KANTOROVICH TYPE INEQUALITIES CHARACTERIZE THE CHAOTIC ORDER FOR POSITIVE OPERATORS

Young Ok Kim*, Yuki Seo** and Jun Ichi Fujii***

Received June 13, 2010; revised July 7, 2010

Abstract

In our previous note, we showed the difference version of Kantorovich type inequality with two positive parameters under the usual order. As a continuation of our preceding note, we shall show the difference type Kantorovich inequalities with two positive parameters under the chaotic order in terms of a two parameters version of the Mond-Shisha difference: Let A and B be positive and invertible operators on a Hilbert space H such that $M I \geq B \geq m I$ for some scalars $0<m<M$ and $h=\frac{M}{m}$. Then the following assertions are mutually equivalent:

(1) $\log A \geq \log B$,
(2) $\quad A^{q}+\frac{\left(M^{p+q}-m^{p+q}\right)^{2}-4 m^{q} M^{q}\left(M^{p}-m^{p}\right)\left(M^{q}-m^{q}\right)}{4 m^{q}\left(M^{q}-m^{q}\right)^{2}} I \geq B^{p} \quad$ for all $p, q>0$,
(3) $\quad A^{q}+\frac{p}{q} \frac{M^{p}-m^{p}}{\log M^{p}-\log m^{p}} \log \left(m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}\right) I \geq B^{p} \quad$ for all $p, q>0$.

1 Introduction. Throughout this paper, we consider bounded linear operators on a complex Hilbert space H. An operator T is said to be positive (denoted by $T \geq 0$) if $(T x, x) \geq 0$ for all $x \in H$. The positivity defines the usual order $A \geq B$ for selfadjoint operators A and B. For the sake of convenience, $T>0$ means T is positive and invertible. The Löwner-Heinz inequality asserts that $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for all $0 \leq \alpha \leq 1$. However $A \geq B \geq 0$ does not ensure $A^{\alpha} \geq B^{\alpha}$ for $\alpha>1$ in general. For positive invertible operators A and B, the chaotic order is defined by $\log A \geq \log B$, which is weaker than the usual order $A \geq B$.

Yamazaki [11] showed the following characterizations of the chaotic order in terms of difference type Kantorovich inequalities:
Theorem A. Let A and B be positive operators on H such that $M I \geq B \geq m I$ for some scalars $M>m>0$. Then following assertions are mutually equivalent:
(1) $\log A \geq \log B$,
(2) $A^{p}+\frac{\left(M^{p}-m^{p}\right)^{2}}{4 m^{p}} I \geq B^{p} \quad$ for all $p>0$,
(3) $A^{p}+L\left(m^{p}, M^{p}\right) \log S_{h}(p) I \geq B^{p} \quad$ for all $p>0$
where the logarithmic mean $L(m, M)=\frac{M-m}{\log M-\log m}$, the generalized Specht ratio $S_{h}(p)=$ $\frac{\left(h^{p}-1\right) h^{\frac{p}{h^{p}-1}}}{p e \log h} \quad$ and $h=\frac{M}{m}$.

Mond and Shisha[9, 10] made an estimate of the difference between the arithmetic mean and the geometric one: For positive numbers $x_{1}, \ldots, x_{n} \in[m, M]$ with $M>m>0$ and $h=\frac{M}{m}$,

$$
\sqrt[n]{x_{1} x_{2} \ldots x_{n}}+D(m, M) \geq \frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

2000 Mathematics Subject Classification. 47A63.
Key words and phrases. Kantorovich inequality, positive and invertible operator, chaotic order.
where

$$
D(m, M)=\theta M+(1-\theta) m-M^{\theta} m^{1-\theta} \quad \text { and } \theta=\log \left(\frac{h-1}{\log h}\right) \frac{1}{\log h}
$$

which we call the Mond-Shisha difference. It is known in [5] that

$$
D\left(m^{p}, M^{p}\right)=L\left(m^{p}, M^{p}\right) \log S_{h}(p) \quad \text { for } M>m>0 \quad \text { and } h=\frac{M}{m}>1
$$

In this paper, we will show difference type Kantorovich inequalities with two positive parameters under the chaotic order which is an extension of Theorem A. Among others, if A and B are positive operators such that $M I \geq B \geq m I$ for some scalars $M>m>0$ and $h=\frac{M}{m}$, then the chaotic order $\log A \geq \log B$ is equivalent to

$$
A^{q}+\frac{p}{q} L\left(m^{p}, M^{p}\right) \log \left(m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}\right) I \geq B^{p} \quad \text { for all } p, q>0
$$

2 Difference type Kantorovich inequalities. First of all, we cite the following main tool obtained in [7].

Theorem B. Let A and B be positive operators on H such that $M I \geq B \geq m I$ for some scalars $M>m>0$. If $A \geq B$, then

$$
A^{q}+C(m, M, p, q) I \geq B^{p}
$$

for all $p, q>1$.

Here the Kantorovich constant for the difference $C(m, M, p, q)$ for $p, q>1$ is defined by

$$
\begin{aligned}
& C(m, M, p, q) \\
& \quad= \begin{cases}\frac{M m^{p}-m M^{p}}{M-m}+(q-1)\left(\frac{M^{p}-m^{p}}{q(M-m)}\right)^{\frac{q}{q-1}} & \text { if } m \leq\left(\frac{M^{p}-m^{p}}{q(M-m)}\right)^{\frac{1}{q-1}} \leq M, \\
m^{p}-m^{q} & \text { if }\left(\frac{M^{p}-m^{p}}{q(M-m)}\right)^{\frac{1}{q-1}}<m, \\
M^{p}-M^{q} & \text { if } M<\left(\frac{M^{p}-m^{p}}{q(M-m)}\right)^{\frac{1}{q-1}} .\end{cases}
\end{aligned}
$$

In this section, we propose difference type Kantorovich inequalities under the chaotic order. The following theorem is a two parameters version of (2) in Theorem A.

Theorem 1. Let A and B be positive operators on H such that $M I \geq B \geq m I$ for some scalars $0<m<M$. Then following assertions are equivalent:
(1) $\log A \geq \log B$,
(2) $A^{q}+\frac{\left(M^{p+q}-m^{p+q}\right)^{2}-4 m^{q} M^{q}\left(M^{p}-m^{p}\right)\left(M^{q}-m^{q}\right)}{4 m^{q}\left(M^{q}-m^{q}\right)^{2}} I \geq B^{p} \quad$ for all $p, q>0$.

Proof. (1) \Rightarrow (2). Put $q=2$ in Theorem B. Then we have the following inequality: If $A_{1} \geq B_{1}$ and $M_{1} I \geq B_{1} \geq m_{1} I$ for $M_{1}>m_{1}>0$, then

$$
\begin{equation*}
A_{1}^{2}+\left\{\frac{M_{1} m_{1}^{p_{1}}-m_{1} M_{1}^{p_{1}}}{M_{1}-m_{1}}+\frac{\left(M_{1}^{p_{1}}-m_{1}^{p_{1}}\right)^{2}}{4\left(M_{1}-m_{1}\right)^{2}}\right\} I \geq B_{1}^{p_{1}} \tag{2.1}
\end{equation*}
$$

for all $p_{1}>1$ by definition of $C(m, M, p, q)$. And $\log A \geq \log B$ ensures that

$$
\left(B^{\frac{q}{2}} A^{q} B^{\frac{q}{2}}\right)^{\frac{1}{2}} \geq B^{q}
$$

for all $q>0$, see [1], also [2] and [3]. Put $A_{1}=\left(B^{\frac{q}{2}} A^{q} B^{\frac{q}{2}}\right)^{\frac{1}{2}}, B_{1}=B^{q}, M_{1}=M^{q}, m_{1}=m^{q}$ and $p_{1}=\frac{p+q}{q}(>1)$ for $p>0$ in (2.1). Then we have

$$
B^{\frac{q}{2}} A^{q} B^{\frac{q}{2}}+\left\{\frac{M^{q} m^{p+q}-m^{q} M^{p+q}}{M^{q}-m^{q}}+\frac{\left(M^{p+q}-m^{p+q}\right)^{2}}{4\left(M^{q}-m^{q}\right)^{2}}\right\} I \geq B^{p+q}
$$

And, we have

$$
A^{q}+\left\{\frac{M^{q} m^{q}\left(m^{p}-M^{p}\right)}{M^{q}-m^{q}}+\frac{\left(M^{p+q}-m^{p+q}\right)^{2}}{4\left(M^{q}-m^{q}\right)^{2}}\right\} B^{-q} \geq B^{p}
$$

then

$$
A^{q}+\left\{\frac{M^{q} m^{q}\left(m^{p}-M^{p}\right)}{M^{q}-m^{q}}+\frac{\left(M^{p+q}-m^{p+q}\right)^{2}}{4\left(M^{q}-m^{q}\right)^{2}}\right\} m^{-q} I \geq B^{p} \quad \text { since } \quad m^{-q} I \geq B^{-q}>0
$$

Therefore, we have

$$
A^{q}+\left\{\frac{\left(M^{p+q}-m^{p+q}\right)^{2}-4 M^{q} m^{q}\left(M^{p}-m^{p}\right)\left(M^{q}-m^{q}\right)}{4 m^{q}\left(M^{q}-m^{q}\right)^{2}}\right\} I \geq B^{p}
$$

for all $p, q>0$.
$(2) \Rightarrow(1)$. Put $q=p$ in (2), then we have

$$
A^{p}+\frac{\left(M^{p}-m^{p}\right)^{2}}{4 m^{p}} I \geq B^{p}
$$

for all $p>0$. Then, it follows from Theorem A that $A^{p}+\frac{\left(M^{p}-m^{p}\right)^{2}}{4 m^{p}} I \geq B^{p}$ for all $p>0$ implies $\log A \geq \log B$. Therefore we have the desired result.

The following theorem is a characterization of the chaotic order in terms of the Kantorovich constant for the difference.

Theorem 2. Let A and B be positive operators on H such that $M I \geq B \geq m I$ for some scalars $0<m<M$. Then the following assertions are equivalent:
(1) $\log A \geq \log B$,
(2) $A^{q}+\frac{1}{m^{r}} C\left(m^{r}, M^{r}, \frac{p+r}{r}, \frac{q+r}{r}\right) I \geq B^{p}$ for all $p, q, r>0$.

Proof. (1) \Rightarrow (2). Since $\log A \geq \log B$, it follows from the chaotic Furuta inequality [2, 3] that

$$
\left(B^{\frac{r}{2}} A^{q} B^{\frac{r}{2}}\right)^{\frac{r}{q+r}} \geq B^{r} \quad \text { for all } q, r>0
$$

Put $A_{1}=\left(B^{\frac{r}{2}} A^{q} B^{\frac{r}{2}}\right)^{\frac{r}{q+r}}, B_{1}=B^{r}, M_{1}=M^{r}, m_{1}=m^{r}, q_{1}=\frac{q+r}{r}(>1)$ and $p_{1}=\frac{p+r}{r}(>1)$ for all $p, q, r>0$ in Theorem B. Then we have

$$
B^{\frac{r}{2}} A^{q} B^{\frac{r}{2}}+C\left(m^{r}, M^{r}, \frac{p+r}{r}, \frac{q+r}{r}\right) I \geq B^{p+r}
$$

and

$$
A^{q}+C\left(m^{r}, M^{r}, \frac{p+r}{r}, \frac{q+r}{r}\right) B^{-r} \geq B^{p}
$$

Since $m^{-r} I \geq B^{-r}>0$, we have

$$
A^{q}+\frac{1}{m^{r}} C\left(m^{r}, M^{r}, \frac{p+r}{r}, \frac{q+r}{r}\right) I \geq B^{p} \quad \text { for all } p, q, r>0
$$

$(2) \Rightarrow(1)$. If we put $p=q=r$ in (2), then we have

$$
A^{p}+\frac{1}{m^{p}} C\left(m^{p}, M^{p}, 2,2\right) I \geq B^{p} \quad \text { for all } p>0
$$

and $\frac{1}{m^{p}} C\left(m^{p}, M^{p}, 2,2\right)=\frac{\left(M^{p}-m^{p}\right)^{2}}{4 m^{p}}$. Therefore we have the implication of $(2) \Rightarrow$ (1) by using Theorem A.

The following corollary is a chaotic order version of Theorem B in some sense.
Corollary 3. Let A and B be positive operators on H such that $M I \geq B \geq m I$ for some scalars $0<m<M$. If $\log A \geq \log B$, then

$$
A^{q}+\frac{1}{m} C(m, M, p+1, q+1) I \geq B^{p} \quad \text { for all } p, q>0
$$

Proof. Put $r=1$ in (2) of Theorem 2.

To obtain the following corollary, we need an estimate of $C(m, M, p, q)$ in $[6$, Lemma 2.3]:

Lemma 4. Let $M>m>0$, then

$$
M\left(M^{p-1}-m^{p-1}\right) \frac{M^{\frac{p-1}{q-1}}-m}{M-m} \geq C(m, M, p, q)
$$

for all $p, q>1$ such that

$$
m \leq\left(\frac{M^{p}-m^{p}}{q(M-m)}\right)^{\frac{1}{p-1}} \leq M
$$

Corollary 5. Let A and B be positive operators on H such that $M I \geq B \geq m I$ for some scalrs $M>m>0$. If $\log A \geq \log B$, then

$$
A^{q}+\frac{\left(M^{p}-m^{p}\right) M^{r}\left(m^{-r} M^{\frac{r p}{q}}-1\right)}{M^{r}-m^{r}} I \geq A^{q}+\frac{1}{m^{r}} C\left(m^{r}, M^{r}, \frac{r+p}{r}, \frac{r+q}{r}\right) I \geq B^{p}
$$

for all $p, q, r>0$ such that $m \leq\left(\frac{r\left(M^{p+r}-m^{p+r}\right)}{(q+r)\left(M^{r}-m^{r}\right)}\right)^{\frac{1}{p}} \leq M$.
Proof. Put $M_{1}=M^{r}, m_{1}=m^{r}, p_{1}=\frac{p+r}{r}$ and $q_{1}=\frac{q+r}{r}$ in Lemma 4. Then we have the result directly from the following inequality.

$$
\begin{aligned}
& \frac{1}{m^{r}} C\left(m^{r}, M^{r}, \frac{r+p}{r}, \frac{r+q}{r}\right) \leq \frac{1}{m^{r}} \frac{\left(M^{p}-m^{p}\right) M^{r}\left(M^{\frac{r p}{q}}-m^{r}\right)}{M^{r}-m^{r}} \\
& \text { if } m^{r} \leq\left(\frac{\left(M^{r}\right)^{\frac{p+r}{r}}-\left(m^{r}\right)^{\frac{p+r}{r}}}{\frac{q+r}{r}\left(M^{r}-m^{r}\right)}\right)^{\frac{\frac{1}{p+r}}{r}-1} \leq M^{r} .
\end{aligned}
$$

3 Mond-Shisha difference. We shall show the following characterization of the chaotic order in terms of a two parameters version of the Mond-Shisha difference.
Theorem 6. Let A and B be positive operators on H such that $M I \geq B \geq m I$ for some scalars $0<m<M$ and $h=\frac{M}{m}$. Then the following assertions are equivalent:
(1) $\log A \geq \log B$,
(2) $A^{q}+\frac{p}{q} L\left(m^{p}, M^{p}\right) \log \left(m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}\right) I \geq B^{p}$ for all $p, q>0$,
where $L(m, M)$ is the logarithmic mean.

Proof. (1) \Rightarrow (2). By Theorem 2, it follows that

$$
\begin{equation*}
A^{q}+\frac{1}{m^{r}} C\left(m^{r}, M^{r}, \frac{p+r}{r}, \frac{q+r}{r}\right) I \geq B^{p} \quad \text { for all } p, q, r>0 \tag{3.1}
\end{equation*}
$$

Noting that

$$
C(m, M, p, q) \leq \frac{M m^{p}-m M^{p}}{M-m}+(q-1)\left(\frac{M^{p}-m^{p}}{q(M-m)}\right)^{\frac{q}{q-1}} \quad \text { for all } p, q>1
$$

by definition of $C(m, M, p, q)$, we estimate the constant in (3.1):

$$
\begin{aligned}
& \frac{1}{m^{r}} C\left(m^{r}, M^{r}, \frac{p+r}{r}, \frac{q+r}{r}\right) \\
& \leq \frac{1}{m^{r}}\left(\frac{M^{r} m^{p+r}-m^{r} M^{p+r}}{M^{r}-m^{r}}+\frac{q}{r}\left(\frac{r\left(M^{p+r}-m^{p+r}\right)}{(q+r)\left(M^{r}-m^{r}\right)}\right)^{\frac{q+r}{q}}\right) \\
& =\frac{r}{q} \frac{M^{r}\left(M^{p}-m^{p}\right)}{M^{r}-m^{r}} \frac{q}{r}\left(-1+\frac{q}{q+r} \frac{M^{p+r}-m^{p+r}}{m^{r} M^{r}\left(M^{p}-m^{p}\right)}\left(\frac{r\left(M^{p+r}-m^{p+r}\right)}{(q+r)\left(M^{r}-m^{r}\right)}\right)^{\frac{r}{q}}\right) \\
& =\frac{r}{q} \frac{M^{r}\left(M^{p}-m^{p}\right)}{M^{r}-m^{r}} \frac{q}{r}\left(-1+\left(\left(\frac{q}{q+r} \frac{M^{p+r}-m^{p+r}}{m^{r} M^{r}\left(M^{p}-m^{p}\right)}\right)^{\frac{q}{r}} \frac{r\left(M^{p+r}-m^{p+r}\right)}{(q+r)\left(M^{r}-m^{r}\right)}\right)^{\frac{r}{q}}\right)
\end{aligned}
$$

Put

$$
F(r)=\left(\frac{q}{q+r} \frac{M^{p+r}-m^{p+r}}{m^{r} M^{r}\left(M^{p}-m^{p}\right)}\right)^{\frac{q}{r}} \frac{r\left(M^{p+r}-m^{p+r}\right)}{(q+r)\left(M^{r}-m^{r}\right)}
$$

and

$$
f(x)=\log \left(h^{p+x}-1\right)
$$

Since $\frac{M^{p+r}-m^{p+r}}{m^{r} M^{r}\left(M^{p}-m^{p}\right)}=\frac{h^{p+r}-1}{M^{r}\left(h^{p}-1\right)}$, we have

$$
\begin{aligned}
\lim _{r \rightarrow 0} \log \left(\frac{h^{p+r}-1}{M^{r}\left(h^{p}-1\right)}\right)^{\frac{1}{r}} & =f^{\prime}(0)-\log M=\frac{h^{p} \log h}{h^{p}-1}-\log m h \\
& =\log \frac{1}{m} h^{\frac{1}{h^{P}-1}}
\end{aligned}
$$

Hence

$$
\lim _{r \rightarrow 0} F(r)=\frac{1}{e} \frac{1}{m^{q}} h^{\frac{q}{h^{p-1}}} \frac{m^{p}\left(h^{p}-1\right)}{q \log h}=m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}
$$

and this implies

$$
\lim _{r \rightarrow 0} \frac{F(r)^{\frac{r}{q}}-1}{\frac{r}{q}}=\log \left(m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}\right)
$$

Therefore, we have

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \frac{r}{q} \frac{M^{r}\left(M^{p}-m^{p}\right)}{M^{r}-m^{r}} \frac{q}{r}\left(-1+\left(\left(\frac{q}{q+r} \frac{M^{p+r}-m^{p+r}}{m^{r} M^{r}\left(M^{p}-m^{p}\right)}\right)^{\frac{q}{r}} \frac{r\left(M^{p+r}-m^{p+r}\right)}{(q+r)\left(M^{r}-m^{r}\right)}\right)^{\frac{r}{q}}\right) \\
& =\lim _{r \rightarrow 0} \frac{r}{q} \frac{M^{r}\left(M^{p}-m^{p}\right)}{M^{r}-m^{r}} \frac{F(r)^{\frac{r}{q}}-1}{\frac{r}{q}} \\
& =\frac{1}{q} \frac{M^{p}-m^{p}}{\log M-\log m} \log \left(m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}\right) .
\end{aligned}
$$

By (3.1), we have the desired inequality

$$
A^{q}+\frac{1}{q} \frac{M^{p}-m^{p}}{\log M-\log m} \log \left(m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}\right) I \geq B^{p}
$$

for all $p, q>0$.
$(2) \Rightarrow(1)$. If $p=q$ in (2), then $m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h}$ just coinsides with the generalized Specht ratio $S_{h}(p)$ and hence we have

$$
A^{p}+L\left(m^{p}, M^{p}\right) \log S_{h}(p) I \geq B^{p} \quad \text { for all } p>0
$$

Thus it follows from Theorem A.
Remark 1. We recall the generaized Specht ratio with two parameters in [4]:

$$
S_{h}(p, q)= \begin{cases}m^{p-q} \frac{\left(h^{p}-1\right) h^{\frac{q}{h^{p}-1}}}{e q \log h} & \text { if } q \leq \frac{h^{p}-1}{\log h} \leq q h^{p} \\ m^{p-q} & \text { if } \frac{h^{p}-1}{\log h}<q \\ M^{p-q} & \text { if } q h^{p}<\frac{h^{p}-1}{\log h}\end{cases}
$$

Therefore, Theorem 6 is regarded as a characterization of the chaotic order due to a two parametres version of the Mond-Shisha difference.

Acknowledgement. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 20540166, 2008.

References

[1] T. Ando, On some operator inequalities, Math. Ann., 279(1987), 157-159, MR 89c:47019.
[2] M. Fujii, T. Furuta and E. Kamei, Operator functions associated with Furuta's inequality, Linear Alg. Appl., 179 (1993), 161-169, MR 93j:47026.
[3] M. Fujii, J. F. Jiang and E. Kamei, Characterization of chaotic order and its application to Furuta inequality, Proc. Amer. Math. Soc., 125(1997), 3655-3658.
[4] T. Furuta, J. Mićić, J. Pečarić and Y. Seo, Mond-Pec̆arić Method in Operator Inequalities, Monographs in Inequalities, 1, Element, Zagreb, 2005.
[5] J. I. Fujii and Y. Seo, Characterizations of chaotic order associated with the Mond-Shisha difference, Math. Ineq. Appl., 5(2002), 725-734.
[6] Y. O. Kim, J. I. Fujii, M. Fujii and Y. Seo, Kantorovich type inequalities for the difference with two negative parameters, preprint.
[7] Y. O. Kim, A difference version of Furuta-Giga theorem on Kantorovich type inequality and its application, Sci. Math. Japon., 68(2008), 89-94.
[8] J. Mićić, J. Pec̆arić and Y. Seo, Function order of positive operators based on the Mond-Pec̆arić method, Linear Alg. Appl., 360(2003), 15-34.
[9] B. Mond and O. Shisha, Difference and ratio inequalities in Hilbert space, "Inequalities II", (O. Shisha, ed.). Academic Press, New York, 1970, 241-249.
[10] O. Shisha and B. Mond, Bounds on difference of means, "Inequalities" (O. Shisha, ed.). Academic Press, Nwe York, 1967, 293-308.
[11] T. Yamazaki, An extension of Specht's theorem via Kantorovich inequality and related results, Math. Inequal. Appl., 3(2000), 89-96.

* Department of Mathematics, Suwon University, Bongdamoup, Whasungsi, Kyungkido 445-743, Korea.
E-mail address : yokim@skku.edu
**Faculty of Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-city, Saitama 337-8570, Japan.
E-mail address: yukis@sic.shibaura-it.ac.jp
*** Department of Arts and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
E-mail address: fujii@cc.osaka-kyoiku.ac.jp

