ATOMS IN CI-ALGEBRAS AND SINGULAR CI-ALGEBRAS

BIAO LONG MENG

Received April 4, 2010

ABSTRACT. In the present paper we continue to study CI-algebras. At first we introduce the notion of atoms in CI-algebras and investigate its elementary properties. Next we introduce the notion of singular CI-algebras and give a number of its properties. Especially we discuss relations between singular CI-algebras and Abelian groups.

1. Introduction.

The study of BCK/BCI-algebras was initiated by K.Iséki in 1966 as a generalization of propositional logic (see [4, 5, 6]). There exist several generalizations of BCK/BCI-algebras, as such BCH-algebras[3], dual BCK-algebras, dual BCI-algebras, d-algebras[12], etc. Especially, H.S.Kim and Y.H.Kim^[7] introduced the notion of *BE*-algebras as another generalization of dual BCK-algebras. They provided an equivalent condition of the filters in BE-algebras. S.S.Ahn and Y.H.Kim in [1], S.S.Ahn and K.S.So in [2] introduced the notion of ideals in BE-algebras and gave several descriptions of ideals. H.S.Kim and K.J.Lee in [8] generalized the notions of upper sets and generalized upper sets and introduced extended upper sets, by using this notion they gave several descriptions of filters in *BE*-algebras. A. Walendziak in [13] introduced the notion of commutative *BE*-algebras and discussed some of its properties. Recently we in [9] and [10] introduced the notion of CI-algebras as a generalization of BE-algebras and dual BCI/BCH-algebras, and studied some of its important properties and relations with BE-algebras, especially proved the notion of ideals is equivalent to one of filters in transitive BE-algebras. In [11] we introduced the notion of closed filters in CI-algebras and built elementary theory of closed filter. We give a procedure to generate a closed filter by a nonempty subset of a CI-algebra. In the present paper we continue to study CI-algebras. At first we introduce the notion of atoms in CI-algebras and investigate its important properties. Next we introduce the notion of singular CI-algebras and give a number of its properties. Especially we discuss relations between CI-algebras and Abelian groups. The definitions and terminologies used in this paper are standard.

2. Preliminaries

Definition 2.1[9]. A *CI*-algebra is an algebra (X; *, 1) of type (2,0) satisfying the following axioms: for any $x, y, z \in X$

(CI1) x * x = 1;

- (CI2) 1 * x = x;
- (CI3) x * (y * z) = y * (x * z).

²⁰⁰⁰ Mathematics Subject Classification. 03G25; 06F35; 03B52.

Key words and phrases. CI-algebra, atom, singular CI-algebra, adjoint group, isomorphism.

In any CI-algebra X one can define a binary relation \leq by $x \leq y$ if and only if $x * y = 1 \forall x, y \in X$.

Lemma 2.3[9]. In a CI-algebra X, the following hold: for any $x, y \in X$

- (1) x * ((x * y) * y) = 1;
- (2) (x * y) * 1 = (x * 1) * (y * 1);
- (3) $1 \le x$ implies x = 1.

Definition 2.4[9]. Let X be a CI-algebra. A nonempty subset S of X is said to be a subalgebra of X if it satisfies: $x, y \in S$ implies $x * y \in S$ for any $x, y \in X$.

A nonempty subset F of X is said to be a filter of X if it satisfies

- (F1) $1 \in F$;
- (F2) for any $x, y \in X$, $x * y \in F$ and $x \in F$ imply $y \in F$.

A filter F of X is said to closed if $x \in F$ implies $x * 1 \in F$.

Lemma 2.5[11]. Let X be a CI-algebra. A filter F of X is closed if and only if F is a subalgebra of X.

3. Atoms in CI-algebras

In this section we first introduce the notion of atoms in CI-algebras and next study some of its elementary properties.

Definition 3.1. Let a be an element of a CI-algebra X. a is said to be an *atom* in X if for any $x \in X$, a * x = 1 implies a = x. Denote the set of all atoms in X by A(X), which is called the *singular part* of X.

Obviously $1 \in A(X)$, so $A(X) \neq \emptyset$.

Example 3.2. Let $X = \{1, a, b, c, d\}$ with the following Cayley table:

*	1	a	b	c	d
1	1	a	b	С	d
a	1	1	b	1	d
b	1	c	1	c	d
c	1	1	b	1	d
d	d	d	d	d	1

1 and d are atoms in X, but a, b, c are not atoms of X.

Proposition 3.3. Let X be a CI-algebra. Then $a \in X$ is an atom in X if and only if it satisfies for any $x \in X$, a = (a * x) * x.

Proof. Let a be an atom in X and $x \in X$. It follows from a * ((a * x) * x) = 1 that a = (a * x) * x.

Conversely suppose that $a \in X$ satisfies for any $x \in X$, a = (a * x) * x. If a * x = 1, then

$$a = (a * x) * x = 1 * x = x,$$

hence a is an atom in X. The proof is complete.

Proposition 3.4. Let X be a CI-algebra. If $a, b \in X$ are atoms in X, then the following are true:

- (1) a = (a * 1) * 1;
- (2) (a * b) * 1 = b * a;
- (3) ((a * b) * 1) * 1 = a * b.

Proof. (1) is an immediate consequence of Proposition 3.3. By Lemma 2.3(2),(CI3) and (1) we have

$$(a * b) * 1 = (a * 1) * (b * 1) = b * ((a * 1) * 1) = b * a.$$

(2) holds.

(3) follows from (2). The proof is complete.

Proposition 3.5. Let X be a CI-algebra. If a and b are atoms in X, then the following are true:

- (1) for any $x \in X$, (a * x) * (b * x) = b * a;
- (2) for any $x \in X$, (a * x) * b = (b * x) * a;
- (3) for any $x \in X$, (a * x) * (y * b) = (b * x) * (y * a).

Proof. Since $a, b \in A(X)$, it follows from Proposition 3.3 that

$$(a * x) * (b * x) = b * ((a * x) * x) = b * a.$$

(1) holds.

By using (1) and Proposition 3.2 we have

$$(a * x) * b = (a * x) * ((b * x) * x) = (b * x) * ((a * x) * x) = (b * x) * a.$$

(2) holds.

By (2) we have

$$(a * x) * (y * b) = y * [(a * x) * b] = y * [(b * x) * a] = (b * x) * (y * a).$$

The proof is complete.

Open problem: Let X be a CI-algebra. Is the set A(X) of all atoms of X a subalgebra of X? When?

4. Singular CI-algebras

In this section we introduce the notion of singular CI-algebras and give a number of its properties. Especially we discuss relations between CI-algebras and Abelian groups.

Definition 4.1. A CI-algebra X is said to be *singular* if every element of X is an atom of X.

Example 4.2. Let $X = \{1, a, b, c\}$ with the following Cayley table:

*	1	a	b
1	1	a	b
a	b	1	a
b	a	b	1

Then X is a singular CI-algebra. X in the example 3.2 is not singular, because a and b are not atoms.

Proposition 4.3. Let X be a CI-algebra. Then X is singular if and only if X satisfies the condition

(D) for any $x, y, z \in X$, (x * y) * z = (z * y) * x.

Proof. Suppose X is singular. It follows from Proposition 3.4(2) that the condition (D) holds for X.

Conversely suppose that X satisfies the condition (D). If x * y = 1, then by (D) we have

$$x = 1 * x = (y * y) * x = (x * y) * y = 1 * y = y.$$

Hence x is an atom of X, and X is singular. The proof is complete.

Proposition 4.4. Let (X; *, 1) be a singular CI-algebra. Define x + y := (x * 1) * y for any $x, y \in X$. Then (X; +, 1) is an Abelian group with identity 1.

Proof. It follows from the condition (D) that x + y = y + x for any $x, y \in X$, and so the operation + is commutative.

Because for any $x \in X$, x + 1 = (x * 1) * 1 = x, so 1 is identity. Since for any $x, y, z \in X$,

(x+y)+z	=	$\{[(x*1)*y]*1\}*z$	by Definition
	=	(z * 1) * [(x * 1) * y]	by (D)
	=	(x*1)*[(z*1)*y]	by $(CI3)$
	=	(x*1)*[(y*1)*z]	by (D)
	=	x + (y + z),	

and so the operation + satisfies associative law.

Because x + (x * 1) = (x * 1) * (x * 1) = 1, so -x = x * 1 is the inverse of x. Therefore (X; +, 1) is an Abelian group with identity 1.

The group (X; +, 1) is called the adjoint group of CI-algebra (X; *, 1).

Proposition 4.5. Let (X; +, 1) be an Abelian group with identity 1. Define x * y := y - x for any $x, y \in X$. Then (X; *, 1) is a singular CI-algebra, whose adjoint group is exactly (X; +, 1).

Proof. Because for any $x \in X$, x * x = x - x = 1 and 1 * x = x - 1 = x, so (X; *, 1) satisfies (CI1) and (CI2).

For any $x, y, z \in X$, we have x * (y * z) = (z - y) - x = (z - x) - y = y * (x * z), hence (X; *, 1) satisfies (CI3). Therefore (X; *, 1) is a CI-algebra.

For any $x, y, z \in X$, we have

$$\begin{array}{rcl} (x*y)*z &=& z-(y-x)=z-y+x=x-y+z\\ &=& x-(y-z)=(y-z)*x=(z*y)*x. \end{array}$$

Hence (X; *, 1) is singular.

For the singular CI-algebra (X; *, 1), define $x \oplus y = (x * 1) * y$ for $x, y \in X$. By Proposition 3.8 we know that $(X; \oplus, 1)$ is the adjoint group of (X; *, 1). Because

$$x \oplus y = (x * 1) * y = y - (x * 1) = y - (1 - x) = y + x = x + y$$

 $(X; \oplus, 1)$ is exactly (X; +, 1). The proof is complete.

The CI-algebra (X; *, 1) is called the adjoint algebra of group (X; +, 1).

Proposition 4.6. Let (X; *, 1) be a singular CI-algebra, (X; +, 1) the adjoint group of (X; *, 1). Then the adjoint algebra of (X; +, 1) is exactly (X; *, 1).

Proof. For the adjoint group (X; +, 1), define x *' y = y - x for $x, y \in X$. By Proposition 3.9 we know that (X; *', 1) is the adjoint algebra of (X; +, 1). Because

$$x *' y = y - x = y + (x * 1) = (y * 1) * (x * 1) = x * ((y * 1) * 1) = x * y,$$

hence (X; *', 1) is exactly (X; *, 1). The proof is complete.

Proposition 4.7. Let (X; *, 1) and (X'; *', 1') be singular CI-algebras. Let (X; +, 1) and (X'; +', 1') be adjoint groups of (X; *, 1) and (X'; *', 1'), respectively. Then (X; *, 1) is isomorphic to (X'; *', 1') if and only if (X; +, 1) is isomorphic to (X; *, 1).

Proof. Suppose that (X; *, 1) is isomorphic to (X'; *', 1'). Let $\varphi : X \to X'$ be an isomorphism from (X; *, 1) to (X'; *', 1') such that $\varphi(x) = x'$ for any $x \in X$. Then for any $x, y \in X$,

$$\varphi(x+y) = \varphi((x*1)*y) = (\varphi(x)*'\varphi(1))*'\varphi(y) = \varphi(x)+'\varphi(y),$$

and so (X; +, 1) is isomorphic to (X'; +', 1').

Conversely Suppose that (X; +, 1) is isomorphic to (X'; +', 1'). Let $\varphi : X \to X'$ be an isomorphism from (X; +, 1) to (X'; +', 1') such that $\varphi(x) = x'$ for any $x \in X$. Then for any $x, y \in X$,

$$\varphi(x*y) = \varphi(y-x) = (\varphi(y) - '\varphi(x) = \varphi(x) *'\varphi(y),$$

and so (X; *, 1) is isomorphic to (X'; *', 1'). The proof is complete.

Proposition 4.8. Every subalgebra of a singular CI-algebra is a closed filter.

Proof. Let X be a CI-algebra and F a subalgebra of X. By Lemma 2.6 it suffices to prove that F is a filter of X. Obviously, $1 \in F$. If $x * y \in F$ and $x \in F$, then $1 * x \in F$ because F is a subalgebra X. Also $x * y \in F$ implies $y * x = 1 * (x * y) \in F$ by Proposition 3.4(2). Thus by Proposition 3.4(3) we have

$$y = 1 * y = (x * x) * (1 * y) = (y * x) * (1 * x) \in F,$$

hence F is a filter of X.

References

- S. S. Ahn and Y. H. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. Online e-2008(2008), No.2, 279-285.
- [2] S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math.Soc. 46(2009), No.2, 281-287.
- [3] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), No.2, part 2, 313-320.
- [4] K. Iséki, On BCI-algebras, Methematics Seminar Notes, 8(1980), 125-130.
- [5] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica. 21(1976) 351-366.
- [6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica. 23(1978) 1-26.
- [7] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. Online e-2006(2006), 1199-1202.
- [8] H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Submitted
- [9] B. L. Meng, CI-algebras, Sci. Math. Japon., 71, No.1 (2010), 11-17; e2009, 695-701.
- [10] B. L. Meng, On Filters in *BE*-algebras, Sci. Math. Japon., **71**, No.2(2010), 201-207; online, e-2010, 105-111.

BIAO LONG MENG

- [11] B. L. Meng, Closed Filters in CI-algebras, Sci. Math. Japon., online, e-2010, 265-270.
- [12] J. Negger and H. S. Kim , On d-algebras, Math Slovaca ${\bf 40}(1999),$ No.1, 19-26.
- [13] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. Online e-2008, 585-588.

Biao Long MENG

Department of Basic Courses, Xian University of Science and Technology, Xian 710054, P.R.CHINA Email address: mengbl_100@yahoo.com.cn