. Let $x, y \in X$. If $x, y \in Q$, then $x * y \in Q$, and so $t_A(x * y) =$ $\alpha_1 = \min\{\alpha_1, \alpha_2\}$ and $1 - f_A(x * y) = \alpha_2 = \min\{1 - f_A(x), 1 - f_A(y)\}$. If $x, y \notin Q$, then $t_A(x*y) \ge 0 = \min\{t_A(x), t_A(y)\}$ and $1 - f_A(x*y) \ge 0 = \min\{1 - f_A(x), 1 - f_A(y)\}$. If $x \in Q$ and $y \notin Q$ (or $x \notin Q$ and $y \in Q$), then $t_A(x * y) \ge 0 = \min\{\alpha_1, 0\} = \min\{t_A(x), t_A(y)\}$ and $1 - f_A(x * y) \ge 0 = \min\{0, \alpha_2\} = \min\{1 - f_A(x), 1 - f_A(y)\}$. Therefore A is a vague subalgebra of X.

Definition 3.10. If A is a vague set of X and θ is a map from X into itself, we define a maps $t_A^{\theta}: X \to [0, 1]$ and $f_A^{\theta}: X \to [0, 1]$ given by, respectively, (1) $(\forall x \in X)$ $t_A^{\theta}(x) = t_A(\theta(x))$ and

(2)
$$(\forall x \in X)$$
 $f_A^{\theta}(x) = f_A(\theta(x))$

In such cases, we write $V_A^{\theta}(x) = V_A(\theta(x))$ for all $x \in X$.

Theorem 3.11. If A is a vague subalgebra of X and θ is a homomorphism of X, then the vague set A^{θ} of X given by

$$A^{\theta} = \{ \langle x, [t^{\theta}_{A}(x), f^{\theta}_{A}(x)] \rangle \mid x \in X \},\$$

is also a vague subalgebra of X.

Proof. For every $x, y \in X$, we have

$$t_A^{\theta}(x * y) = t_A(\theta(x * y)) = t_A(\theta(x) - \theta(y))$$

$$\geq \min\{t_A(\theta(x)), t_A(\theta(y))\} = \min\{t_A^{\theta}(x), t_A^{\theta}(y)\}$$

and

$$1 - f_A^{\theta}(x * y) = 1 - f_A(\theta(x * y)) = 1 - f_A(\theta(x) - \theta(y))$$

$$\geq \min\{1 - f_A(\theta(x)), 1 - f_A(\theta(y))\}$$

$$= \min\{1 - f_A^{\theta}(x), 1 - f_A^{\theta}(y)\}$$

Therefore, $V_{A^{\theta}}$ is a vague subalgebra of X.

DEPARTMENT OF MATHEMATICS, CHUNGK NATIONAL UNIVERSITY, CHUNGK, CHUNGKING 380-702, KOREA E-mail address: ghkim@cjnu.ac.kr

378