ON SOME REGULAR SUBSEMIGROUPS OF SEMIGROUPS

Niovi Kehayopulu, Michael Tsingelis

Received April 20, 2010

Abstract

For a subsemigroup T of a semigroup $S, \operatorname{Reg}(T)$ denotes the set of regular elements of $T, \operatorname{LReg}(T)$ the set of left regular elements of T and $\operatorname{reg}(T)$ the set of elements of T which are regular in S. Characterizations of a semigroup S for which $\operatorname{reg}(S e)=\operatorname{Reg}(S e)$ for each idempotent element e of S have been given in [3]. This type of semigroups is the semigroups S in which each element of the subsemigroup $S e$ of S which is regular in S is a left regular element of $S e$ for every idempotent element e of S. Moreover, this type of semigroups is the semigroups S in which the regular elements are left regular, equivalently the sets of regular and completely regular elements coincide [3]. In the present paper we prove that the type of semigroups mentioned above is actually the semigroups in which $\operatorname{reg}(S a)=\operatorname{reg}(S a)$ for every $a \in S$.

1. Introduction and prerequisites. If S is a semigroup, an element a of S is called regular if there exists $x \in S$ such that $a=a x a$ [1], it is called completely regular if there exists $x \in S$ such that $a=a^{2} x a^{2}$ [4]. Keeping the notation given in [3], for a subsemigroup T of $S, \operatorname{Reg}(T)$ denotes the set of regular elements of $T, \operatorname{LReg}(T)$ (resp. $R \operatorname{Reg}(T)$) the set of left (resp. right) regular elements of T, $\operatorname{reg}(T)$ the set of elements of T which are regular in S, and $G r(T)$ the set of completely regular elements of T. As usual, $E(S)$ denotes the set of idempotent elements of S. The aim in [3] was to characterize the semigroups S such that $\operatorname{reg}(S e)=\operatorname{Reg}(S e)$ for every idempotent element e of S (cf. [3; p. 357]) and the characterization is given in the Theorem and the Corollary of the paper mentioned below. The right analogue of the results in [3] also hold.

Theorem. For a semigroup S the following conditions are equivalent:
(1) $\operatorname{reg}(S e)=G r(S e) \forall e \in E(S)$
(2) $\operatorname{reg}(S e)=\operatorname{Reg}(S e) \forall e \in E(S)$
(3) $\operatorname{reg}(S e) \subseteq L \operatorname{Reg}(S e) \forall e \in E(S)$
(4) $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$
(5) $\operatorname{Reg}(S)=G r(S)$.

Corollary. Each of the following conditions on a semigroup S is equivalent to the above conditions (1)-(5):
(6) $\operatorname{reg}(e S f)=G r(e S f) \forall e, f \in E(S)$
(7) $\operatorname{reg}(e S f)=\operatorname{Reg}(e S f) \forall e, f \in E(S)$
(8) $r e g(e S f) \subseteq L R e g(e S f) \forall e, f \in E(S)$.

According to the Theorem and the Corollary above, the paper in [3] investigates regular subsets of semigroups related to their idempotents.

In the present note we characterize the semigroups S in which $\operatorname{reg}(S a)=\operatorname{Reg}(S a)$ for every $a \in S$ and show that the type of semigroups related with their idempotents considered

Key words and phrases. Semigroup, ordered semigroup, regular, left regular, completely regular, idempotent element.
in [3] is actually the type of semigroups in which $\operatorname{reg}(S a)=\operatorname{Reg}(S a)$ for every $a \in S$. The right analogue of Theorem 1 below also holds. Combining the Theorem 1 of the present note with the Theorem in [3], we obtain the following:
(1) $\operatorname{reg}(S e)=\operatorname{Reg}(S e) \forall e \in E(S) \Longleftrightarrow \operatorname{reg}(S a)=\operatorname{Reg}(S a) \forall a \in S$
(2) $\operatorname{reg}(S e) \subseteq L \operatorname{Reg}(S e) \forall e \in E(S) \Longleftrightarrow r e g(S a) \subseteq L \operatorname{Reg}(S a) \forall a \in S$
(3) $r e g(S e)=G r(S e) \forall e \in E(S) \Longleftrightarrow r e g(S a)=G r(S a) \forall a \in S$.

Moreover, the Theorem in [3] together with the Theorem 1 of the present paper give 10 equivalent conditions regarding to regularity. As far as the Corollary in [3] is concerned, we remark that taking into account the Theorem 2 of the present paper we obtain the following:
(4) $r e g(e S f)=G r(e S f) \forall e, f \in E(S) \Longleftrightarrow \operatorname{reg}(a S b)=G r(a S b) \forall a, b \in S$
(5) $\operatorname{reg}(e S f)=\operatorname{Reg}(e S f) \forall e, f \in E(S) \Longleftrightarrow \operatorname{reg}(a S b)=\operatorname{Reg}(a S b) \forall a, b \in S$
(6) $\operatorname{reg}(e S f) \subseteq L \operatorname{Reg}(e S f) \forall e, f \in E(S) \Longleftrightarrow r e g(a S b) \subseteq L \operatorname{Reg}(a S b) \forall a, b \in S$.

The Theorem 2 of this paper adds 8 additional conditions to the 10 conditions of regularity mentioned above.

2. Main results

Theorem 1. In a semigroup S, the following are equivalent:
(1) $\operatorname{reg}(S a)=G r(S a) \forall a \in S$
(2) $\operatorname{reg}(S a)=\operatorname{Reg}(S a) \forall a \in S$
(3) $\operatorname{reg}(S a) \subseteq L \operatorname{Reg}(S a) \forall a \in S$
(4) $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$
(5) $\operatorname{Reg}(S)=G r(S)$.

For the proof of Theorem 1 we need the following Lemma which shows that the Lemma 1 in [3] holds for any element a and not only for idempotent elements e of S. Its proof is directly by definitions and no use of the \mathcal{H}-classes of S is needed.
Lemma. If S is a semigroup then, for every element $a \in S$, we have

$$
G r(S a)=G r(S) \cap S a .
$$

Proof. Let $a \in S$. As one can easily see, for any subsemigroup T of S, we have $\operatorname{Gr}(T) \subseteq$ $G r(S) \cap T$. Since $S a$ is a subsemigroup of S, we have $G r(S a) \subseteq G r(S) \cap S a$.
Let now $b \in G r(S) \cap S a$. Since $b \in G r(S)$, we have $b=b^{2} s b^{2}$ for some $s \in S$. Since $b \in S a$, we get $b=t a$ for some $t \in S$. Therefore we have

$$
b=b^{2} s b^{2}=b^{2} s\left(b^{2} s b^{2}\right) b=b^{2}\left(s b^{2} s b\right) b^{2}=b^{2}\left(s b^{2} s t a\right) b^{2}
$$

Then, since $b \in S a$ and $s b^{2} s t a \in S a$, we obtain $b \in G r(S a)$.
Proof of Theorem 1. (1) $\Longrightarrow(2)$. Let $a \in S$. Since $S a$ is a subsemigroup of S, we have $G r(S a) \subseteq \operatorname{Reg}(S a) \subseteq \operatorname{reg}(S a)$. Then, by $(1), \operatorname{reg}(S a)=\operatorname{Reg}(S a)$.
$(2) \Longrightarrow(3)$. Let $a \in S$ and $b \in \operatorname{reg}(S a)$. Then by $(2), b \in \operatorname{Reg}(S a)$, that is $b \in S a$ and $b=b x b$ for some $x \in S a$. Since $b \in S$ and $b=b x b, x \in S$, we have $b \in \operatorname{Reg}(S)$. On the other hand, $b \in S x b$, so $b \in S x b \cap \operatorname{Reg}(S)$. Since $x b \in S$, $S x b$ is a subsemigroup of S, so $r e g(S x b):=S x b \cap \operatorname{Reg}(S)$, hence $b \in \operatorname{reg}(S x b)$. Since $x b \in S$, by (2), reg $(S x b)=\operatorname{Reg}(S x b)$, so $b \in \operatorname{Reg}(S x b)$. Then $b \in S x b$ and $b=b y b$ for some $y \in S x b$. Then $y=s x b$ for some $s \in S$ and $b=b(s x b) b=b s x b^{2}$. Since $x \in S a$, we have $x=t a$ for some $t \in S$. Thus we have $b=(b s t a) b^{2}$. Since $b \in S a, b=(b s t a) b^{2}$ and $b s t a \in S a$, we obtain $b \in L \operatorname{Reg}(S a)$.
$(3) \Longrightarrow(4)$. Let $b \in \operatorname{Reg}(S)$. Then $b \in S$ and $b=b x b$ for some $x \in S$. As $b \in S x b$, we have $b \in S x b \cap \operatorname{Reg}(S)$. Since $S x b$ is a subsemigroup of S, $\operatorname{reg}(S x b):=S x b \cap \operatorname{Reg}(S)$, so $b \in \operatorname{reg}(S x b)$. Then, by $(3), b \in L \operatorname{Reg}(S x b)$, that is $b \in S x b$ and $b=z b^{2}$ for some $z \in S x b$. Since $b \in S$ and $b=z b^{2} ; z \in S$, we have $b \in L \operatorname{Reg}(S)$.
$(4) \Longrightarrow(5)$. Cf. (iv) $\Longrightarrow(v)$ in [3].
$(5) \Longrightarrow(1)$. Let $a \in S$. Since $S a$ is a subsemigroup of S, $\operatorname{reg}(S a):=S a \cap \operatorname{Reg}(S)$. Then, by $(5), \operatorname{reg}(S a)=S a \cap G r(S)$. By the Lemma, $S a \cap G r(S)=G r(S)$, thus we have $r e g(S a)=G r(S a)$.

Theorem 2. For a semigroup S, the following are equivalent:
(1) $r e g(a S b)=G r(a S b) \forall a, b \in S$
(2) $\operatorname{reg}(a S a)=G r(a S a) \forall a \in S$
(3) $\operatorname{reg}(a S b)=\operatorname{Reg}(a S b) \forall a, b \in S$
(4) $\operatorname{reg}(a S a)=\operatorname{Reg}(a S a) \forall a \in S$
(5) $r e g(a S b) \subseteq L R e g(a S b)$ (resp. $\operatorname{reg}(a S b) \subseteq R R e g(a S b)) \forall a, b \in S$
(6) $\operatorname{reg}(a S a) \subseteq L \operatorname{Reg}(a S a)($ resp. $\operatorname{reg}(a S a) \subseteq R R e g(a S a)) \forall a \in S$
(7) $\operatorname{reg}(S) \subseteq L \operatorname{Reg}(S)($ resp. $\operatorname{reg}(S) \subseteq R \operatorname{Reg}(S)) \forall a \in S$
(8) $\operatorname{Reg}(S)=\operatorname{Gr}(S)$.

Proof. The implications $(1) \Longrightarrow(2),(3) \Longrightarrow(4)$ and $(5) \Longrightarrow(6)$ are obvious. For the implication $(7) \Longrightarrow(8)$ we refer to [3].
$(2) \Longrightarrow(3)$. Let $a, b \in S$ and $c \in \operatorname{reg}(a S b)$. Since $a S b$ is a subsemigroup of S, we have $r e g(a S b):=a S b \cap \operatorname{Reg}(S)$. Since $c \in \operatorname{Reg}(S)$, we get $c=c x c$ for some $x \in S$, so

$$
c \in c S c \cap \operatorname{Reg}(S):=\operatorname{reg}(c S c)=G r(c S c)
$$

by (2). That is, $c=c^{2} y c^{2}$ for some $y \in c S c$. On the other hand, $c \in a S b$ implies $c=a z b$ for some $z \in S$. Thus we have $c=c(a z b) y(a z b) c=c(a z b y a z b) c$. Since $c \in a S b$ and $c=c(a z b y a z b) c ; a z b y a z b \in a S b$, we have $c \in \operatorname{Reg}(a S b)$.
(4) $\Longrightarrow(5)$. Let $a, b \in S$ and $c \in \operatorname{reg}(a S b):=a S b \cap \operatorname{Reg}(S)$. Since $c \in \operatorname{Reg}(S)$, we have $c=c x c$ for some $x \in S$. Then $c \in c S c \cap \operatorname{Reg}(S):=\operatorname{reg}(c S c)=\operatorname{Reg}(c S c)$ by (4). Since $c \in \operatorname{Reg}(c S c)$, we have $c=c y c$ for some $y \in c S c$. Since $y \in c S c$, we get $y=c z c$ for some $z \in S$. Then

$$
c=c(c z c) c=c^{2} z c^{2}=c^{2} z\left(c^{2} z c^{2}\right) c=\left(c^{2} z c^{2} z c\right) c^{2} .
$$

Since $c \in a S b$, we get $c=a t b$ for some $t \in S$. Thus we have

$$
c^{2} z c^{2} z c=(a t b) c z c^{2} z(a t b)=a\left(t b c z c^{2} z a t\right) b \in a S b .
$$

Since $c \in a S b$ and $c=\left(c^{2} z c^{2} z c\right) c^{2}$, with $c^{2} z c^{2} z c \in a S b$, we have $c \in L \operatorname{Reg}(a S b)$. Similarly we obtain $c \in \operatorname{Reg}(a S b)$.
$(6) \Longrightarrow(7)$. Suppose $\operatorname{reg}(a S a) \subseteq L \operatorname{Reg}(a S a)$ for each $a \in S$. Let now $b \in \operatorname{Reg}(S)$. Since $b=b x b$ for some $x \in S$ and $b \in b S b$, we have $b \in b S b \cap \operatorname{Reg}(S):=r e g(b S b)$. By hypothesis, $r e g(b S b) \subseteq L \operatorname{Reg}(b S b)$, so $b \in L \operatorname{Reg}(b S b) \subseteq L \operatorname{Reg}(S)$. The rest of the proof is similar.
$(8) \Longrightarrow(1)$. Let $a, b \in S$ and $c \in \operatorname{reg}(a S b):=a S b \cap \operatorname{Reg}(S)$. Then $c \in \operatorname{Reg}(S)=G r(S)$ by (8), so $c=c^{2} x c^{2}$ for some $x \in S$. Hence we have

$$
c=c^{2} x c^{2}=c\left(c^{2} x c^{2}\right) x\left(c^{2} x c^{2}\right) c=c^{2}\left(c x c^{2} x c^{2} x c\right) c^{2} .
$$

Since $c \in a S b$, we have $c=a y b$ for some $y \in S$. Then we obtain

$$
c x c^{2} x c^{2} x c=(a y b) x c^{2} x c^{2} x(a y b)=a\left(y b x c^{2} x c^{2} x a y\right) b \in a S b .
$$

Since $c \in a S b, c=c^{2}\left(c x c^{2} x c^{2} x c\right) c^{2}$, where $c x c^{2} x c^{2} x c \in a S b$, we have $c \in G r(a S b)$. The inclusion $\operatorname{Gr}(a S b) \subseteq \operatorname{Reg}(a S b)$ is obvious, and the proof of the theorem is complete.

Remark. The right analogue of the Theorem 1 and Corollary 2 also hold. For Theorem 1, for example, its right analogue reads as follows: In a semigroup S the following are equivalent: (1) $\operatorname{reg}(a S)=G r(a S) \forall a \in S$. (2) $\operatorname{reg}(a S)=\operatorname{Reg}(a S) \forall a \in S$. (3) $\operatorname{reg}(a S) \subseteq$ $R \operatorname{Reg}(a S) \forall a \in S$. (4) $\operatorname{Reg}(S) \subseteq R \operatorname{Reg}(S)(5) \operatorname{Reg}(S)=\operatorname{Gr}(S)$.
Note. As far as the case of ordered semigroups is concerned, keeping the notation and terminology given in [2], one gets the following and their right analogue which add some additional conditions in the results given in [2].

Theorem 3. Let S be an ordered semigroup. We consider the statements:
(1) $\operatorname{reg}(S a]=G r(S a] \forall a \in S$
(2) $\operatorname{reg}(S a]=\operatorname{Reg}(S a] \forall a \in S$
(3) $\operatorname{reg}(S a] \subseteq L \operatorname{Reg}(S a] \forall a \in S$
(4) $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$
(5) $\operatorname{Reg}(S)=\operatorname{Gr}(S)$.

Then $(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(4)$ and $(5) \Longrightarrow(1)$.
It remains as an open problem if $(4) \Longrightarrow(5)$.
Theorem 4. For a semigroup S, the following are equivalent:
(1) $\operatorname{reg}(a S b]=G r(a S b] \forall a, b \in S$
(2) $r e g(a S a]=G r(a S a] \forall a \in S$
(3) $r e g(a S b]=\operatorname{Reg}(a S b] \forall a, b \in S$
(4) $\operatorname{reg}(a S a]=\operatorname{Reg}(a S a] \forall a \in S$
(5) $\operatorname{reg}(a S b] \subseteq L R e g(a S b]$ (resp. $r e g(a S b] \subseteq R \operatorname{Reg}(a S b]) \forall a, b \in S$
(6) $\operatorname{reg}(a S a] \subseteq L R e g(a S a]$ (resp. $\operatorname{reg}(a S a] \subseteq R R e g(a S a]) \forall a \in S$
(7) $\operatorname{reg}(S) \subseteq L \operatorname{Reg}(S)($ resp. $\operatorname{reg}(S) \subseteq R \operatorname{Reg}(S)) \forall a \in S$
(8) $\operatorname{Reg}(S)=\operatorname{Gr}(S)$.

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys No. 7, American Mathematical Society, Providence, R.I. 1961. xv+224 pp.
[2] N. Kehayopulu, M. Tsingelis, The set of regular elements in ordered semigroups, Sci. Math. Jpn., 72, (2010), 61-66.
[3] Mitrović, M., Regular subsets of semigroups related to their idempotents, Semigroup Forum 70, no. 3 (2005), 356-360.
[4] M. Petrich, Introduction to Semigroups, Merrill Research and Lecture Series, Charles E. Merrill Publishing Co., Columbus, Ohio, 1973. viii+198 pp.

University of Athens
Department of Mathematics 15784 Panepistimiopolis
Athens, Greece
e-mail: nkehayop@math.uoa.gr

