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Abstract. In this paper we investigate the existence and uniqueness of solutions of
a class of partial impulsive hyperbolic differential equations with fixed time impulses
involving the Caputo fractional derivative. Our main tool is a fixed point theorem.

1 Introduction This paper concerns the existence results to fractional order initial
value problems (IV P for short), for the system

(cDr
0u)(x, y) = f(x, y, u(x, y)), if (x, y) ∈ J, x �= xk, k = 1, . . . ,m,(1)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), if y ∈ [0, b], k = 1, . . . ,m,(2)

u(x, 0) = ϕ(x), u(0, y) = ψ(y), if x ∈ [0, a] and y ∈ [0, b],(3)

where J = [0, a] × [0, b], a, b > 0, cDr
0 is the fractional Caputo derivative of order r =

(r1, r2) ∈ (0, 1] × (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × R
n → R

n and Ik :
R
n → R

n, k = 0, 1, . . . ,m are given functions, ϕ : [0, a] → R
n, ψ : [0, b] → R

n are
absolutely continuous functions with ϕ(0) = ψ(0).

Next we consider the following nonlocal initial value problem

(cDr
0u)(x, y) = f(x, y, u(x, y)), if (x, y) ∈ J, x �= xk, k = 1, . . . ,m,(4)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), if y ∈ [0, b], k = 1, . . . ,m,(5)

u(x, 0) +Q(u) = ϕ(x), u(0, y) +K(u) = ψ(y), if x ∈ [0, a] and y ∈ [0, b],(6)

where f, ϕ, ψ, Ik; k = 1, ...m, are as in problem (1)-(3) and Q,K : PC(J,Rn) → R
n are

continuous functions. PC(J,Rn) is a Banach space to be specified later (see Section 3).

The problem of existence of solutions of Cauchy-type problems for ordinary differential
equations of fractional order in spaces of integrable functions was studied in [18], a simi-
lar problem in spaces of continuous functions was studied in [31]. We can find numerous
applications of differential equations of fractional order in viscoelasticity, electrochemistry,
control, porous media, electromagnetic, etc. (see [14, 17, 25]). There has been a significant
development in ordinary and partial fractional differential equations in recent years; see
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the monographs of Kilbas et al. [20], Lakshmikantham et al. [22], Miller and Ross [23],
Podlubny [27], Samko et al. [29], the papers of Agarwal et al. [3, 4], Abbas and Benchohra
[1, 2], Belarbi et al. [8], Benchohra et al. [9, 10, 12], Diethelm [14, 15], Kilbas and Marzan
[19], NGuérékata [24], Shi and Zhang [30], Vityuk and Golushkov [32], Zhang [33], Zhou et
al. [34], and the references therein.

The theory of impulsive differential equations have become important in some mathe-
matical models of real processes and phenomena studied in physics, chemical technology,
population dynamics, biotechnology and economics. There has been a significant devel-
opment in impulse theory in recent years, especially in the area of impulsive differential
equations and inclusions with fixed moments; see the monographs of Benchohra et al. [11],
Lakshmikantham et al [21], and Samoilenko and Perestyuk [28], and the references therein.

Very recently, some extensions to impulsive fractional order differential equations have
been obtained by Agarwal et al. [5], Ahmad and Sivasundaram [6], Ait Dads et al. [7],
Benchohra and Slimani [13].

In this paper, we shall present existence and uniqueness results for our problems. Our
results initiate the study of hyperbolic fractional differential equations subject to impulsive
effect. We present two results for the problem (1)-(3), the first one is based on Banach’s
contraction principle (Theorem 3.4) and the second one on the nonlinear alternative of
Leray-Schauder type (Theorem 3.5). As an extension to nonlocal problems, we present two
similar results for the problem (4)-(6). Finally we present an illustrative example.

2 Preliminaries In this section, we introduce notations and definitions which are used
throughout this paper. By L1(J,Rn) we denote the space of Lebesgue-integrable functions
f : J → R

n with the norm

‖f‖1 =
∫ a

0

∫ b

0

‖f (x, y)‖dydx,

where ‖.‖ denotes a suitable complete norm on R
n.

Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J, Jz = [a1, a] × [0, b], r1, r2 > 0 and r = (r1, r2). For
f ∈ L1(Jz,Rn), the expression

(Irz+f)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+
1

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t)dtds,

where Γ(.) is the Euler gamma function, is called the left-sided mixed Riemann-Liouville
integral of order r.

Denote by D2
xy := ∂2

∂x∂y the mixed second order partial derivative.

Definition 2.1 ([32]). For f ∈ L1(Jz,Rn) where D2
xyf is Lebesque integrable on [xk, xk+1]×

[0, b], k = 0, . . . ,m, the Caputo fractional-order derivative of order r is defined by the ex-
pression (cDr

z+f)(x, y) = (I1−r
z+ D2

xyf)(x, y).

3 Main Results In what follows set

Jk := (xk, xk+1] × [0, b].

To define the solutions of problems (1)-(3), we shall consider the space

PC(J,Rn) =
{
u : J → R

n : u ∈ C(Jk,Rn); k = 0, 1, . . . ,m, and there

exist u(x−k , y) and u(x+
k , y); k = 1, . . . ,m,

with u(x−k , y) = u(xk, y) for each y ∈ [0, b]
}
.
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This set is a Banach space with the norm

‖u‖PC = sup
(x,y)∈J

‖u(x, y)‖.

Set
J ′ := J\{(x1, y), . . . , (xm, y), y ∈ [0, b]}.

Definition 3.1 A function u ∈ PC(J,Rn) whose r-derivative exists on J ′ is said to be a
solution of (1)-(3) if u satisfies (cDr

0u)(x, y) = f(x, y, u(x, y)) on J ′ and conditions (2), (3)
are satisfied.

Let h ∈ C([xk, xk+1] × [0, b],Rn), zk = (xk, 0), and

µk(x, y) = u(x, 0) + u(x+
k , y) − u(x+

k , 0), k = 0, . . . ,m.

For the existence of solutions for the problem (1) − (3), we need the following lemma:

Lemma 3.2 A function u ∈ AC([xk , xk+1] × [0, b],Rn); k = 0, . . . ,m is a solution of the
differential equation

(cDr
z+k
u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1] × [0, b],

if and only if u(x, y) satisfies

u(x, y) = µk(x, y) + (Ir
z+k
h)(x, y); (x, y) ∈ [xk, xk+1] × [0, b].(7)

Proof: Let u(x, y) be a solution of

(cDr
z+k
u)(x, y) = h(x, y); (x, y) ∈ [xk, xk+1] × [0, b].

Then, taking into account the definition of the derivative (cDr
z+k
u)(x, y), we have

I1−r
z+k

(D2
xyu)(x, y) = h(x, y).

Hence, we obtain
Ir
z+k

(I1−r
z+k

D2
xyu)(x, y) = (Ir

z+k
h)(x, y),

then
I1
z+k
D2
xyu(x, y) = (Ir

z+k
h)(x, y).

Since
I1
z+k

(D2
xyu)(x, y) = u(x, y) − u(x, 0) − u(x+

k , y) + u(x+
k , 0),

we have
u(x, y) = µk(x, y) + (Ir

z+k
h)(x, y).

Now let u(x, y) satisfies (7). It is clear that u(x, y) satisfy

(cDr
z+k
u)(x, y) = h(x, y), on [xk, xk+1] × [0, b].

In all what follows set
µ0(x, y) = µ(x, y), (x, y) ∈ J.



274 S. ABBAS, M. BENCHOHRA AND L. GÒRNIEWICZ

Lemma 3.3 Let 0 < r1, r2 ≤ 1 and let h : J → R
n be continuous. A function u is a

solution of the fractional integral equation

u(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ [0, x1] × [0, b],

µ(x, y) +
∑k

i=1(Ii(u(x
−
i , y)) − Ii(u(x−i , 0)))

+ 1
Γ(r1)Γ(r2)

∑k
i=1

∫ xi

xi−1

∫ y
0

(xi − s)r1−1(y − t)r2−1h(s, t)dtds

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ (xk, xk+1] × [0, b], k = 1, . . . ,m,

(8)

if and only if u is a solution of the fractional IVP

cDr
z+k
u(x, y) = h(x, y), (x, y) ∈ J ′, k = 1, . . . ,m,(9)

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), y ∈ [0, b], k = 1, . . . ,m.(10)

Proof. Assume u satisfies (9)-(10). If (x, y) ∈ [0, x1] × [0, b] then

cDr
0u(x, y) = h(x, y).

Lemma 3.2 implies

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds.

If (x, y) ∈ (x1, x2] × [0, b] then Lemma 3.2 implies

u(x, y) = µ1(x, y) +
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= u(x, 0) + u(x+
1 , y) − u(x+

1 , 0)

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= u(x, 0) + u(x−1 , y) − u(x−1 , 0) + I1(u(x−1 , y)) − I1(u(x−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= u(x, 0) + u(x1, y) − u(x1, 0) + I1(u(x−1 , y)) − I1(u(x−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= µ(x, y) + I1(u(x−1 , y)) − I1(u(x−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y

0

(x1 − s)r1−1(y − t)r2−1h(s, t)dtds

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds.
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If (x, y) ∈ (x2, x3] × [0, b] then from Lemma 3.2 we get

u(x, y) = µ2(x, y) +
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= u(x, 0) + u(x+
2 , y) − u(x+

2 , 0)

+
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= u(x, 0) + u(x−2 , y) − u(x−2 , 0) + I2(u(x−2 , y)) − I2(u(x−2 , 0))

+
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= u(x, 0) + u(x2, y) − u(x2, 0) + I2(u(x−2 , y)) − I2(u(x−2 , 0))

+
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds

= µ(x, y) + I2(u(x−2 , y)) − I2(u(x−2 , 0)) + I1(u(x−1 , y)) − I1(u(x−1 , 0))

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y

0

(x1 − s)r1−1(y − t)r2−1h(s, t)dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y

0

(x2 − s)r1−1(y − t)r2−1h(s, t)dtds

+
1

Γ(r1)Γ(r2)

∫ x

x2

∫ y

0

(x− s)r1−1(y − t)r2−1h(s, t)dtds.

If (x, y) ∈ (xk, xk+1] × [0, b] then again from Lemma 3.2 we get (8).
Conversely, assume that u satisfies the impulsive fractional integral equation (8). If

(x, y) ∈ [0, x1] × [0, b] and using the fact that cDr
z+k

is the left inverse of Ir
z+k

we get

cDr
0u(x, y) = h(x, y), for each (x, y) ∈ [0, x1] × [0, b].

If (x, y) ∈ [xk, xk+1)× [0, b], k = 1, . . . ,m and using the fact that cDr
z+k
C = 0, where C is a

constant, we get

cDr
z+k
u(x, y) = h(x, y), for each (x, y) ∈ [xk, xk+1) × [0, b].

Also, we can easily show that

u(x+
k , y) = u(x−k , y) + Ik(u(x−k , y)), y ∈ [0, b], k = 1, . . . ,m.

Our first result is based on Banach fixed point theorem.

Theorem 3.4 Assume that

(H1) There exists a constant l > 0 such that

‖f (x, y, u) − f(x, y, u)‖ ≤ l‖u− u‖, for each (x, y) ∈ J, and each u, u ∈ R
n.

(H2) There exists a constant l∗ > 0 such that

‖Ik(u) − Ik(u)‖ ≤ l∗‖u− u‖, for each u, u ∈ R
n, k = 1, . . . ,m.
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If

2ml∗ +
2lar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1,(11)

then (1)-(3) has a unique solution on J .

Proof. We transform the problem (1)-(2) into a fixed point problem. Consider the
operator F : PC(J,Rn) → PC(J,Rn) defined by

F (u)(x, y) = µ(x, y) +
∑

0<xk<x

(Ik(u(x−k , y)) − Ik(u(x−k , 0)))

+
1

Γ(r1)Γ(r2)

∑
0<xk<x

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1f(s, t, u(s, t))dtds.

Clearly, the fixed points of the operator F are solution of the problem (1)-(3). We shall use
the Banach contraction principle to prove that F has a fixed point. We shall show that F
is a contraction. Let u, v ∈ PC(J,Rn). Then, for each (x, y) ∈ J, we have

‖F (u)(x, y) − F (v)(x, y)‖

≤
m∑
k=1

(‖Ik(u(x−k , y)) − Ik(v(x−k , y))‖ + ‖Ik(u(x−k , 0)) − Ik(v(x−k , 0))‖)

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1‖f (s, t, u(s, t)) − f(s, t, v(s, t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖f (s, t, u(s, t)) − f(s, t, v(s, t))‖dtds

≤
m∑
k=1

l∗(‖u(x−k , y) − v(x−k , y)‖+ ‖u(x−k , 0) − v(x−k , 0)‖)

+
l

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1‖u(s, t) − v(s, t)‖dtds

+
l

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖u(s, t) − v(s, t)‖dtds

≤ [2ml∗ +
lar1br2

Γ(r1 + 1)Γ(r2 + 1)
+

lar1br2

Γ(r1 + 1)Γ(r2 + 1)
]‖u− v‖∞

≤ [
2ml∗ +

2lar1br2

Γ(r1 + 1)Γ(r2 + 1)
]‖u− v‖∞.

By the condition (11), we conclude that F is a contraction. As a consequence of Banach
fixed point theorem, we deduce that F has a fixed point which is a solution of the problem
(1) − (3).

In the following theorem we give an existence result for the problem (1)-(3) by applying
the nonlinear alternative of Leray-Schauder type.

Theorem 3.5 Let f(·, ·, u) ∈ PC(J,Rn) for each u ∈ R
n. Assume that the following

conditions hold:
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(H3) There exists φf ∈ C(J,R+) and ψ∗ : [0,∞) → (0,∞) continuous and nondecreasing
such that

‖f (x, y, u)‖ ≤ φf (x, y)ψ∗(‖u‖) for all (x, y) ∈ J, u ∈ R
n.

(H4) There exists ψ∗ : [0,∞) → (0,∞) continuous and nondecreasing such that

‖Ik(u)‖ ≤ ψ∗(‖u‖) for all u ∈ R
n.

(H5) There exists an number M > 0 such that

M

‖µ‖∞ + 2mψ∗(M) +
2ar1br2φ0

fψ∗(M)

Γ(r1+1)Γ(r2+1)

> 1,

where φ0
f = sup{φf (x, y) : (x, y) ∈ J}.

Then (1)-(3) has at least one solution on J .

Proof: Consider the operator F defined in Theorem 3.4.

Step 1: F is continuous.

Let {un} be a sequence such that un → u in PC(J,Rn). There exists η > 0 such that
‖un‖ ≤ η. Then for each (x, y) ∈ J, we have

‖F (un)(x, y) − F (u)(x, y)‖

≤
m∑
k=1

(‖Ik(un(x−k , y)) − Ik(u(x−k , y))‖ + ‖Ik(un(x−k , 0)) − Ik(u(x−k , 0))‖)

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1‖f (s, t, un(s, t)) − f(s, t, u(s, t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖f (s, t, un(s, t)) − f(s, t, u(s, t))‖dtds.

Since f and Ik, k = 1, . . . ,m are continuous functions, we have

‖F (un) − F (u)‖∞ → 0 as n→ ∞.

Step 2: F maps bounded sets into bounded sets in PC(J,Rn).

Indeed, it is enough to show that for any η∗ > 0, there exists a positive constant � such
that for each u ∈ Bη∗ = {u ∈ PC(J,Rn) : ‖u‖∞ ≤ η∗}, we have ‖F (u)‖∞ ≤ �. (H4) and
(H5) implies that for each (x, y) ∈ J,

‖F (u)(x, y)‖ ≤ ‖µ(x, y)‖ +
m∑
k=1

(‖Ik(u(x−k , y))‖ + ‖Ik(u(x−k , 0))‖)

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y

0

(xk − s)r1−1(y − t)r2−1‖f (s, t, u(s, t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ x

xk

∫ y

0

(x− s)r1−1(y − t)r2−1‖f (s, t, u(s, t))‖dtds

≤ ‖µ‖∞ + 2mψ∗(η∗) +
2ar1br2φ0

fψ∗(η∗)
Γ(r1 + 1)Γ(r2 + 1)

:= �.
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Step 3: F maps bounded sets into equicontinuous sets of PC(J,Rn).

Let (τ1, y1), (τ2, y2) ∈ [0, a] × [0, b], τ1 < τ2 and y1 < y2, Bη∗ be a bounded set of
PC(J,Rn) as in Step 2, and let u ∈ Bη∗ . Then for each (x, y) ∈ J, we have

‖F (u)(τ2, y2) − F (u)(τ1, y1)‖

≤ ‖µ(τ1, y1) − µ(τ2, y2)‖ +
m∑
k=1

(‖Ik(u(x−k , y1)) − Ik(u(x−k , y2))‖)

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]

×f (s, t, u(s, t))dtds

+
1

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1‖f (s, t, u(s, t))‖dtds

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0

[(τ2 − s)r1−1(y2 − t)r2−1 − (τ1 − s)r1−1(y1 − t)r2−1]

×f (s, t, u(s, t))dtds

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1‖f (s, t, u(s, t))dtds‖

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1‖f (s, t, u(s, t))dtds‖

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0

(τ2 − s)r1−1(y2 − t)r2−1‖f (s, t, u(s, t))dtds‖

≤ ‖µ(τ1, y1) − µ(τ2, y2)‖ +
m∑
k=1

(‖Ik(u(x−k , y1)) − Ik(u(x−k , y2))‖)

+
φ0
fψ∗(η∗)

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y1

0

(xk − s)r1−1[(y2 − t)r2−1 − (y1 − t)r2−1]dtds

+
φ0
fψ∗(η∗)

Γ(r1)Γ(r2)

m∑
k=1

∫ xk

xk−1

∫ y2

y1

(xk − s)r1−1(y2 − t)r2−1dtds

+
φ0
fψ∗(η∗)

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0

[(τ2 − s)r1−1(y2 − t)r2−1 − (τ1 − s)r1−1(y1 − t)r2−1]dtds

+
φ0
fψ∗(η∗)

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1dtds

+
φ0
fψ∗(η∗)

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1dtds

+
φ0
fψ∗(η∗)

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0

(τ2 − s)r1−1(y2 − t)r2−1dtds.

As τ1 −→ τ2 and y1 −→ y2, the right-hand side of the above inequality tends to zero.

As a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we can
conclude that F : PC(J,Rn) → PC(J,Rn) is completely continuous.
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Step 4: A priori bound.

For λ ∈ [0, 1], let u be such that for each (x, y) ∈ J we have u(x, y) = λ(Fu)(x, y).
For each (x, y) ∈ J, then from (H3) and (H4) we have

‖u‖∞
‖µ‖∞ + 2mψ∗(‖u‖) +

2ar1br2φ0
fψ∗(‖u‖)

Γ(r1+1)Γ(r2+1)

≤ 1.

By condition (H5), there exists M such that ‖u‖∞ �= M . Let

U = {u ∈ PC(J,Rn) : ‖u‖∞ < M}.
The operator F : U → PC(J,Rn) is continuous and completely continuous. From the choice
of U , there is no u ∈ ∂U such that u = λF (u) for some λ ∈ (0, 1). As a consequence of the
nonlinear alternative of Leray-Schauder type [16], we deduce that F has a fixed point u in
U which is a solution of the problem (1)-(3).

Now we present two existence results for the nonlocal problem (4)-(6). Their proofs are
similar to those for problem (1)-(3).

Definition 3.6 A function u ∈ PC(J, IRn) whose r-derivative exists on J ′ is said to be a
solution of (4)-(6) if u satisfies (cDr

0u)(x, y) = f(x, y, u(x, y)) on J ′ and conditions (5), (6)
are satisfied.

Theorem 3.7 Assume (H1), (H2) and the following conditions

(H ′
1) There exists l̃ > 0 such that

‖Q(u) −Q(v)‖ ≤ l̃‖u− v‖, for any u, v ∈ PC(J,Rn).

(H ′′
1 ) There exists l̃∗ > 0 such that

‖K(u) −K(v)‖ ≤ l̃∗‖u− v‖, for any u, v ∈ PC(J, IRn)

hold. If

l̃ + l̃∗ + 2ml∗ +
2lar1br2

Γ(r1 + 1)Γ(r2 + 1)
< 1,

then there exists a unique solution for IV P (4)-(6) on J.

Theorem 3.8 Let f(·, ·, u) ∈ PC(J,Rn) for each u ∈ R
n. Assume (H3), (H4) and the

following conditions

(H ′
3) There exists d̃ > 0 such that

‖Q(u)‖ ≤ d̃(1 + ‖u‖), for any u ∈ PC(J,Rn).

(H ′′
3 ) There exists d∗ > 0 such that

‖K(u)‖ ≤ d∗(1 + ‖u‖), for any u ∈ PC(J,Rn).

(H ′′′
3 ) There exists an number M∗ > 0 such that

M∗

(d̃+ d∗)(1 +M∗) + ‖µ‖∞ + 2mψ∗(M∗) +
2ar1br2φ0

fψ∗(M∗)

Γ(r1+1)Γ(r2+1)

> 1,

hold, then there exists at least one solution for IV P (4)-(6) on J.
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4 An Example As an application of our results we consider the following impulsive
partial hyperbolic differential equations of the form

(cDr
0u)(x, y) =

1
(10ex+y+2)(1 + |u(x, y)|) , if (x, y) ∈ J = [0, 1] × [0, 1], x �= xk, k = 1, . . . ,m,

(12)

u(x+
k , y) = u(x−k , y) +

1
(6ex+y+4)(1 + |u(x−k , y)|)

, if y ∈ [0, 1], k = 1, . . . ,m,(13)

u(x, 0) = x, u(0, y) = y2, if x ∈ [0, 1] and y ∈ [0, 1].(14)

Set
f(x, y, u) =

1
(10ex+y+2)(1 + |u|) , (x, y) ∈ [0, 1] × [0, 1],

Ik(u(x−k , y)) =
1

(6ex+y+4)(1 + |u(x−k , y)|)
, y ∈ [0, 1].

For each u, u ∈ IR and (x, y) ∈ [0, 1] × [0, 1] we have

|f(x, y, u) − f(x, y, u)| ≤ 1
10e2

|u− u|,

and
|Ik(u) − Ik(u)| ≤ 1

6e4
|u− u|.

Hence condition (H1) and (H2) are satisfied with l =
1

10e2
and l∗ =

1
6e4

. We shall show

that condition (11) holds with a = b = 1. Indeed, if we assume, for instance, that the
number of impulses m = 3, than we have

2ml∗ +
2lar1br2

Γ(r1 + 1)Γ(r2 + 1)
=

1
e4

+
1

5e2Γ(r1 + 1)Γ(r2 + 1)
< 1,

which is satisfied for each (r1, r2) ∈ (0, 1] × (0, 1]. Consequently Theorem 3.4 implies that
problem (12)-(14) has a unique solution defined on [0, 1] × [0, 1].
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