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Abstract. This paper considers a linear regression model with possible multicollinear-
ity. When the matrix AtA is nearly singular, the least squares estimator (LSE) gets
unstable. Typical solutions for this problem include the generalized ridge estimator
due to Hoerl and Kennard(1970a,b) and its derivatives. Among them, we focus on
an adaptive ridge estimator discussed by Wang and Chow(1990) under normality. We
assume the error term e is distributied as a spherically symmetric distributiuon and
derive a sufficient condition so that the estimator is superior to the LSE under mean
squared error (MSE) and quadratic loss. Several numerical examples are also given.

1 Introduction Let us consider the following linear regression model

(1.1) y = Aβ + e with E(e) = 0 and V(e) = σ2I,

where y : n × 1, A : n × p, rank A = p , β : p × 1, and e is an vector of random errors. By
the Gauss-Markov theorem, the least squares estimator (LSE)

(1.2) β̂ = (AtA)−1Aty

is the best linear unbiased estimator of β, which has the covariance matrix

V(β̂) = σ2(AtA)−1.

When the column vectors of A are approximately linearly dependent, which is often the
case in practice, the matrix AtA is nearly singular and the estimate is unstable. This
problem is known as the one of multicollinearity. Various estimators that modify the LSE
have been proposed so far from various points of view. A typical example is the generalized
ridge estimator due to Hoerl and Kennard (1970a,b), which modifies the LSE by replacing
AtA with a more stable matrix. To state it precisely, let a spectral decomposition of AtA
be

AtA = ΦΛΦt,

where Φ is a p × p orthogonal matrix and

Λ = diag(λ1, · · · , λp) with λ1 ≥ · · · ≥ λp.

Then the generalized ridge estimator can be written as

(1.3) β̂(K) = (AtA + ΦKΦt)−1Aty,
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where K = diag(k1, · · · , kp) is a nonrandom diagonal matrix suitably chosen. The simplest
choice for K is K = kI (k > 0). This choice yields the (original) ridge estimator β̂(kI) =
(AtA + kI)−1Aty, which has been widely employed in applications. While the generalized
ridge estimator thus defined is biased unless K = O, it can be superior to the LSE in terms
of mean squared error (MSE), which is a typical criterion. The MSE of an estimator b is
defined as E[(b − β)t(b − β)]. In fact, the MSE of β̂(K) attains its minimum at

ki = σ2/β2
i , i = 1, · · · , p,

which is smaller than that of the LSE. However, in most cases, the quantities σ2/β2
i are

unknown and β̂(K) is not feasible.
Many authors have proposed feasible versions of β̂(K) by replacing K with an appropri-

ate estimator. Among others, the estimator studied by Vinod and Ullah (1980) and Ullah
Vinod and Kadiyala (1980) is basic, which is defined as β̂(K) with

(1.4) ki =
f1σ̂

2

β̂2
i − f2σ̂2/λi

= k̃i(f1,f2)

and is called an adaptive generalized ridge estimator. Here, β̂i is the i-th element of the
LSE β̂, fi’s are nonrandom constants and

σ̂2 = ||y − Aβ̂||2/m with m = n − p.

In the above two papers, the asymptotic evaluation of the MSE of β̂(K) was given under the
assumption that the error term is distributed as the normal distribution Nn(0, σ2I). They
derived a region of (f1, f2), on which β̂(K) is asymptotically superior to the LSE in terms of
MSE. This result was further strengthened by Wang and Chow (1990), where they obtained
a finite-sample domination result. More precisely, they considered the adaptive generalized
ridge estimator β̂(K) with the following K matrix, in which β̂2

i in (1.4) is replaced with
β̂

t
β̂:

(1.5) ki =
l1σ̂

2

β̂
t
β̂ − l2σ̂2/λi

= k̂i(l1,l2),

where l1 and l2 are nonrandom constants, and derived the following sufficient condition for
β̂(K) to dominate the LSE in terms of MSE under normality,

(i) 0 ≤ l1 ≤ 2(n − p)
n − p + 2

(
λ2

p

p∑
i=1

λ−2
i − 2

)
(ii) l1 ≥ l2.(1.6)

The aim of this paper is to extend the result of Wang and Chow (1990) to the case where
the error term e is distributed as a spherically symmetric distribution. More specifically,
we assume that e has the probability density function (pdf) of the form

p(e) = σ−nf(ete/σ2) for some f : [0,∞) → [0,∞),

(see, for example, Muirhead (1982)), and derive a sufficient condition so that β̂(K) is
superior to the LSE. As an effeciency criterion, we apopt the quadratic loss function in
addtion to the MSE. Since the result of Wang and Chow(1990) is limited to the MSE, our
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result is an extension of Wang and Chow (1990) from the view point of both distributional
assumption and efficiency criterion. Since the LSE is not only best linear unbiased, but
also minimax under the quadratic loss, it follows from our result that the adaptive ridge
estimator is also minimax. Maruyama and Strawderman (2005) considered another but
similar class of biased estimators and derived a sufficient condition for the estimators to
be minimax. Their class contains a class of generalized Bayes minimax estimators under
normality. See also Firinguetti (1999), in which the finite-sample efficiency of an adaptive
generalized ridge estimator is studied focusing on the evaluation of moments.

Our main theorem is stated in Section 2, and the proof in Section 3. In Section 4, we
give several numerical examples.

2 Main Result Denote by Lj (j = 0, 1) the following quadratic loss function

(2.1) Lj(b, β, σ2) = (b − β)t(AtA)j(b − β)/σ2

and by Rj the corresponding risk functions

(2.2) Rj(b, β, σ2) = E[Lj(b,β, σ2)],

where (AtA)0 is interpreted as the identity matrix. The risk functions of the LSE β̂ are
easily calculated as R0(β̂, β, σ2)) = tr[(AtA)−1] and R1(β̂, β, σ2)) = p, respectively. It is
obvious that comparison by L0 is equivalent to that by the MSEs. While L0 is a kind of
distance between b and β, note that L1 can be rewritten as L1(b, β, σ2) = ||Ab−Aβ||2/σ2.

The main result below gives a region of (l1, l2), on which the inequality

(2.3) Rj(β̂(K),β, σ2) ≤ Rj(β̂, β, σ2)

holds uniformly for β and σ2(j = 0, 1).

Theorem. In the model (1.1), if l1, l2 in (1.5) satisfy

(i) 0 ≤ l1 ≤ 2(n − p)
n − p + 2

(
λ2

p

λj
1

p∑
i=1

λj−2
i − 2

)
,

(ii) l1 ≥ l2,

then the inequality (2.3) holds. That is, the corresponding adaptive generalized ridge esti-
mator dominates the LSE under the loss function Lj.

The proof is given in the next section. The conditions (i) and (ii) with j = 0 is the same
as (1.6), in other words the result of Wang and Chow(1990). Thus their result remains valid
even under spherically symmetric error. As is stated in the previous section, the adaptive
ridge estimator satisfying the conditions (i) and (ii) is a minimax estimator under both L0

and L1.

3 Technical Details We begin with reducing the model to the canonical form adopted
by Maruyama and Strawderman (2005). Let Q be an n × n orthogonal matrix such that

QA =
(

Λ1/2Φt

O

)
or equivalently, A = Qt

(
Λ1/2

O

)
Φt.

Needless to say, the latter expression gives a singular value decomposition of A. Let Λ∗ be
the following n × n diagonal matrix:

Λ∗ = diag(λ1, · · · , λp, 1, · · · , 1).
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Using Q and Λ∗, we transform y into(
x
z

)
= Λ1/2

∗ Qy.

Then the vector (xt, zt)t has the joint pdf of the form

σ−n|Λ|1/2f [{(x − α)tΛ(x − α) + ztz}/σ2],

where α = Φtβ. In other words, (xt, zt)t is distributed as an elliptically symmetric distri-
bution. It is important to note that

x = Φtβ̂ = α̂,

(3.1) ztz = mσ̂2 = (y − Aβ̂)t(y − Aβ̂) = S.

Thus the problem of estimating β is transformed into that of estimating α based on α̂ and
S.

By using these quantities, we can rewrite respectively the LSE β̂ as α̂ and the adaptive
generalized ridge estimator β̂(K) as

α̂(K) = (Λ + K)−1Λα̂

with

K = diag(k1, · · · , kp) and ki =
l1σ̂

2

α̂tα̂ − l2σ̂2/λi

= k̂(l1,l2).

Correspondingly, the loss functions are also rewritten as

Lj(a,α, σ2) = (a − α)tΛj(a − α)/σ2(j = 0, 1).

In the proof below, we use two identities that were obtained by Kubokawa and Srivastava
(1999,2001) to extend the Stein and chi-square identities to the case of spherically symmetric
distirubition. To state their results, let

F (x) =
1
2

∫ ∞

x

f(t)dt,

and define

Ef [h(x, z)] =
∫ ∫

h(x, z)σ−n|Λ|1/2f [{(x − α)tΛ(x − α) + ztz}/σ2]dxdz

EF [h(x, z)] =
∫ ∫

h(x, z)σ−n|Λ|1/2F [{(x − α)tΛ(x − α) + ztz}/σ2]dxdz

for an integrable function h(·).

Lemma 1. (Kubokawa and Srivastava (2001)) Let h be a differentiable function such that
the expectations below exist. Then the following identity holds:

(3.2) Ef [(α̂i − αi)h(α̂i)] =
σ2

λi
EF

[
∂

∂α̂i
h(α̂i)

]
.
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Lemma 2. (Kubokawa and Srivastava (1999)) Let g be a differentiable function such that
the expectations below exist. Then the following identity holds:

(3.3) Ef [Sg(S)] = σ2EF

[
mg(S) + 2S

∂

∂S
g(S)

]
,

where the quantity S = ztz is defined in (3.1).

Proof of Theorem Let α̂i(ki) be the i-th element of α̂(K). Then we have

α̂i(ki) =
(

λi

λi + ki

)
α̂i =

(
1 − l1σ̂

2λ−1
i

α̂tα̂ + (l1 − l2)σ̂2λ−1
i

)
α̂i = α̂i −

l1σ̂
2λ−1

i

gi
α̂i,

where gi = α̂tα̂ + (l1 − l2)σ̂2λ−1
i . Hence the risk function (2.2) is expressed as

Rj(α̂(K), α, σ2) =
1
σ2

p∑
i=1

Ef
[
λj

i (α̂i(ki) − αi)2
]
,(3.4)

which is further expanded as

(3.5)

Ef
[
λj

i (α̂i(ki) − αi)2
]

= Ef
[
λj

i (α̂i − αi)2
]
+λj

i

l21
λ2

i

Ef

[
σ̂2α̂i

gi

]2

−2λj
i

l1
λi

Ef

[
(α̂i − αi)

σ̂2α̂i

gi

]
.

Applying (3.2) to the second term of (3.5) yields

λj
i

l21
λ2

i

Ef

[
σ̂2α̂i

gi

]2

= λj
i

l21
λ2

i

Ef [Sg(S)] with g(S) =
Sα̂2

i

m2g2
i

= λj
i

l21
λ2

i

σ2EF

[
m

(
Sα̂2

i

m2g2
i

)
+ 2S

{
α̂2

i

m2

(
1
g2

i

− 2S(l1 − l2)
mλig3

i

)}]
= λj

i

l21
λ2

i

σ2EF

[
σ̂2α̂2

i + 2m−1σ̂2α̂2
i

g2
i

− 4σ̂4α̂2
i (l1 − l2)

mλig3
i

]
.(3.6)

Note that gi depends on S = mσ̂2. Apply (3.3) to the third term of (3.5),

(3.7) Ef

[
(α̂i − αi)

σ̂2α̂i

gi

]
=

σ2

λi
EF

[
∂

∂α̂i

σ̂2α̂i

gi

]
=

σ2

λi
EF

[
σ̂2

gi
− 2σ̂2α̂2

i

g2
i

]
.

From (3.5),(3.6),(3.7), we get

Ef
[
λj

i (α̂i(ki) − αi)2
]

= Ef
[
λj

i (α̂i − αi)2
]

+ λj
i

l21
λ2

i

σ2EF

[
σ̂2α̂2

i + 2m−1σ̂2α̂2
i

g2
i

− 4σ̂4α̂2
i (l1 − l2)

mλig3
i

]
− 2λj

i

l1
λi

σ2EF

[
σ̂2

gi
− 2σ̂2α̂2

i

g2
i

]
= Ef

[
λj

i (α̂i − αi)2
]

+ l1σ
2EF

[
l1σ̂

2α̂2
i + 2l1m

−1σ̂2α̂2
i + 4σ̂2α̂2

i

λ−j+2
i g2

i

− 4l1σ̂
4α̂2

i (l1 − l2)
mλ−j+3

i g3
i

− 2σ̂2

λ−j+2
i gi

]
.

(3.8)
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Note that
l1σ̂

2α̂2
i + 2l1m

−1σ̂2α̂2
i + 4σ̂2α̂2

i

λ2
i g

2
i

is decreasing in λi. Then,

l1σ̂
2α̂2

i + 2l1m
−1σ̂2α̂2

i + 4σ̂2α̂2
i

λ−j+2
i g2

i

= λj
i

[
l1σ̂

2α̂2
i + 2l1m

−1σ̂2α̂2
i + 4σ̂2α̂2

i

λ2
i g

2
i

]

≤ λj
i

[
l1σ̂

2α̂2
i + 2l1m

−1σ̂2α̂2
i + 4σ̂2α̂2

i

λ2
pg

2

]
≤ λj

1

[
l1σ̂

2α̂2
i + 2l1m

−1σ̂2α̂2
i + 4σ̂2α̂2

i )
λ2

pg
2

]
,

(3.9)

where g = α̂tα̂ + (l1 − l2)σ̂2λ−1
p .

Since l1 ≥ l2, we have gi = α̂tα̂ + (l1 − l2)σ̂2λ−1
i ≤ α̂tα̂ + (l1 − l2)σ̂2λ−1

p = g, and hence

(3.10) − 2σ̂2

λ−j+2
i gi

≤ − 2σ̂2

λ−j+2
i g

.

By substituting (3.9) and (3.10) into (3.8), and by noting
4l1σ̂

4α̂2
i (l1 − l2)

mλ−j+3
i g3

i

≥ 0 , we have

Ef
[
λj

i (α̂i(ki) − αi)2
]

≤ Ef
[
λj

i (α̂i − αi)2
]

+l1σ
2EF

[
λj

1(l1σ̂
2α̂2

i + 2l1m
−1σ̂2α̂2

i + 4σ̂2α̂2
i )

λ2
pg

2
− 2σ̂2

λ−j+2
i g

]
,

from which it follows

R(α̂(K),α, σ2) ≤ R(α̂, α, σ2) +
1
σ2

l1σ
2EF

[
λj

1(l1σ̂
2 + 2l1m

−1σ̂2 + 4σ̂2)
λ2

pg
2

α̂tα̂ − 2σ̂2

g

p∑
i=1

λj−2
i

]

≤ R(α̂, α, σ2) + l1EF

[
σ̂2

g

{
λj

1(l1 + 2l1m
−1 + 4)

λ2
p

− 2
p∑

i=1

λj−2
i

}]
,

(3.11)

where
α̂tα̂

g
≤ 1 is used in the last line.

Since the second term of the right hand side of (3.11) can be decomposed as

EF

[
σ̂2

g

{
λj

1(l1 + 2l1m
−1 + 4)

λ2
p

− 2
p∑

i=1

λj−2
i

}]

=

[
λj

1(l1 + 2l1m
−1 + 4)

λ2
p

− 2
p∑

i=1

λj−2
i

]
EF

[
σ̂2

g

]
,

a sufficient condition for the inequality (2.3) is[
λj

1(l1 + 2l1m
−1 + 4)

λ2
p

− 2
p∑

i=1

λj−2
i

]
< 0

which is implied by the conditions (i) and (ii). This completes the proof. 2
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4 Numerical Studies In this section, the MSEs of the LSE and several adaptive gen-
eralized ridge estimators are compared numerically. Simulations are done in the case in
which p = 6, n = 20, Λ = (1, 0.01, 0.0019, 0.0017, 0.0015, 0.001) and βi = 0, 0.5, 1, 1.5, 2 for
each i . The entries of Λ indicate the presence of multicollinearity. As a distribution of the
error term e , we adopt the multivariate standard normal distribution and the multivariate
t-distribution with degrees of freedom 10.

Tables (4.1) and (4.2) show the relative efficiency measured by R0(β̂(K),β, σ)/R0(β̂, β, σ)
under these two distributions. In the simulation, the values of l1 are chosen in such a way
that l1 = l∗1, 0.75l∗1 0.5l∗1, 0 and 0.25l∗1, where l∗1 denotes the upper bound of the admissible
value of l1 in the condition (i). As for the constant l2, we set l2 = l1, 0.5l1, 0,−0.5l1,−l1,−1.5l1,
−2l1. The relative efficiency is simulated via 10,000 replications. We can observe from the
results that

(a) To select constant l1, larger value within limitation of condtion (i) is better for im-
provement of relative effeciency.

(b) Remarkable improvement is not shown in terms of selecting l2. Better choice may
be selecting larger values limitted in condition (ii), which improve or keep relative
performance.
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l1
βi l2 0.25l∗1 0.5l∗1 0.75l∗1 l∗1
0 −2l1 0.967 0.941 0.919 0.899

−1.5l1 0.967 0.939 0.916 0.895
−l1 0.966 0.938 0.913 0.891

−0.5l1 0.966 0.936 0.909 0.885
0 0.965 0.934 0.906 0.880

0.5l1 0.964 0.931 0.901 0.873
l1 0.963 0.932 0.904 0.882

0.5 −2l1 0.967 0.941 0.918 0.899
−1.5l1 0.966 0.939 0.916 0.895

−l1 0.966 0.937 0.912 0.890
−0.5l1 0.965 0.935 0.909 0.885

0 0.964 0.933 0.905 0.879
0.5l1 0.964 0.931 0.900 0.872

l1 0.963 0.928 0.895 0.864
1 −2l1 0.967 0.941 0.919 0.899

−1.5l1 0.966 0.939 0.916 0.895
−l1 0.966 0.937 0.912 0.890

−0.5l1 0.965 0.935 0.909 0.885
0 0.964 0.933 0.904 0.879

0.5l1 0.963 0.930 0.900 0.871
l1 0.962 0.927 0.895 0.865

1.5 −2l1 0.966 0.939 0.916 0.897
−1.5l1 0.966 0.938 0.913 0.892

−l1 0.965 0.936 0.910 0.887
−0.5l1 0.964 0.934 0.906 0.882

0 0.964 0.931 0.902 0.876
0.5l1 0.963 0.929 0.898 0.868

l1 0.962 0.926 0.892 0.860
2 −2l1 0.967 0.940 0.918 0.898

−1.5l1 0.966 0.939 0.915 0.894
−l1 0.966 0.937 0.912 0.889

−0.5l1 0.965 0.935 0.908 0.884
0 0.964 0.933 0.904 0.878

0.5l1 0.964 0.931 0.900 0.871
l1 0.963 0.928 0.895 0.864

Table 4.1: Relative risk in case of N6

l1
βi l2 0.25l∗1 0.5l∗1 0.75l∗1 l∗1
0 −2l1 0.968 0.942 0.920 0.901

−1.5l1 0.968 0.941 0.918 0.897
−l1 0.967 0.939 0.915 0.893

−0.5l1 0.966 0.937 0.911 0.888
0 0.966 0.935 0.908 0.882

0.5l1 0.965 0.933 0.903 0.876
l1 0.964 0.931 0.899 0.870

0.5 −2l1 0.968 0.941 0.919 0.900
−1.5l1 0.967 0.940 0.917 0.896

−l1 0.966 0.938 0.913 0.891
−0.5l1 0.966 0.936 0.910 0.886

0 0.965 0.934 0.906 0.880
0.5l1 0.965 0.932 0.902 0.874

l1 0.964 0.929 0.897 0.866
1 −2l1 0.966 0.939 0.917 0.897

−1.5l1 0.966 0.938 0.914 0.893
−l1 0.965 0.936 0.910 0.888

−0.5l1 0.964 0.934 0.907 0.882
0 0.963 0.931 0.902 0.876

0.5l1 0.963 0.929 0.898 0.869
l1 0.962 0.926 0.893 0.863

1.5 −2l1 0.969 0.944 0.922 0.903
−1.5l1 0.968 0.942 0.920 0.900

−l1 0.968 0.940 0.917 0.895
−0.5l1 0.967 0.939 0.913 0.890

0 0.966 0.937 0.910 0.885
0.5l1 0.966 0.934 0.905 0.878

l1 0.965 0.932 0.901 0.872
2 −2l1 0.968 0.943 0.921 0.902

−1.5l1 0.967 0.941 0.918 0.898
−l1 0.967 0.939 0.915 0.894

−0.5l1 0.966 0.937 0.912 0.889
0 0.965 0.935 0.908 0.883

0.5l1 0.965 0.933 0.904 0.877
l1 0.964 0.933 0.908 0.887

Table 4.2: Relative risk in case of t6
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