COMMON FIXED POINT THEOREMS OF CARISTI TYPE MAPPINGS WITH w-DISTANCE

Tomoaki Obama* and Daishi Kuroiwa**

Received April 10, 2010; revised April 28, 2010

Abstract

In this paper, we obtain common fixed point theorems of Caristi type mappings [2] by using the concept of w-distance, which is introduced by Kada, Suzuki and Takahashi [4]. Our results generalize theorems of Bhakta and Basu [1].

1 Introduction and Preliminaries In 1981, Bhakta and Basu [1] proved a common fixed point theorem of Caristi type mappings in a complete metric space. A mapping T from a metric space X to X is said to be orbitally continuous if for every $x, x_{0} \in X, T^{n_{i}+1} x$ converges to $T x_{0}$ whenever $T^{n_{i}} x$ converges to x_{0}.

Theorem 1. ([1]) Let (X, d) be a complete metric space and let S, T be two orbitally continuous mappings of X into itself. Suppose that there are two functions φ, ψ of X into $[0, \infty)$ satisfying the following condition: For any two points $x, y \in X$,

$$
d(S x, T y) \leq \varphi(x)-\varphi(S x)+\psi(y)-\psi(T y)
$$

Then S and T have a unique common fixed point.
On the other hand, in 1996, Kada, Suzuki and Takahashi [4] introduced the concept of w-distance on a metric space.

Definition 1. ([4]) Let (X, d) be a metric space. Then a function $\rho: X \times X \rightarrow[0, \infty)$ is called a w-distance on X if the following are satisfied:
(1) $\rho(x, z) \leq \rho(x, y)+\rho(y, z)$ for any $x, y, z \in X$;
(2) for any $x \in X, \rho(x, \cdot): X \rightarrow[0, \infty)$ is lower semicontinuous;
(3) for any $\varepsilon>0$, there exists $\delta>0$ such that for any $x, y, z \in X, \rho(z, x) \leq \delta$ and $\rho(z, y) \leq \delta$ imply $d(x, y) \leq \varepsilon$.

They generalized Caristi's fixed point theorem [2], Ekeland's variational principle [3] and Takahashi's nonconvex minimization theorem [6] by using w-distance ([4], [5]).

In this paper, using the concept of w-distance, we obtain common fixed point theorems on complete metric spaces. Our results generalize theorems of Bhakta and Basu [1].

The following lemma is very important in the proofs of our results.
Lemma 1. ([4]) Let (X, d) be a metric space and let ρ be a w-distance on X . Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences in X, let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be sequences in $[0, \infty)$ converging to 0 , and let $x, y, z \in X$. Then the following hold:
(i) If $\rho\left(x_{n}, y\right) \leq \alpha_{n}$ and $\rho\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $y=z$. In particular, if $\rho(x, y)=0$ and $\rho(x, z)=0$, then $y=z$;
2000 Mathematics Subject Classification. 47H10, 54E50.
Key words and phrases. Common fixed point theorem, Caristi type mapping, w-distance.
(ii) if $\rho\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $\rho\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then $\left\{y_{n}\right\}$ converges to z;
(iii) if $\rho\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for any $n, m \in \mathbb{N}$ with $m>n$, then $\left\{x_{n}\right\}$ is a Cauchy sequence;
(iv) if $\rho\left(y, x_{n}\right) \leq \alpha_{n}$ for any $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is a Cauchy sequence.

2 Generalized common fixed point theorems of Bhakta and Basu In this section, we generalize results of Bhakta and Basu by using w-distance.
Theorem 2. Let (X, d) be a complete metric space and let ρ be a w-distance on X. Let S, T be two orbitally continuous mappings of X into itself. Suppose that there are two functions φ, ψ of X into $[0, \infty)$ satisfying the following condition: For any two points $x, y \in X$,

$$
\max \{\rho(S x, T y), \rho(T y, S x)\} \leq \varphi(x)-\varphi(S x)+\psi(y)-\psi(T y)
$$

Then S and T have a unique common fixed point.
Proof. Let x_{0} and y_{0} be any two points of X. We consider the following sequences

$$
x_{n}=S^{n} x_{0}, y_{n}=T^{n} y_{0}(n \in \mathbb{N})
$$

Then we have

$$
\begin{aligned}
\rho\left(x_{i}, y_{i}\right) & =\rho\left(S x_{i-1}, T y_{i-1}\right) \\
& \leq \varphi\left(x_{i-1}\right)-\varphi\left(S x_{i-1}\right)+\psi\left(y_{i-1}\right)-\psi\left(T y_{i-1}\right) \\
& =\varphi\left(x_{i-1}\right)-\varphi\left(x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)
\end{aligned}
$$

for all $i \in\{1,2, \ldots, n\}$. So,

$$
\begin{aligned}
\sum_{i=1}^{n} \rho\left(x_{i}, y_{i}\right) & \leq \sum_{i=1}^{n}\left\{\varphi\left(x_{i-1}\right)-\varphi\left(x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)\right\} \\
& =\varphi\left(x_{0}\right)-\varphi\left(x_{n}\right)+\psi\left(y_{0}\right)-\psi\left(y_{n}\right) \\
& \leq \varphi\left(x_{0}\right)+\psi\left(y_{0}\right)
\end{aligned}
$$

Again,

$$
\begin{aligned}
\rho\left(y_{i}, x_{i+1}\right) & =\rho\left(T y_{i-1}, S x_{i}\right) \\
& \leq \varphi\left(x_{i}\right)-\varphi\left(S x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(T y_{i-1}\right) \\
& =\varphi\left(x_{i}\right)-\varphi\left(x_{i+1}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)
\end{aligned}
$$

for all $i \in\{1,2, \ldots, n\}$. So,

$$
\begin{aligned}
\sum_{i=1}^{n} \rho\left(y_{i}, x_{i+1}\right) & \leq \sum_{i=1}^{n}\left\{\varphi\left(x_{i}\right)-\varphi\left(x_{i+1}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)\right\} \\
& =\varphi\left(x_{1}\right)-\varphi\left(x_{n+1}\right)+\psi\left(y_{0}\right)-\psi\left(y_{n}\right) \\
& \leq \varphi\left(x_{1}\right)+\psi\left(y_{0}\right)
\end{aligned}
$$

Since, $\rho\left(x_{i}, x_{i+1}\right) \leq \rho\left(x_{i}, y_{i}\right)+\rho\left(y_{i}, x_{i+1}\right)$, we have

$$
\begin{aligned}
\sum_{i=1}^{n} \rho\left(x_{i}, x_{i+1}\right) & \leq \sum_{i=1}^{n}\left\{\rho\left(x_{i}, y_{i}\right)+\rho\left(y_{i}, x_{i+1}\right)\right\} \\
& \leq \varphi\left(x_{0}\right)+\varphi\left(x_{1}\right)+2 \psi\left(y_{0}\right)
\end{aligned}
$$

This gives that series $\sum_{i=1}^{\infty} \rho\left(x_{i}, x_{i+1}\right)$ is convergent. Let n and m be any two positive integers with $m>n$. Then

$$
\rho\left(x_{n}, x_{m}\right) \leq \sum_{i=n}^{m-1} \rho\left(x_{i}, x_{i+1}\right) \rightarrow 0 \text { as } n \rightarrow \infty
$$

By Lemma 1(iii), $\left\{x_{n}\right\}$ is a Cauchy sequence.
Similarly, we have

$$
\begin{aligned}
\rho\left(x_{i+1}, y_{i+1}\right) & =\rho\left(S x_{i}, T y_{i}\right) \\
& \leq \varphi\left(x_{i}\right)-\varphi\left(S x_{i}\right)+\psi\left(y_{i}\right)-\psi\left(T y_{i}\right) \\
& =\varphi\left(x_{i}\right)-\varphi\left(x_{i+1}\right)+\psi\left(y_{i}\right)-\psi\left(y_{i+1}\right)
\end{aligned}
$$

for all $i \in\{1,2, \ldots, n\}$. So,

$$
\begin{aligned}
\sum_{i=1}^{n} \rho\left(x_{i+1}, y_{i+1}\right) & \leq \sum_{i=1}^{n}\left\{\varphi\left(x_{i}\right)-\varphi\left(x_{i+1}\right)+\psi\left(y_{i}\right)-\psi\left(y_{i+1}\right)\right\} \\
& =\varphi\left(x_{1}\right)-\varphi\left(x_{n+1}\right)+\psi\left(y_{1}\right)-\psi\left(y_{n+1}\right) \\
& \leq \varphi\left(x_{1}\right)+\psi\left(y_{1}\right)
\end{aligned}
$$

Since, $\rho\left(y_{i}, y_{i+1}\right) \leq \rho\left(y_{i}, x_{i+1}\right)+\rho\left(x_{i+1}, y_{i+1}\right)$, we have

$$
\begin{aligned}
\sum_{i=1}^{n} \rho\left(y_{i}, y_{i+1}\right) & \leq \sum_{i=1}^{n}\left\{\rho\left(y_{i}, x_{i+1}\right)+d\left(x_{i+1}, y_{i+1}\right)\right\} \\
& \leq 2 \varphi\left(x_{1}\right)+\psi\left(y_{0}\right)+\psi\left(y_{1}\right)
\end{aligned}
$$

This gives that series $\sum_{i=1}^{\infty} \rho\left(y_{i}, y_{i+1}\right)$ is convergent. In the same way, $\left\{y_{n}\right\}$ is a Cauchy sequence.

Since X is complete, each of them is convergent, that is,

$$
x_{n} \rightarrow \bar{x}, y_{n} \rightarrow \bar{y}
$$

as $n \rightarrow \infty$ for some $\bar{x}, \bar{y} \in X$. Since S and T are orbitally continuous, $S x_{n} \rightarrow S \bar{x}, T y_{n} \rightarrow$ $T \bar{y}$, that is,

$$
x_{n+1} \rightarrow S \bar{x}, y_{n+1} \rightarrow T \bar{y}
$$

as $n \rightarrow \infty$. This gives that $S \bar{x}=\bar{x}$ and $T \bar{y}=\bar{y}$.
Now,

$$
\begin{aligned}
\rho(\bar{x}, \bar{x}) & \leq \rho(\bar{x}, \bar{y})+\rho(\bar{y}, \bar{x}) \\
& =\rho(S \bar{x}, T \bar{y})+\rho(T \bar{y}, S \bar{x}) \\
& \leq 2[\varphi(\bar{x})-\varphi(S \bar{x})+\psi(\bar{y})-\psi(T \bar{y})]=0
\end{aligned}
$$

and

$$
\begin{aligned}
\rho(\bar{x}, \bar{y}) & =\rho(S \bar{x}, T \bar{y}) \\
& \leq \varphi(\bar{x})-\varphi(S \bar{x})+\psi(\bar{y})-\psi(T \bar{y})=0 .
\end{aligned}
$$

Hence, by Lemma $1(\mathrm{i}), \bar{x}=\bar{y}$.

Let $\bar{z} \in X$ satisfying $S \bar{z}=\bar{z}$. Then

$$
\begin{aligned}
\rho(\bar{z}, \bar{z}) & \leq \rho(\bar{z}, \bar{x})+\rho(\bar{x}, \bar{z}) \\
& =\rho(S \bar{z}, T \bar{x})+\rho(T \bar{x}, S \bar{z}) \\
& \leq 2[\varphi(\bar{z})-\varphi(S \bar{z})+\psi(\bar{x})-\psi(T \bar{x})]=0
\end{aligned}
$$

and

$$
\begin{aligned}
\rho(\bar{z}, \bar{x}) & =\rho(S \bar{z}, T \bar{x}) \\
& \leq \varphi(\bar{z})-\varphi(S \bar{z})+\psi(\bar{x})-\psi(T \bar{x})=0 .
\end{aligned}
$$

So, $\bar{z}=\bar{x}$. Thus \bar{x} is the only fixed point of S. Similarly, we can show that \bar{x} is the only fixed point of T. This proves the theorem.

Corollary 1. Let (X, d) be a complete metric space and let ρ be a w-distance on X . Let $\mathcal{F}=\left\{S_{\alpha} \mid \alpha \in \Lambda\right\}$ be a family of orbitally continuous mappings of X into itself. Suppose that for each mapping $S \in \mathcal{F}$, there is a function φ_{S} of X into $[0, \infty)$ satisfying the following condition: For any two mappings $S, T \in \mathcal{F}$ and for any $x, y \in X$,

$$
\max \{\rho(S x, T y), \rho(T y, S x)\} \leq \varphi_{S}(x)-\varphi_{S}(S x)+\varphi_{T}(y)-\varphi_{T}(T y)
$$

Then the family \mathcal{F} have a unique common fixed point.
Proof. Let S and T be two mappings of \mathcal{F}. Then S, T and φ_{S}, φ_{T} satisfy the conditions of Theorem 2. Hence S and T have a unique common fixed point x_{0}. Let S^{\prime} be any other mapping of \mathcal{F}. Again by using Theorem $2, S$ and S^{\prime} have a unique common fixed point x_{1}. As x_{0} is the unique fixed point of $S, x_{0}=x_{1}$. Hence x_{0} is a unique common fixed point of S, T and S^{\prime}. As S^{\prime} is an arbitrary mapping of \mathcal{F}, it follows that x_{0} is a unique common fixed point of the mappings of \mathcal{F}.

Next we consider common fixed point theorems for set-valued maps. A set-valued mapping S from a metric space X into 2^{X} is said to be upper semicontinuous if for every $x \in X$ and every open set V with $S x \subset V$, there exists a neighborhood U of x such that $S z \in V$ for all $z \in U$. See [7].

Lemma 2. Let (X, d) be a metric space and let S be an upper semicontinuous mapping of X into 2^{X}. For any $x \in X, S x$ is nonempty and closed. Let $x_{0} \in X$ and $\left\{x_{n}\right\}$ is a sequence in X. Then,

$$
\left\{\begin{array}{l}
x_{n+1} \in S x_{n}(n \in \mathbb{N}) \\
x_{n} \rightarrow x_{0}
\end{array} \Rightarrow x_{0} \in S x_{0}\right.
$$

Proof. Assume that $x_{n+1} \in S x_{n}$ and $x_{n} \rightarrow x_{0}$. Suppose that $x_{0} \notin S x_{0}$. Since X is a metric space and $S x_{0}$ is a closed set, there exists two open sets G_{1} and G_{2} such that

$$
x_{0} \in G_{1}, S x_{0} \subseteq G_{2} \text { and } G_{1} \cap G_{2}=\emptyset
$$

¿From upper semicontinuity of S, there exists a neighborhood $U_{x_{0}}$ of x_{0} such that

$$
S x \subseteq G_{2} \text { for any } x \in U_{x_{0}}
$$

Since $x_{n} \rightarrow x_{0}, x_{n} \in U_{x_{0}}$ for large enough n, therefore $x_{n+1} \in S x_{n} \subseteq G_{2}$, and we have $x_{0} \in \operatorname{cl} G_{2}$. This is a contradiction.

Theorem 3. Let (X, d) be a complete metric space and let ρ be a w-distance on X . Let S, T be two upper semicontinuous mappings of X into 2^{X}. For any $x \in X, S x$ and $T x$ are nonempty and closed. Suppose that there are two functions φ, ψ of X into $[0, \infty)$ satisfying the following condition: For any two points $x, y \in X$ and for any $u \in S x, v \in T y$,

$$
\max \{\rho(u, v), \rho(v, u)\} \leq \varphi(x)-\varphi(u)+\psi(y)-\psi(v)
$$

Then S and T have a unique common fixed point.
Proof. Let x_{0} and y_{0} be any two points of X and $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences satisfying

$$
x_{n} \in S x_{n-1}, y_{n} \in T y_{n-1}(n \in \mathbb{N})
$$

Then we have

$$
\begin{gathered}
\rho\left(x_{i}, y_{i}\right) \leq \varphi\left(x_{i-1}\right)-\varphi\left(x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right) \\
\rho\left(y_{i}, x_{i+1}\right) \leq \varphi\left(x_{i}\right)-\varphi\left(x_{i+1}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)
\end{gathered}
$$

and

$$
\rho\left(x_{i+1}, y_{i+1}\right) \leq \varphi\left(x_{i}\right)-\varphi\left(x_{i+1}\right)+\psi\left(y_{i}\right)-\psi\left(y_{i+1}\right)
$$

for all $i \in \mathbb{N}$. In similar way to proof of Theorem $2,\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences. Since X is complete, each of them is convergent, that is,

$$
x_{n} \rightarrow \bar{x}, y_{n} \rightarrow \bar{y}
$$

as $n \rightarrow \infty$ for some $\bar{x}, \bar{y} \in X$. By Lemma 2 , we have that $\bar{x} \in S \bar{x}$ and $\bar{y} \in T \bar{y}$.
Now,

$$
\begin{aligned}
\rho(\bar{x}, \bar{x}) & \leq \rho(\bar{x}, \bar{y})+\rho(\bar{y}, \bar{x}) \\
& \leq 2[\varphi(\bar{x})-\varphi(\bar{x})+\psi(\bar{y})-\psi(\bar{y})]=0
\end{aligned}
$$

and

$$
\rho(\bar{x}, \bar{y}) \leq \varphi(\bar{x})-\varphi(\bar{x})+\psi(\bar{y})-\psi(\bar{y})=0 .
$$

Hence, by Lemma 1(i), $\bar{x}=\bar{y}$. We obtain $\bar{x} \in S \bar{x} \cap T \bar{x}$.
Let $\bar{z} \in X$ satisfying $\bar{z} \in S \bar{z}$. Then

$$
\begin{aligned}
\rho(\bar{z}, \bar{z}) & \leq \rho(\bar{z}, \bar{x})+\rho(\bar{x}, \bar{z}) \\
& \leq 2[\varphi(\bar{z})-\varphi(\bar{z})+\psi(\bar{x})-\psi(\bar{x})]=0
\end{aligned}
$$

and

$$
\rho(\bar{z}, \bar{x}) \leq \varphi(\bar{z})-\varphi(\bar{z})+\psi(\bar{x})-\psi(\bar{x})=0
$$

So, $\bar{z}=\bar{x}$. Thus \bar{x} is the only fixed point of S. Similarly, we can show that \bar{x} is the only fixed point of T. This proves the theorem.

Corollary 2. Let (X, d) be a complete metric space and let ρ be a w-distance on X. Let $\mathcal{F}=\left\{S_{\alpha} \mid \alpha \in \Lambda\right\}$ be a family of upper semicontinuous mappings of X into 2^{X}. For any $x \in X$ and $S \in \mathcal{F}, S x$ is nonempty and closed. Suppose that there is a family $\left\{\varphi_{S} \mid S \in \mathcal{F}\right\}$ of functions of X into $[0, \infty)$ satisfying the following condition: For any two mappings $S, T \in \mathcal{F}$ and for any $x, y \in X$ and $u \in S x, v \in T y$,

$$
\max \{\rho(u, v), \rho(v, u)\} \leq \varphi_{S}(x)-\varphi_{S}(u)+\varphi_{T}(y)-\varphi_{T}(v)
$$

Then the family \mathcal{F} have a unique common fixed point.

3 More common fixed point theorems Let (X, d) be a metric space and let ρ be w-distance on X. In this section, we consider the following condition

$$
\max \{\rho(x, y), \rho(y, x)\}+\rho(x, S x)+\rho(y, T y) \leq \varphi(x)-\varphi(S x)+\psi(y)-\psi(T y)
$$

instead of

$$
\max \{\rho(S x, T y), \rho(T y, S x)\} \leq \varphi(x)-\varphi(S x)+\psi(y)-\psi(T y)
$$

for orbitally continuous mappings S and T of X into itself. The inequality

$$
\max \{\rho(S x, T y), \rho(T y, S x)\} \leq \max \{\rho(x, y), \rho(y, x)\}+\rho(x, S x)+\rho(y, T y)
$$

does not hold in general. For example, let $X=\{a, b, c\}, d(x, y)=1$ if $x \neq y, d(x, y)=0$ if $x=y, \rho(a, b)=3, \rho(x, y)=d(x, y)$ whenever $(x, y) \neq(b, a), S a=S b=a, S c=b$ and $T a=T c=a, T b=c$. If $(x, y)=(c, a)$,

$$
\max \{\rho(S x, T y), \rho(T y, S x)\}>\max \{\rho(x, y), \rho(y, x)\}+\rho(x, S x)+\rho(y, T y)
$$

Theorem 4. Let (X, d) be a complete metric space and let ρ be a w-distance on X. Let S, T be two orbitally continuous mappings of X into itself. Suppose that there are two functions φ, ψ of X into $[0, \infty)$ satisfying the following condition: For any two points $x, y \in X$,

$$
\max \{\rho(x, y), \rho(y, x)\}+\rho(x, S x)+\rho(y, T y) \leq \varphi(x)-\varphi(S x)+\psi(y)-\psi(T y)
$$

Then S and T have a unique common fixed point.
Proof. Let x_{0} and y_{0} be any two points of X. We consider the following sequences

$$
x_{n}=S^{n} x_{0}, y_{n}=T^{n} y_{0}(n \in \mathbb{N})
$$

Then we have

$$
\begin{aligned}
\rho\left(x_{i-1}, x_{i}\right) & \leq \max \left\{\rho\left(x_{i-1}, y_{i-1}\right), \rho\left(y_{i-1}, x_{i-1}\right)\right\}+\rho\left(x_{i-1}, x_{i}\right)+\rho\left(y_{i-1}, y_{i}\right) \\
& \leq \varphi\left(x_{i-1}\right)-\varphi\left(x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)
\end{aligned}
$$

for all $i \in\{1,2, \ldots, n\}$. So,

$$
\begin{aligned}
\sum_{i=1}^{n} \rho\left(x_{i-1}, x_{i}\right) & \leq \sum_{i=1}^{n}\left\{\varphi\left(x_{i-1}\right)-\varphi\left(x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)\right\} \\
& =\varphi\left(x_{0}\right)-\varphi\left(x_{n}\right)+\psi\left(y_{0}\right)-\psi\left(y_{n}\right) \\
& \leq \varphi\left(x_{0}\right)+\psi\left(y_{0}\right)
\end{aligned}
$$

This gives that series $\sum_{i=1}^{\infty} \rho\left(x_{i-1}, x_{i}\right)$ is convergent, and $\left\{x_{n}\right\}$ is a Cauchy sequence in similar way to proof of Theorem 2. Also we have $\left\{y_{n}\right\}$ is a Cauchy sequence.

Since X is complete, each of them is convergent, that is,

$$
x_{n} \rightarrow \bar{x}, y_{n} \rightarrow \bar{y}
$$

as $n \rightarrow \infty$ for some $\bar{x}, \bar{y} \in X$. Since S and T are orbitally continuous, $S x_{n} \rightarrow S \bar{x}, T y_{n} \rightarrow$ $T \bar{y}$, that is,

$$
x_{n+1} \rightarrow S \bar{x}, y_{n+1} \rightarrow T \bar{y}
$$

as $n \rightarrow \infty$. This gives that $S \bar{x}=\bar{x}$ and $T \bar{y}=\bar{y}$.
Now,

$$
\begin{aligned}
\max \{\rho(\bar{x}, \bar{y}), \rho(\bar{y}, \bar{x})\} & \leq \max \{\rho(\bar{x}, \bar{y}), \rho(\bar{y}, \bar{x})\}+\rho(\bar{x}, S \bar{x})+\rho(\bar{y}, T \bar{y}) \\
& \leq \varphi(\bar{x})-\varphi(S \bar{x})+\psi(\bar{y})-\psi(T \bar{y})=0,
\end{aligned}
$$

then $\rho(\bar{x}, \bar{y})=\rho(\bar{y}, \bar{x})=0$. And also

$$
\rho(\bar{x}, \bar{x}) \leq \rho(\bar{x}, \bar{y})+\rho(\bar{y}, \bar{x})=0,
$$

hence $\rho(\bar{x}, \bar{y})=\rho(\bar{x}, \bar{x})=0$. By Lemma $1(\mathrm{i}), \bar{x}=\bar{y}$.
Let $\bar{z} \in X$ satisfying $S \bar{z}=\bar{z}$. Then

$$
\begin{aligned}
\max \{\rho(\bar{z}, \bar{x}), \rho(\bar{x}, \bar{z})\} & \leq \max \{\rho(\bar{z}, \bar{x}), \rho(\bar{x}, \bar{z})\}+\rho(\bar{z}, S \bar{z})+\rho(\bar{x}, T \bar{x}) \\
& \leq \varphi(\bar{z})-\varphi(S \bar{z})+\psi(\bar{x})-\psi(T \bar{x})=0 .
\end{aligned}
$$

In the same way, we have $\bar{z}=\bar{x}$. Thus \bar{x} is the only fixed point of S. Similarly, we can show that \bar{x} is the only fixed point of T. This proves the theorem.

Corollary 3. Let (X, d) be a complete metric space and let ρ be a w-distance on X. Let $\mathcal{F}=\left\{S_{\alpha} \mid \alpha \in \Lambda\right\}$ be a family of orbitally continuous mappings of X into itself. Suppose that there is a family $\left\{\varphi_{S} \mid S \in \mathcal{F}\right\}$ of functions of X into $[0, \infty)$ satisfying the following condition: For any two mappings $S, T \in \mathcal{F}$ and for any $x, y \in X$,

$$
\max \{\rho(x, y), \rho(y, x)\}+\rho(x, S x)+\rho(y, T y) \leq \varphi_{S}(x)-\varphi_{S}(S x)+\varphi_{T}(y)-\varphi_{T}(T y) .
$$

Then the family \mathcal{F} have a unique common fixed point.
The proof is similar to Corollary 1, and omitted.
Theorem 5. Let (X, d) be a complete metric space and let ρ be a w-distance on X . Let S, T be two upper semicontinuous mappings of X into 2^{X}. For any $x \in X, S x$ and $T x$ are nonempty and closed. Suppose that there are two functions φ, ψ of X into $[0, \infty)$ satisfying the following condition: For any two points $x, y \in X$ and for any $u \in S x, v \in T y$,

$$
\max \{\rho(x, y), \rho(y, x)\}+\rho(x, u)+\rho(y, v) \leq \varphi(x)-\varphi(u)+\psi(y)-\psi(v)
$$

Then S and T have a unique common fixed point.
Proof. Let x_{0} and y_{0} be any two points of X and $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences satisfying

$$
x_{n} \in S x_{n-1}, y_{n} \in T y_{n-1}(n \in \mathbb{N})
$$

Then we have

$$
\rho\left(x_{i-1}, x_{i}\right) \leq \varphi\left(x_{i-1}\right)-\varphi\left(x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)
$$

and

$$
\rho\left(y_{i-1}, y_{i}\right) \leq \varphi\left(x_{i-1}\right)-\varphi\left(x_{i}\right)+\psi\left(y_{i-1}\right)-\psi\left(y_{i}\right)
$$

for all $i \in \mathbb{N}$. In similar way to proof of Theorem $4,\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences. Since X is complete, each of them is convergent, that is,

$$
x_{n} \rightarrow \bar{x}, y_{n} \rightarrow \bar{y}
$$

as $n \rightarrow \infty$ for some $\bar{x}, \bar{y} \in X$. By Lemma 2 , we have that $\bar{x} \in S \bar{x}$ and $\bar{y} \in T \bar{y}$.

Now,

$$
\begin{aligned}
\max \{\rho(\bar{x}, \bar{y}), \rho(\bar{y}, \bar{x})\} & \leq \max \{\rho(\bar{x}, \bar{y}), \rho(\bar{y}, \bar{x})\}+\rho(\bar{x}, \bar{x})+\rho(\bar{y}, \bar{y}) \\
& \leq \varphi(\bar{x})-\varphi(\bar{x})+\psi(\bar{y})-\psi(\bar{y})=0,
\end{aligned}
$$

then $\rho(\bar{x}, \bar{y})=\rho(\bar{y}, \bar{x})=0$. And also

$$
\rho(\bar{x}, \bar{x}) \leq \rho(\bar{x}, \bar{y})+\rho(\bar{y}, \bar{x})=0,
$$

hence $\rho(\bar{x}, \bar{y})=\rho(\bar{x}, \bar{x})=0$. By Lemma $1(\mathrm{i}), \bar{x}=\bar{y}$. We obtain $\bar{x} \in S \bar{x} \cap T \bar{x}$.
Let $\bar{z} \in X$ satisfying $\bar{z} \in S \bar{z}$. Then

$$
\begin{aligned}
\max \{\rho(\bar{z}, \bar{x}), \rho(\bar{x}, \bar{z})\} & \leq \max \{\rho(\bar{z}, \bar{x}), \rho(\bar{x}, \bar{z})\}+\rho(\bar{z}, \bar{z})+\rho(\bar{x}, \bar{x}) \\
& \leq \varphi(\bar{z})-\varphi(\bar{z})+\psi(\bar{x})-\psi(\bar{x})=0 .
\end{aligned}
$$

In the same way, we have $\bar{z}=\bar{x}$. Thus \bar{x} is the only fixed point of S. Similarly, we can show that \bar{x} is the only fixed point of T. This proves the theorem.

Corollary 4. Let (X, d) be a complete metric space and let ρ be a w-distance on X. Let $\mathcal{F}=\left\{S_{\alpha} \mid \alpha \in \Lambda\right\}$ be a family of upper semicontinuous mappings of X into 2^{X}. For any $x \in X$ and $S \in \mathcal{F}, S x$ is nonempty and closed. Suppose that there is a family $\left\{\varphi_{S} \mid S \in \mathcal{F}\right\}$ of functions of X into $[0, \infty)$ satisfying the following condition: For any two mappings $S, T \in \mathcal{F}$ and for any $x, y \in X$ and $u \in S x, v \in T y$,

$$
\max \{\rho(x, y), \rho(y, x)\}+\rho(x, u)+\rho(y, v) \leq \varphi_{S}(x)-\varphi_{S}(u)+\varphi_{T}(y)-\varphi_{T}(v) .
$$

Then the mappings of \mathcal{F} have a unique common fixed point.
Acknowledgements The authors are grateful to Prof. W. Takahashi for many comments and suggestions improved the quality of the paper.

References

[1] P. C. Bhakta, T. Basu, Some fixed point theorems on metric spaces, J. Indian Math. Soc. 45 (1981), 399-404.
[2] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251.
[3] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979), 443-474.
[4] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japon. 44 (1996), 381-391.
[5] T. Suzuki, W. Takahashi, Fixed point theorems and characterizations of metric completeness, Topol. Methods Nonlinear Anal. 8 (1996), 371-382.
[6] W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, in Fixed Point Theory and its Application (J.B.Baillon and M.Thera, Eds.), Pitman Res. Notes in Math. Ser. \#252, 1991, pp.397-406.
[7] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
*Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, JAPAN
${ }^{* *}$ Interdisciplinary Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, JAPAN
E-mail address: kuroiwa@math.shimane-u.ac.jp

