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Abstract. For a subsemigroup T of a semigroup S, Reg(T ) denotes the set of regular
elements of T , LReg(T ) the set of left regular elements of T and reg(T ) the set of
elements of T which are regular in S. Characterizations of a semigroup S for which
reg(Se) = Reg(Se) for each idempotent element e of S have been given in [3]. This type
of semigroups is the semigroups S in which each element of the subsemigroup Se of S
which is regular in S is a left regular element of Se for every idempotent element e of S.
Moreover, this type of semigroups is the semigroups S in which the regular elements are
left regular, equivalently the sets of regular and completely regular elements coincide
[3]. In the present paper we prove that the type of semigroups mentioned above is
actually the semigroups in which reg(Sa) = reg(Sa) for every a ∈ S.

1. Introduction and prerequisites. If S is a semigroup, an element a of S is
called regular if there exists x ∈ S such that a = axa [1], it is called completely regular
if there exists x ∈ S such that a = a2xa2 [4]. Keeping the notation given in [3], for a
subsemigroup T of S, Reg(T ) denotes the set of regular elements of T , LReg(T ) (resp.
RReg(T )) the set of left (resp. right) regular elements of T , reg(T ) the set of elements of
T which are regular in S, and Gr(T ) the set of completely regular elements of T . As usual,
E(S) denotes the set of idempotent elements of S. The aim in [3] was to characterize the
semigroups S such that reg(Se) = Reg(Se) for every idempotent element e of S (cf. [3;
p. 357]) and the characterization is given in the Theorem and the Corollary of the paper
mentioned below. The right analogue of the results in [3] also hold.

Theorem. For a semigroup S the following conditions are equivalent:
(1) reg(Se) = Gr(Se) ∀ e ∈ E(S)
(2) reg(Se) = Reg(Se) ∀ e ∈ E(S)
(3) reg(Se) ⊆ LReg(Se) ∀ e ∈ E(S)
(4) Reg(S) ⊆ LReg(S)
(5) Reg(S) = Gr(S).

Corollary. Each of the following conditions on a semigroup S is equivalent to the above
conditions (1)–(5):

(6) reg(eSf) = Gr(eSf) ∀ e, f ∈ E(S)
(7) reg(eSf) = Reg(eSf) ∀ e, f ∈ E(S)
(8) reg(eSf) ⊆ LReg(eSf) ∀ e, f ∈ E(S).
According to the Theorem and the Corollary above, the paper in [3] investigates regular

subsets of semigroups related to their idempotents.
In the present note we characterize the semigroups S in which reg(Sa) = Reg(Sa) for

every a ∈ S and show that the type of semigroups related with their idempotents considered
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in [3] is actually the type of semigroups in which reg(Sa) = Reg(Sa) for every a ∈ S. The
right analogue of Theorem 1 below also holds. Combining the Theorem 1 of the present
note with the Theorem in [3], we obtain the following:

(1) reg(Se) = Reg(Se) ∀ e ∈ E(S) ⇐⇒ reg(Sa) = Reg(Sa) ∀ a ∈ S
(2) reg(Se) ⊆ LReg(Se) ∀ e ∈ E(S) ⇐⇒ reg(Sa) ⊆ LReg(Sa) ∀ a ∈ S
(3) reg(Se) = Gr(Se) ∀ e ∈ E(S) ⇐⇒ reg(Sa) = Gr(Sa) ∀ a ∈ S.

Moreover, the Theorem in [3] together with the Theorem 1 of the present paper give 10
equivalent conditions regarding to regularity. As far as the Corollary in [3] is concerned, we
remark that taking into account the Theorem 2 of the present paper we obtain the following:

(4) reg(eSf) = Gr(eSf) ∀ e, f ∈ E(S) ⇐⇒ reg(aSb) = Gr(aSb) ∀ a, b ∈ S
(5) reg(eSf) = Reg(eSf) ∀ e, f ∈ E(S) ⇐⇒ reg(aSb) = Reg(aSb) ∀ a, b ∈ S
(6) reg(eSf) ⊆ LReg(eSf) ∀ e, f ∈ E(S) ⇐⇒ reg(aSb) ⊆ LReg(aSb) ∀ a, b ∈ S.

The Theorem 2 of this paper adds 8 additional conditions to the 10 conditions of regularity
mentioned above.

2. Main results

Theorem 1. In a semigroup S, the following are equivalent:
(1) reg(Sa) = Gr(Sa) ∀ a ∈ S
(2) reg(Sa) = Reg(Sa) ∀ a ∈ S
(3) reg(Sa) ⊆ LReg(Sa) ∀ a ∈ S
(4) Reg(S) ⊆ LReg(S)
(5) Reg(S) = Gr(S).

For the proof of Theorem 1 we need the following Lemma which shows that the Lemma
1 in [3] holds for any element a and not only for idempotent elements e of S. Its proof is
directly by definitions and no use of the H-classes of S is needed.

Lemma. If S is a semigroup then, for every element a ∈ S, we have

Gr(Sa) = Gr(S) ∩ Sa.

Proof. Let a ∈ S. As one can easily see, for any subsemigroup T of S, we have Gr(T ) ⊆
Gr(S) ∩ T . Since Sa is a subsemigroup of S, we have Gr(Sa) ⊆ Gr(S) ∩ Sa.
Let now b ∈ Gr(S)∩ Sa. Since b ∈ Gr(S), we have b = b2sb2 for some s ∈ S. Since b ∈ Sa,
we get b = ta for some t ∈ S. Therefore we have

b = b2sb2 = b2s(b2sb2)b = b2(sb2sb)b2 = b2(sb2sta)b2.
Then, since b ∈ Sa and sb2sta ∈ Sa, we obtain b ∈ Gr(Sa). 2

Proof of Theorem 1. (1) =⇒ (2). Let a ∈ S. Since Sa is a subsemigroup of S, we have
Gr(Sa) ⊆ Reg(Sa) ⊆ reg(Sa). Then, by (1), reg(Sa) = Reg(Sa).
(2) =⇒ (3). Let a ∈ S and b ∈ reg(Sa). Then by (2), b ∈ Reg(Sa), that is b ∈ Sa and
b = bxb for some x ∈ Sa. Since b ∈ S and b = bxb, x ∈ S, we have b ∈ Reg(S). On the
other hand, b ∈ Sxb, so b ∈ Sxb ∩ Reg(S). Since xb ∈ S, Sxb is a subsemigroup of S, so
reg(Sxb) := Sxb∩Reg(S), hence b ∈ reg(Sxb). Since xb ∈ S, by (2), reg(Sxb) = Reg(Sxb),
so b ∈ Reg(Sxb). Then b ∈ Sxb and b = byb for some y ∈ Sxb. Then y = sxb for some
s ∈ S and b = b(sxb)b = bsxb2. Since x ∈ Sa, we have x = ta for some t ∈ S. Thus we
have b = (bsta)b2. Since b ∈ Sa, b = (bsta)b2 and bsta ∈ Sa, we obtain b ∈ LReg(Sa).
(3) =⇒ (4). Let b ∈ Reg(S). Then b ∈ S and b = bxb for some x ∈ S. As b ∈ Sxb, we
have b ∈ Sxb ∩ Reg(S). Since Sxb is a subsemigroup of S, reg(Sxb) := Sxb ∩ Reg(S), so
b ∈ reg(Sxb). Then, by (3), b ∈ LReg(Sxb), that is b ∈ Sxb and b = zb2 for some z ∈ Sxb.
Since b ∈ S and b = zb2; z ∈ S, we have b ∈ LReg(S).
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(4) =⇒ (5). Cf. (iv)=⇒ (v) in [3].

(5) =⇒ (1). Let a ∈ S. Since Sa is a subsemigroup of S, reg(Sa) := Sa ∩ Reg(S).
Then, by (5), reg(Sa) = Sa ∩ Gr(S). By the Lemma, Sa ∩ Gr(S) = Gr(S), thus we have
reg(Sa) = Gr(Sa). 2

Theorem 2. For a semigroup S, the following are equivalent:
(1) reg(aSb) = Gr(aSb) ∀ a, b ∈ S
(2) reg(aSa) = Gr(aSa) ∀ a ∈ S
(3) reg(aSb) = Reg(aSb) ∀ a, b ∈ S
(4) reg(aSa) = Reg(aSa) ∀ a ∈ S
(5) reg(aSb) ⊆ LReg(aSb) (resp. reg(aSb) ⊆ RReg(aSb)) ∀ a, b ∈ S
(6) reg(aSa) ⊆ LReg(aSa) (resp. reg(aSa) ⊆ RReg(aSa)) ∀ a ∈ S
(7) reg(S) ⊆ LReg(S) (resp. reg(S) ⊆ RReg(S)) ∀ a ∈ S
(8) Reg(S) = Gr(S).

Proof. The implications (1) =⇒ (2), (3) =⇒ (4) and (5) =⇒ (6) are obvious. For the
implication (7) =⇒ (8) we refer to [3].

(2) =⇒ (3). Let a, b ∈ S and c ∈ reg(aSb). Since aSb is a subsemigroup of S, we have
reg(aSb) := aSb ∩ Reg(S). Since c ∈ Reg(S), we get c = cxc for some x ∈ S, so

c ∈ cSc ∩ Reg(S) := reg(cSc) = Gr(cSc)

by (2). That is, c = c2yc2 for some y ∈ cSc. On the other hand, c ∈ aSb implies c = azb
for some z ∈ S. Thus we have c = c(azb)y(azb)c = c(azbyazb)c. Since c ∈ aSb and
c = c(azbyazb)c; azbyazb ∈ aSb, we have c ∈ Reg(aSb).

(4) =⇒ (5). Let a, b ∈ S and c ∈ reg(aSb) := aSb ∩ Reg(S). Since c ∈ Reg(S), we have
c = cxc for some x ∈ S. Then c ∈ cSc ∩ Reg(S) := reg(cSc) = Reg(cSc) by (4). Since
c ∈ Reg(cSc), we have c = cyc for some y ∈ cSc. Since y ∈ cSc, we get y = czc for some
z ∈ S. Then

c = c(czc)c = c2zc2 = c2z(c2zc2)c = (c2zc2zc)c2.

Since c ∈ aSb, we get c = atb for some t ∈ S. Thus we have

c2zc2zc = (atb)czc2z(atb) = a(tbczc2zat)b ∈ aSb.

Since c ∈ aSb and c = (c2zc2zc)c2, with c2zc2zc ∈ aSb, we have c ∈ LReg(aSb). Similarly
we obtain c ∈ RReg(aSb).

(6) =⇒ (7). Suppose reg(aSa) ⊆ LReg(aSa) for each a ∈ S. Let now b ∈ Reg(S). Since
b = bxb for some x ∈ S and b ∈ bSb, we have b ∈ bSb∩Reg(S) := reg(bSb). By hypothesis,
reg(bSb) ⊆ LReg(bSb), so b ∈ LReg(bSb) ⊆ LReg(S). The rest of the proof is similar.

(8) =⇒ (1). Let a, b ∈ S and c ∈ reg(aSb) := aSb ∩ Reg(S). Then c ∈ Reg(S) = Gr(S) by
(8), so c = c2xc2 for some x ∈ S. Hence we have

c = c2xc2 = c(c2xc2)x(c2xc2)c = c2(cxc2xc2xc)c2.

Since c ∈ aSb, we have c = ayb for some y ∈ S. Then we obtain

cxc2xc2xc = (ayb)xc2xc2x(ayb) = a(ybxc2xc2xay)b ∈ aSb.

Since c ∈ aSb, c = c2(cxc2xc2xc)c2, where cxc2xc2xc ∈ aSb, we have c ∈ Gr(aSb). The
inclusion Gr(aSb) ⊆ Reg(aSb) is obvious, and the proof of the theorem is complete. 2
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Remark. The right analogue of the Theorem 1 and Corollary 2 also hold. For Theorem
1, for example, its right analogue reads as follows: In a semigroup S the following are
equivalent: (1) reg(aS) = Gr(aS) ∀ a ∈ S. (2) reg(aS) = Reg(aS) ∀ a ∈ S. (3) reg(aS) ⊆
RReg(aS) ∀ a ∈ S. (4) Reg(S) ⊆ RReg(S) (5) Reg(S) = Gr(S).

Note. As far as the case of ordered semigroups is concerned, keeping the notation and
terminology given in [2], one gets the following and their right analogue which add some
additional conditions in the results given in [2].

Theorem 3. Let S be an ordered semigroup. We consider the statements:
(1) reg(Sa] = Gr(Sa] ∀ a ∈ S
(2) reg(Sa] = Reg(Sa] ∀ a ∈ S
(3) reg(Sa] ⊆ LReg(Sa] ∀ a ∈ S
(4) Reg(S) ⊆ LReg(S)
(5) Reg(S) = Gr(S).

Then (1) =⇒ (2) =⇒ (3) =⇒ (4) and (5) =⇒ (1).
It remains as an open problem if (4) =⇒ (5).
Theorem 4. For a semigroup S, the following are equivalent:

(1) reg(aSb] = Gr(aSb] ∀ a, b ∈ S
(2) reg(aSa] = Gr(aSa] ∀ a ∈ S
(3) reg(aSb] = Reg(aSb] ∀ a, b ∈ S
(4) reg(aSa] = Reg(aSa] ∀ a ∈ S
(5) reg(aSb] ⊆ LReg(aSb] (resp. reg(aSb] ⊆ RReg(aSb]) ∀ a, b ∈ S
(6) reg(aSa] ⊆ LReg(aSa] (resp. reg(aSa] ⊆ RReg(aSa]) ∀ a ∈ S
(7) reg(S) ⊆ LReg(S) (resp. reg(S) ⊆ RReg(S)) ∀ a ∈ S
(8) Reg(S) = Gr(S).
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