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Abstract. Using fuzzy filters in the sense of P. Eklund and W. Gähler [2] in fuzzy
preuniform convergence spaces as introduced in [11] compactness and weak compact-
ness are presented by means of convergence and preconvergence of fuzzy ultrafilters
respectively. The generalization of these concepts by localization leads to bicoreflective
subconstructs of the construct of FPUConv of fuzzy preuniform convergence spaces
which are additionally cartesian closed. These results are even new in the non-fuzzy
case (i.e. in the realm of preuniform convergence spaces) which is included and improve
the situation for topological spaces.

0 Introduction

Fuzzy preuniform convergence spaces introduced in [11] form a strong topological uni-
verse, denoted by FPUConv, i.e. a cartesian closed topological construct which is ex-
tensional and in which arbitrary products of quotients are quotients (cf. [12]). Its full
subconstruct of fuzzy semiuniform convergence spaces is also a strong topological universe
which is mainly studied in the realm of fuzzy convenient topology whereas fuzzy preuniform
convergence spaces are a good candidate for non-symmetric fuzzy convenient topology (cf.
[12]). As in the non-fuzzy case for the definition of these spaces a filter concept is needed.
We use here fuzzy filters in the sence of P. Eklund and W. Gähler [2] which fuzzificate the
membership of filter elements too. Sometimes they are also called tight stratified L-filters
(cf. [7]) where L is a frame. It makes sense to define compactness (via fuzzy ultrafilter
convergence) whenever convergence of fuzzy filters can be defined. W. Gähler has done this
for fuzzy limit spaces in [4]. Since fuzzy preuniform convergence spaces induce two differ-
ent fuzzy generalized convergence spaces, there are two possibilities to define convergence of
fuzzy filters, called preconvergence and convergence. In certain subconstructs of FPUConv
both convergence concepts coincide, e.g. in the subconstruct FULim of fuzzy uniform limit
spaces or in the subconstruct FConv of fuzzy convergence spaces both introduced in this
paper. But in general it is needed to study two concepts of compactness, namely com-
pactness and weak compactness, according to the convergence and preconvergence of fuzzy
ultrafilters respectively. For both concepts a product theorem (Tychonoff theorem) is valid.
By localization of these concepts one obtains local compactness and local weak compact-
ness in fuzzy preuniform convergence spaces and it turns out that both are closed under
formation of final structures in FPUConv. Since the construct FGConv of fuzzy gener-
alized convergence spaces can be bicoreflectively embedded into FPUConv (cf. [11]) we
obtain that quotients of locally compact fuzzy generalized convergence spaces are locally
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compact. This is hightly remarkable since in the subconstruct FTop of fuzzy topological
spaces such a result is not true even in the non-fuzzy case. Furthermore, the constructs LC-
FPUConv and LWC-FPUConv of locally compact fuzzy preuniform convergence spaces
and locally weakly compact fuzzy preuniform convergence spaces respectively are cartesian
closed. From this result can be derived that the construct LC-FGConv of locally compact
fuzzy generalized convergence spaces is cartesian closed too and also the construct LCT2-
FGConv of locally compact T2 fuzzy generalized convergence spaces is cartesian closed,
where T2 means uniqueness of fuzzy filter convergence. This improves the situation for
locally compact T2 fuzzy topological spaces, namely the construct LCT2-FTop of locally
compact T2 fuzzy topological spaces is a subconstruct of LCT2-FGConv and not even
cartesian closed in the non-fuzzy case.

Last but not least in fuzzy (quasi) uniform spaces as introduced in [5] there is no differ-
ence between compactness and local compactness.

All results of this paper are valid for the non-fuzzy case, i.e. in case L = {0, 1}. They
are new when applied to preuniform convergence spaces.

The terminology of this paper corresponds to [9].

1 Preliminaries

In the following let L be a frame (i.e. a complete lattice such that for each l ∈ L and
each M ⊂ L the infinite distributive law l∧∨

M =
∨{l∧m : m ∈ M} holds) with different

least element 0 and greatest element 1, e.g. L = {0, 1} or L = [0, 1] (= closed unit interval).

1.1 Remark. For each set X , LX can be endowed with a partial order ≤ defined as follows:
f ≤ g iff f(x) ≤ g(x) for each x ∈ X .
As in L, for infima and suprema in LX the symbols ∧ and

∧
as well as ∨ or

∨
are used

respectively, e.g. for each pair (f, g) ∈ LX × LX and each x ∈ X , (f ∧ g)(x) = f(x) ∧ g(x)
and (f ∨ g)(x) = f(x) ∨ g(x).

1.2 Definition. An L-fuzzy filter (shortly: a fuzzy filter) on a non-empty set X is a map
F : LX → L such that the following are satisfied:

FFil1) F(l̄) = l for each l ∈ L, where l̄ : X → L is defined by l̄(x) = l for each x ∈ X .

FFil2) F(f ∧ g) = F(f) ∧ F(g) for all f, g ∈ LX .

The set of all fuzzy filters on X is denoted by FL(X), where FL(∅) = ∅.

1.3 Remark. 1) If F is a fuzzy filter on X , then F(f) ≤ F(g) whenever f ≤ g. Further-
more for each f ∈ LX , F(f) ≤ supf = sup{f (x) : x ∈ X}.

2) For each x ∈ X , there is a fuzzy filter ẋ : LX → L defined by ẋ(f) = f(x) for each
f ∈ LX . In case X = {x}, ẋ is the unique fuzzy filter on X .

3) The elements of LX are called L − fuzzy subsets of X or shortly fuzzy sets. Usually, a
subset A of X is identified with its characteristic function χA : X → {0, 1} defined by

χA(x) =

{
1 if x ∈ A,

0 if x /∈ A.

Thus, in case L = {0, 1}, LX may be identified with the powerset of X , and a {0, 1}-fuzzy
filter is an ordinary filter (up to identification).

1.4 Definition. A fuzzy filter base on a non-empty set X is a non-empty subset B of LX

such that the following are satisfied:
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FB1) l̄ ∈ B for each l ∈ L.

FB2) For each (f, g) ∈ B × B there is some h ∈ B such that h ≤ f ∧ g and sup h =
sup f ∧ sup g.

1.5 Proposition. (cf. [4]). Each fuzzy filter base B on X generates a fuzzy filter F on X
defined by

F(f) =
∨

g≤f,g∈B
sup g for each f ∈ LX .

Conversely, each fuzzy filter F can be generated by a fuzzy filter base on X, even a greatest
one, denoted by base F , where base F = {f ∈ LX : F(f) = sup f}.

1.6 Proposition. (cf. [3; 2.11]). There is a one-to-one correspondence between fuzzy
filters F on X and the subsets B of LX which fulfill the following conditions:

1. l̄ ∈ B for each l ∈ L.

2. For all f, g ∈ B, f ∧ g ∈ B and sup(f ∧ g) = sup f ∧ sup g.

3.
∨

f∈F

f ∈ B for each F ⊂ B.

4. f ∈ B, f ≤ g, and sup f = sup g imply g ∈ B.

This correspondence is given by:
B = base F and F(f) =

∨
g∈B,g≤f

sup g for each f ∈ LX .

1.7 Definition. Let F and G be L-fuzzy filters on X . Then F is called coarser than G
(or G is called finer than F), denoted by F ⊂ G, iff F(f) ≤ G(f) for each f ∈ LX .

1.8 Proposition. (cf. [4]). Let F and G be fuzzy filters generated by fuzzy filter bases B
and B′ respectively. If B ⊂ B′, then F ⊂ G. The inverse implication is true whenever B =
base F and B′ = base G.

1.9 Proposition. Let f : X → Y be a map, F a fuzzy filter on X, and B a base of
F . Define for each g ∈ LX , f [g] ∈ LY by f [g](y) =

∨
x∈f−1(y)

g(x) for each y ∈ Y . Then

{f [g] : g ∈ B} ∪ {l̄ : l ∈ L} is a base of the fuzzy filter f(F), defined by f(F)(h) = F(h ◦ f)
for each h ∈ LY , where f(F) is called the image of F under f . If f is surjective, then
{f [g] : g ∈ B} is a base of f(F).

1.10 Definition. Let f : X → Y be a map and F a fuzzy filter on Y . Then the inverse
image of F under f is the coarsest fuzzy filter G on X such that F ⊂ f(G) provided that
it exists. Usually, we write f−1(F) instead of G. If X ⊂ Y and i : X → Y denotes the
inclusion map, then i−1(F) is called the trace of F on X .

1.11 Proposition. (cf. [4; proposition 9]). Let f : X → Y be a map, F a fuzzy filter on
Y , and B a base of F . Then f−1(F) exists iff sup g = sup(g ◦ f) for each g ∈ B. If f−1(F)
exists, then {g ◦ f : g ∈ B} is a base of f−1(F).

1.12 Proposition. Let F be a fuzzy filter on X, A a non-empty subset of X, and iA :
A → X the inclusion map. If χA ∈ base F , then i−1

A (F) exists and iA(i−1
A (F) = F .
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Proof. 1. i−1
A (F) exists: Let f ∈ base F . Then sup f ◦ iA = sup f |A = sup(f ∧ χA) =

sup f ∧ sup χA = sup f , since sup χA = 1 because A 
= ∅.
2. (a) iA(i−1

A (F) ⊃ F is always valid by definition.

(b) B = {iA[f |A] : f ∈ base F} ∪ {l̄ : l ∈ L} is a base of iA(i−1
A (F)). Since for each

f ∈ base F , iA[f |A] = f ∧ χA ∈ base F , it follows B ⊂ base F , which implies
iA(i−1

A (F)) ⊂ F .

1.13 Definition. Let M be a non-empty set of fuzzy filters on X . Then a fuzzy filter⋂
F∈M

F , called the intersection of all F ∈ M , is defined by
⋂

F∈M

F(f) =
∧

F∈M

F(f) for each

f ∈ LX .

1.14 Proposition. Let M be a non-empty set of fuzzy filters on X.

1. The infimum of M in (FL(X),⊂) exists and is equal to
⋂

F∈M

F .

2. (a) The supremum of M in (FL(X),⊂) exists iff for each non-empty finite subset N
of M the following condition is satisfied:

sup(f1 ∧ · · · ∧ fn) = sup f1 ∧ · · · ∧ sup fn

for all f1 ∈ base F1, . . . , fn ∈ base Fn, where N = {F1, . . . ,Fn} (cf. [4;
proposition 8])

(b) If the supremum S of M = {Fi : i ∈ I} in (FL(X),⊂) exists and Bi is a base of
Fi for each i ∈ I, then B = {fi1 ∧ · · · ∧ fin : {i1, . . . , in} ⊂ I finite and fi ∈ Bi

for each i ∈ I} is a base of S.

1.15 Definition. Let (Xi)i∈I be a non-empty family of non-empty sets and Fi a fuzzy
filter on Xi for each i ∈ I. If pi :

∏
i∈I

Xi → Xi denotes the i-th projection, then the coarsest

fuzzy filter F on
∏
i∈I

Xi such that pi(F) = Fi for each i ∈ I is called the product of (Fi)i∈I

where
∏
i∈I

Fi is written instead of F or F1 ×F2 in case I = {1, 2}.

1.16 Proposition. (cf. [3; proposition 3.10] and [4; proposition 19]). If I is a non-empty
set and for each i ∈ I, Fi is a fuzzy filter on Xi, then the product

∏
i∈I

Fi exists and is equal

to the supremum of {p−1
i (Fi) : i ∈ I} in (FL(X),⊂). In particular, if Bi is a base of Fi for

each i ∈ I, then

B = {
∧
j∈J

fj ◦ pj : J ⊂ I finite and fj ∈ Bj for each j ∈ J}

is a base of
∏
i∈I

Fi.

1.17 Definition. A fuzzy filter U on X is called a fuzzy ultrafilter iff it is a maximal
element in (FL(X),⊂).

1.18 Proposition. For each F ∈ FL(X) there is a fuzzy ultrafilter U ∈ FL(X) such that
F ⊂ U .
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Proof. By means of Zorn’s lemma it suffices to prove that each chain M in (FL(X),⊂)
has an upper bound. Indeed we prove that each chain M in (FL(X),⊂) has a supremum.
If M is non-empty and N = {F1, . . . ,Fn} ⊂ M is non-empty and finite, then we may
assume, without loss of generality, that F1 ⊂ · · · ⊂ Fn since M is a chain. For all f1 ∈ base
F1, . . . , fn ∈ base Fn, fi ∈ base Fn for each i ∈ {1, . . . , n}. Consequently, sup f1∧· · ·∧fn =
sup f1 ∧ · · · ∧ sup fn. Thus, by 1.14.2.a), M has a supremum. If M = ∅, we have nothing to
prove since sup M as the least element of FL(X) always exists (note: sup M =

⋂
x∈X

ẋ ⊂ F
for each F ∈ FL(X) since f ∈ base

⋂
x∈X

ẋ =
⋂

x∈X

base ẋ, i.e. f(x) = sup f for each x ∈ X

or equivalently f = sup f , implies F(f) = F(sup f) = sup f for each F ∈ FL(X), i.e. f ∈
base F for each F ∈ FL(X)).

1.19 Proposition. (cf. [1; proposition 3]). U ∈ FL(X) is a fuzzy ultrafilter iff each
f ∈ LX, for which sup(f ∧ g) = sup f ∧ sup g for each g ∈ base U , belongs to base U .

1.20 Proposition. Let f : X → Y be a map between the sets X and Y . If U is a fuzzy
ultrafilter on X, then f(U) is a fuzzy ultrafilter on Y .

Proof. Let h ∈ LY such that sup(h ∧ k) = sup h ∧ sup k for each k ∈ base f(U). Hence,
f−1[h] = h ◦ f ∈ LX . Furthermore, let u ∈ base U . This implies f [u] ∈ base f(U) and by
assumption

(1) sup(h ∧ f [u]) = sup h ∧ sup f [u] = sup h ∧ sup u

On the other hand,

(2) sup(h ∧ f [u]) =
∨

y∈f [X]

(h(y) ∧ ∨
x∈f−1(y)

u(x)) =
∨

y∈f [X]

h(y) ∧ ∨
x∈f−1(y)

u(x)

=
∨

y∈f [X]

(
∨

x∈f−1(y)

(h(y) ∧ u(x))) =
∨

x∈X

h(f(x)) ∧ u(x)

= sup(u ∧ (h ◦ f))

Now (1) and (2) imply
(3) sup(u∧(h◦f)) = suph∧sup u = sup u∧sup(h◦f), since it follows from f [χX ] = χf [X] ∈
base f(U), sup(h ◦ f) = sup(h ∧ χf [X]) = sup h ∧ sup χf [X] = sup h. Consequently, h ◦ f ∈
base U because U is a fuzzy ultrafilter on X . Thus, f(U)(h) = U(h ◦ f) = suph ◦ f = suph,
i.e. h ∈ base f(U). By 1.19, f(U) is a fuzzy ultrafilter.

1.21 Corollary. Let X be a non-empty set. For each x ∈ X, ẋ is a fuzzy ultrafilter on X.

Proof. Let x ∈ X and let i : {x} → X be the inclusion map. Since ẋ is the unique fuzzy
filter on {x}, it is a fuzzy ultrafilter by 1.18. By 1.20, i(ẋ) = ˙i(x) is a fuzzy ultrafilter on
X .

1.22 Definition. Let X be a non-empty set and F ,G fuzzy filters on X × X . Then

1. a fuzzy filter F−1 on X × X is defined by F−1(f) = F(f−1) for each f ∈ LX×X ,
where f−1(x, y) = f(y, x) for each (x, y) ∈ X × X ,

2. a composition F ◦ G is defined by F ◦ G(h) =
∨

f◦g≤h

F(f) ∧ G(g) for each h ∈ LX×X

where f ◦ g(x, y) =
∨

z∈X

g(x, z) ∧ f(z, y) for each (x, y) ∈ X × X .
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1.23 Proposition. Let F ,G ∈ FL(X × X).
Then the following are equivalent:

1. F ◦ G ∈ FL(X × X).

2. For each α ∈ L and all f, g ∈ LX×X the following is satisfied : f ◦ g ≤ ᾱ implies
F(f) ∧ G(g) ≤ α.

3. F ◦ G(ᾱ) ≤ α for each α ∈ L.

Proof. The equivalence of (2) and (3) is obvious.
(1) ⇒ (3). This is obvious since even F ◦ G(ᾱ) = α for each α ∈ L.
(3) ⇒ (1). FFil1). For each α ∈ L, ᾱ ◦ ᾱ = ᾱ. Thus, for each α ∈ L, α = F(ᾱ) ∧ G(ᾱ) ≤∨
f◦g≤ᾱ

F(f) ∧ G(g) = F ◦ G(ᾱ),which implies, by assumption, F ◦ G(ᾱ) = α for each α ∈ L.

FFil2)

a) Let u, v ∈ LX×X and u ≤ v. Then F◦G(u) =
∨

f◦g≤u

F(f)∧G(g) ≤ ∨
f◦g≤v

F(f)∧G(g) =

F ◦ G(v).

b) Let k1, k2 ∈ LX×X . Then, f1 ◦ g1 ≤ k1 and f2 ◦ g2 ≤ k2 imply f ◦ g ≤ k1 ∧ k2 where
f = f1 ∧ f2 and g = g1 ∧ g2. Hence, F ◦G(k1)∧F ◦G(k2) = (

∨
f1◦g1≤k1

F(f1)∧G(g1))∧
(

∨
f2◦g2≤k2

F(f2) ∧ G(g2))

≤ ∨
f◦g≤k1∧k2

F(f) ∧ G(g) = F ◦ G(k1 ∧ k2).

c) By means of a) and b), FFil2) is fulfilled for F ◦ G.

1.24 Proposition. Let F ,G ∈ FL(X × X). If there are x, y, z ∈ X such that G ⊂ ˙(x, y)
and F ⊂ ˙(y, z), then F ◦ G ∈ FL(X × X).

Proof. Let α ∈ L and f, g ∈ LX×X such that f ◦g ≤ ᾱ. By assumption there are x, y, z ∈ X
with F(f) ≤ f(y, z) and G(g) ≤ g(x, y). Furthermore, g(x, y) ∧ f(y, z) ≤ f ◦ g(x, z)) =∨
a∈X

g(x, a) ∧ f(a, z) ≤ α. Consequently, F(f) ∧ G(g) ≤ α. By 1.23. F ◦ G ∈ FL(X × X).

2 Fuzzy compact spaces

2.1 Definition. 1. (a) A fuzzy generalized convergence space is a pair (X, q) where X
is a set and q ⊂ FL(X) × X such that the following are satisfied

FC1) (ẋ, x) ∈ q for each x ∈ X ,
FC2) (F , x) ∈ q whenever (G, x) ∈ q and G ⊂ F .

If (X, q) is a fuzzy generalized convergence space, then we say F converges to x

instead of (F , x) ∈ q and write sometimes F q→ x or shortly F → x.

(b) A fuzzy generalized convergence space (X, q) is called

α) a fuzzy Kent convergence space provided that the following is statisfied:
FC3) (F ∩ ẋ, x) ∈ q whenever (F , x) ∈ q, and

β) symmetric provided that the following is satisfied:
FS) (F , x) ∈ q and F ⊂ ẏ imply (F , y) ∈ q.
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2. A map f : (X, q) → (X ′, q′) between fuzzy generalized convergence spaces is called
fuzzy continuous iff (f(F), f(x)) ∈ q′ for each (F , x) ∈ q.

3. A fuzzy generalized convergence space (X, q) is called compact provided that each
fuzzy ultrafilter U on X converges to some x ∈ X .

2.2 Proposition. A fuzzy generalized convergence space (X, q) is compact iff each fuzzy
filter Fon X has an adherence point x ∈ X (i.e. there is a fuzzy filter F ′ on X finer than
F which converges to x).

Proof. Because of 1.18 the proof is similar to the classical case.

2.3 Proposition. Let f : (X, q) → (X ′, q′) be a surjective fuzzy continuous map between
fuzzy generalized convergence spaces. If (X, q) is compact, then (X ′, q′) is compact too.

Proof. If F ∈ FL(X ′), then f−1(F) ∈ FL(X) because f is surjective. By assumption,

there is some (G, x) ∈ q with G ⊃ f−1(F). Consequently, f(G)
q′
→ f(x) since f is fuzzy

continuous and f(G) ⊃ f(f−1(F) ⊃ F , i.e. f(x) is an adherence point of F . By 2.2.,
(X ′, q′) is compact.

2.4 Remark. The category FGConv of fuzzy generalized convergence spaces (and fuzzy
continuous maps) is a topological construct, where the initial FGConv-structures are
formed as follows: Let X be a set, ((Xi, qi))i∈I a family of fuzzy generalized convergence
spaces, and (fi : X → Xi)i∈I a family of maps. Then q = {(F , x) ∈ FL(X) × X :
(fi(F), fi(x)) ∈ qi for each i ∈ I} is the initial FGConv-structure X w.r.t. the given data.

2.5 Theorem. Let ((Xi, qi))i∈I be a family of non-empty fuzzy generalized convergence
spaces. Then the product space

∏
i∈I

(Xi, qi) of this family is compact iff (Xi, qi) is compact

for each i ∈ I.

Proof. “⇒.” Apply 2.3. to the projections pi :
∏

Xi → Xi which are surjective and fuzzy
continuous.
“⇐.” Let U be a fuzzy ultrafilter on

∏
Xi. Then for each i ∈ I, pi(U) is a fuzzy ultrafilter

on Xi converging to some xi ∈ Xi, since (Xi, qi) is compact. Thus U converges to x = (xi).
Consequently,

∏
i∈I

(Xi, qi) is compact.

2.6 Definition. Let (X, q) be a fuzzy generalized convergence space, A ⊂ X , and iA :
A → X the inclusion map.

1. The closure of A w.r.t q, denoted by clqA, is defined by clqA = {x ∈ X : there is
some F ∈ FL(A) with iA(F)

q→ x}. If A = clqA, A is called closed.

2. A is called compact iff the subspace (A, qA) of (X, q) is compact.

2.7 Proposition. Let (X, q) be a compact fuzzy generalized convergence space and A ⊂ X
a closed subset. Then A is compact.

Proof. Let U be a fuzzy ultrafilter on A. Then iA(U) is a fuzzy ultrafilter on X where iA :
A → X denotes the inclusion map. By assumption, iA(U) converges to some x ∈ X . Since
A is closed, x ∈ A. Thus, U converges to x in the subspace (A, qA) of (X, q). Consequently,
A is compact.
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2.8 Definition. 1. (a) A fuzzy preuniform convergence space is a pair (X, FJX) where
X is a set and FJX a set of fuzzy filters on X × X such that the following are
satisfied:

FC1) ˙(x, x) ∈ FJX for each x ∈ X .
FC2) F ∈ FJX whenever G ∈ FJX and G ⊂ F .

(b) A fuzzy preuniform convergence space (X, FJX) is called a fuzzy semiuniform
convergence space provided that the following is satisfied:

FC3) F ∈ FJX implies F−1 ∈ FJX .

2. A map f : (X, FJX) → (Y, FJY ) between fuzzy preuniform convergence spaces is
called uniformly continuous iff (f × f)(F) ∈ FJY for each F ∈ FJX .

2.9 Remark. A fuzzy preuniform convergence space (X, FJX) has two canonical under-
lying fuzzy generalized convergence spaces, namely
1◦(X, qFJX ) and 2◦(X, qγF JX

) defined as follows:

1◦ (F , x) ∈ qFJX iff ẋ ×F ∈ FJX ,

2◦ (F , x) ∈ qγF JX
iff (F ∩ ẋ) × (F ∩ ẋ) ∈ FJX .

Fuzzy filter convergence in (X, qFJX ) and in (X, qγF JX
) are called preconvergence in (X, FJX)

and convergence in (X, FJX) respectively. In particular, (X, qγF JX
) is a symmetric Kent

convergence space. Obviously, convergence implies preconvergence whereas the inverse im-
plication is not even true in case L = {0, 1} (cf. [10]).

2.10 Definition. 1. A fuzzy preuniform convergence space (X, FJX) is called compact
(resp. weakly compact) iff each fuzzy ultrafilter U on X converges (resp. preconverges)
to some x ∈ X , i.e. iff (X, qγF JX

)(resp. (X, qFJX )) is compact.

2. If (X, FJX) is a fuzzy preuniform convergence space then a subset A of X is called
(weakly) compact iff the subspace (A,FJA) of (X, FJX) is (weakly) compact.

2.11 Remark. 1. Obviously, every compact fuzzy preuniform convergence space is
weakly compact.

2. By [11] the category FPUConv of fuzzy preuniform convergence spaces (and fuzzy
uniformly continuous maps) is a topological construct and its full subcategory FSU-
Conv of fuzzy semiuniform convergence spaces is bireflective and bicoreflective (in
FPUConv), i.e. a topological construct too where initial and final structures in
FSUCoonv are formed as in FPUConv. The initial structures in FPUConv are
formed as follows: Let X be a set, ((Xi, FJXi))i∈I a family of fuzzy preuniform
convergence spaces and (fi : X → Xi)i∈I a family of maps. Then FJX = {F ∈
FL(X × X) : (fi × fi)(F) ∈ FJXi for each i ∈ I} is the initial FPUConv-structure
on X w.r.t. the given data. It has been proved in [11] that the construct FGConv
of fuzzy generalized convergence spaces is bicoreflectively embedded in FPUConv.
Furthermore the construct FKConvS of symmetric fuzzy Kent convergence spaces
can be bicoreflectively embedded into FSUConv and thus in FPUConv (cf. [11]
and [12]). Since a bicoreflector preserves initial structures we obtain the following
corollaries 2.12 and 2.14.
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2.12 Corollary. Let ((Xi, FJXi))i∈I be a family of non-empty fuzzy preuniform conver-
gence spaces. Then the product space

∏
i∈I

(Xi, FJXi) is (weakly) compact iff (Xi, FJXi) is

(weakly) compact for each i ∈ I.

Proof. Apply 2.5.

2.13 Definition. A subset A of a fuzzy preuniform convergence space (X, FJX) is called
closed (resp. preclosed) iff it is closed in (X, qγF JX

) (resp. (X, qFJX )).

2.14 Corollary. Let (X, FJX) be a (weakly) compact fuzzy preuniform convergence space
and A ⊂ X (pre) closed. Then A is (weakly) compact as a subspace of (X, FJX).

Proof. Apply 2.7.

2.15 Corollary. Let f : (X, FJX) → (Y, FJY ) be a surjective fuzzy uniformly continuous
maps between fuzzy preuniform convergence spaces. If (X, FJX) is (weakly) compact, then
(Y, FJY ) is (weakly) compact.

Proof. Apply 2.3 and note that each fuzzy uniformly continuous map is continuous.

2.16 Remark. Since initial structures in FSUConv are formed as in FPUConv, 2.14
and 2.15 are also valid in FSUConv.

3 Fuzzy locally compact spaces

3.1 Definitions. 1. A fuzzy generalized convergence space (X, q) is called locally com-
pact provided that for each (F , x) ∈ q there is a non-empty compact subset K of X
such that χK ∈ base F .

2. A fuzzy preuniform convergence space (X, FJX) is called

(a) locally compact (locally weakly compact) iff for each F ∈ FJX there is a non-
empty compact (weakly compact) subset K of the product space (X, FJX) ×
(X, FJX) such that χK ∈ base F ,

(b) diagonal iff
⋂

x∈X

ẋ × ẋ ∈ FJX .

3.2 Remark. Every fuzzy (quasi) uniform space as studied in [12] is diagonal if it is
regarded as a fuzzy preuniform convergence space.

3.3 Proposition. 1. Every (weakly) compact fuzzy preuniform convergence space is lo-
cally (weakly) compact.

2. Every diagonal fuzzy preuniform convergence space, which is locally (weakly) compact,
is (weakly) compact.

Proof. 1. Let (X, FJX) ∈ |FPUConv| be (weakly) compact and X 
= ∅ (the case X = ∅
is trivial). For each F ∈ FJX , χX = 1̄ ∈ base F . Thus, (X, FJX) is locally (weakly)
compact.

2. Let (X, FJX) ∈ |FPUConv| be diagonal and locally (weakly) compact. Since
⋂

x∈X

ẋ×
ẋ ∈ FJX , there is some non-empty (weakly) compact K ⊂ X × X such that χK ∈
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base
⋂

x∈X

ẋ × ẋ =
⋂

x∈X

base ẋ × ẋ, i.e. χK(x, x) = 1 for each x ∈ X . Thus, ∆ =

{(x, x) : x ∈ X} ⊂ K. If p1 : X × X → X denotes the first projection, then
X = p1[∆] ⊂ p1[K] ⊂ X , i.e. X = p1[K]. By 2.15, X is (weakly) compact.

3.4 Definitions. 1. A fuzzy semiuniform convergence space (X, FJX) is called a fuzzy
uniform limit space provided that the following are satisfied:

FUC4) F ∈ FJX and G ∈ FJX imply F ∩ G ∈ FJX ,

FUC5) F ∈ FJX and G ∈ FJX imply F ◦G ∈ FJX whenever F ◦G exists as a fuzzy
filter (cf. 1.23).

2. A fuzzy uniform limit space (X, FJX) is called a principal fuzzy uniform limit space
iff there is some U ∈ FL(X×X) such that FJX = [U ], where [U ] = {F ∈ FL(X×X) :
F ⊃ U}.

3.5 Remark. If X is a non-empty set and U is a fuzzy filter on X × X then U is a fuzzy
uniformity on X (i.e. 1◦ U ⊂ ˙(x, x) for each x ∈ X , 2◦ U = U−1, and 3◦ U ⊂ U ◦ U) iff
(X, [U ]) is a (principal) fuzzy uniform limit space (note: U ◦ U exists by 1.24 since 1◦ is
satisfied). As in the non-fuzzy space we need not distinguish between principal fuzzy uniform
limit spaces and fuzzy uniform spaces where a fuzzy uniform space is a set endowed with
a fuzzy uniformity (a fuzzy uniformity U on the empty set is defined as a map U : L∅ → L
such that U(∅) = 1 where L∅ = {∅}). Furthermore, in fuzzy uniform limit spaces there is no
difference between convergence and preconvergence of fuzzy filters since for each F ∈ FL(X)
and each x ∈ X the following formular is valid: F∩ ẋ×F∩ ẋ = F×F∩F× ẋ∩ ẋ×F∩ ẋ× ẋ,
where F ×F = ẋ ×F ◦F × ẋ (cf. [6; 2.3.(2)] and [8; 5.1]). Consequently, in fuzzy uniform
limit spaces there is no difference between compactness and weak compactness as well as
between local compactness and local weak compactness. Obviously, principal fuzzy uniform
limit spaces (= fuzzy uniform spaces) are diagonal. Thus, we obtain the following corollary.

3.6 Corollary. A principal fuzzy uniform limit space (= fuzzy uniform space) is locally
compact iff it is compact.

3.7 Proposition. Let (X, FJX) be a locally compact (resp. locally weakly compact) fuzzy
preuniform convergence space. Then the underlying symmetric fuzzy Kent convergence space
(X, qγF JX

) (resp. the underlying fuzzy generalized convergence space (X, qFJX )) is locally
compact.

Proof. 1. Let (X, FJX) ∈ |FPUConv| be locally compact and (F , x) ∈ qγF JX
. Hence,

F ∩ ẋ×F ∩ ẋ ∈ FJX and therefore F ×F ∈ FJX . By assumption, there is some non-
empty compact K ⊂ X ×X such that χK ∈ F ×F . Consequently, p1[χK ] = χp1[K] ∈
base p1(F × F) = base F ,where p1 : X × X → X denotes the first projection. Since
p1[K] = (p1|K)′[K] is compact ((p1|K)′ : K → p1[K] defined by (p1|K)′(z) = p1(z)
for each z ∈ K is surjective and fuzzy continuous!), (X, qγF JX

) is locally compact.

2. Let (X, FJX) ∈ |FPUConv| be locally weakly compact and (F , x) ∈ qγF JX
, i.e.

ẋ × F ∈ FJX . Then there is a non-empty compact K in (X, qγF JX
) × (X, qγF JX

)
such that χK ∈ ẋ × F . Hence, p2[χK ] = χp2[K] ∈ base p2(ẋ × F) = base F where
p2 : X × X → X denotes the second projection. Since p2[K] is compact, (X, qγF JX

)
is locally compact.

3.8 Definition. A fuzzy preuniform convergence space (X, FJX) is called
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1. a fuzzy convergence space iff
FJX = {F ∈ FL(X × X) : there is some (G, x) ∈ qγF JX

with G × G ⊂ F}, i.e. iff
(X, FJX) is ’generated’ by its convergent fuzzy filters,

2. a fuzzy preconvergence space iff
FJX = {F ∈ FL(X × X) : there is some (G, x) ∈ qFJX with ẋ × G ⊂ F}, i.e. iff
(X, FJX) is ’generated’ by its preconvergent fuzzy filters.

3.9 Remark. 1. In fuzzy convergence spaces there is no difference between convergence
and preconvergence (note: If (X, FJX) is a fuzzy convergence space and (F , x) ∈ qFJX ,
i.e. there is some (G, y) ∈ qγF JX

with G × G ⊂ ẋ ×F , then G ⊂ ẋ and G ⊂ F , which
implies (G, x) ∈ qγF JX

and thus (F , x) ∈ qγF JX
.).

2. The construct FConv of fuzzy convergence spaces (and fuzzy uniformly continuous
maps) is concretely isomorphic to FKConvs (similarly to the non-fuzzy case) and
the construct FPConv is concretely isomorphic to FGConv (cf. [11]).

3.10 Proposition. Let (X, FJX) be a fuzzy convergence space and
(X, qγF JX

) its underlying fuzzy Kent convergence space. Then the following are equivalent:

1. (X, FJX) is locally compact.

2. (X, qγF JX
) is locally compact.

Proof. (1)⇒(2). See 3.7.
(2)⇒(1). Let H ∈ FJX . Then there is some (F , x) ∈ qγF JX

such that F × F ⊂ H. By
assumption, there exists some non-empty compact K in (X, FJX) with χK ∈ base F . By
2.12, K×K is compact in (X, FJX)×(X, FJX). Furthermore, χK×K = χK ◦p1∧χK ◦p2 ∈
base F × F , where for each i ∈ {1, 2}, pi : X × X → X denotes the i-th projection.
Consequently, χK×K ∈ base H and (X, FJX) is locally compact.

3.11 Remark. In fuzzy preconvergence spaces preconvergence is more interesting than
convergence since in each (X, FJX) ∈ |FPConv|, (F , x) ∈ qγF JX

iff F = ẋ. Thus, we study
in these spaces rather weak compactness and local weak compactness than compactness and
local compactness.

3.12 Proposition. Let (X, FJX) be a fuzzy preconvergence space and (X, qFJX ) its un-
derlying fuzzy generalized convergence space. Then the following are equivalent:

1. (X, FJX) is locally weakly compact.

2. (X, qFJX ) is locally compact.

Proof. (1)⇒(2). See 3.7.
(2)⇒(1). Let H ∈ FJX , i.e. there is some (F , x) ∈ qFJX such that ẋ × F ⊂ H. By
assumption, there is some non-empty weakly compact K in (X, FJX) with χK ∈ base F .
Since χ{x} ∈ base ẋ, χ{x} ◦ p1 ∧ χK ◦ p2 = χ{x}×K ∈ base ẋ × F which implies χ{x}×K ∈
base H where {x} × K is weakly compact in (X, FJX) by 2.12. Thus, (X, FJX) is locally
weakly compact.

3.13 Proposition. The construct LC-FPUConv (resp. LWC-FPUConv) of locally
compact (resp. locally weakly compact) fuzzy preuniform convergence spaces (and uniformly
continuous maps) is bicoreflective in FPUConv.
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Proof. Let (X, FJX) ∈ |FPUConv| and FJ∗
X = {F ∈ FJX : there is a non-empty

(weakly) compact subset K of (X, FJX) × (X, FJX) with χK ∈ base F}. Then (X, FJ∗
X)

is a fuzzy preuniform convergence space (note that if X 
= ∅ then ẋ × ẋ = ˙(x, x) ∈ FJ∗
X

for each x ∈ X since {x} × {x} is a (weakly) compact subset of (X, FJX) × (X, FJX) and
χ{x}×{x} = χ{x}◦p1∧χ{x}◦p2 ∈ base ẋ× ẋ because χ{x} ∈ base ẋ) which is locally (weakly)
compact: Let F ∈ FJ∗

X . Then F ∈ FJX and there is a non-empty (weakly) compact subset
K of (X, FJX)× (X, FJX) with χK ∈ base F . But K is also a (weakly) compact subset of
(X, FJ∗

X) × (X, FJ∗
X), namely FJ∗

X × FJ∗
X = (FJX × FJX)∗, where × stands for forming

the product structure, and it follows from the last part of this proof that the inclusion map
i : (K, (FJX ×FJX)K) → (X ×X, (FJX ×FJX)∗) is fuzzy uniformly continuous and thus
i[K] = K is a (weakly) compact subset of (X×X, (FJX ×FJX)∗) = (X, FJ∗

X)× (X, FJ∗
X).

Consequently, (X, FJ∗
X) is locally (weakly) compact. Now 1X : (X, FJ∗

X) → (X, FJX)
is the desired bicoreflection: Let (Y, FJY ) ∈ |LC-FPUConv| (resp. |LWC-FPUConv|)
and let f : (Y, FJY ) → (X, FJX) be a fuzzy uniformly continuous map. If F ∈ FJY then
there is a non-empty (weakly) compact subset K of (Y, FJY ) × (Y, FJY ) with χK ∈ base
F and (f × f)(F) ∈ FJ∗

X since (f × f)[χK ] = χf×f [K] ∈ base (f × f)(F) and (f × f)[K] is
a (weakly) compact subset of (X, FJX) × (X, FJX) ( f × f is fuzzy uniformly continuous
and thus fuzzy continuous!), i.e. f : (Y, FJY ) → (X, FJX∗) is fuzzy uniformly continuous.

3.14 Remark. If (X, FJX) ∈ |FSUConv| then (X, FJ∗
X) as constructed in the above

proof belongs to |FSUConv|: Let F ∈ FJ∗
X . Hence, there is some non-empty (weakly)

compact subset K of (X, FJX) × (X, FJX) with χK ∈ base F . Furthermore, F−1 ∈ FJX

and (χK)−1 = χK−1 ∈ base F−1 (cf. [11; proposition 1.19], where K−1 = {(x, y) : (y, x) ∈
K} is also (weakly) compact (note that s : (X, FJX) × (X, FJX) → (X, FJX) × (X, FJX)
defined by s(x, y) = (y, x) for each (x, y) ∈ X × X is fuzzy uniformly continuous and thus
continuous). Consequently F−1 ∈ FJ∗

X .

3.15 Corollary. The construct LC-FSUConv (resp. LWC-FSUConv) of locally com-
pact (resp. locally weakly compact) fuzzy semiuniform convergence spaces (and fuzzy uni-
formly continuous maps) is bicoreflective in FSUConv.

3.16 Corollary. Let (fi : (Xi, FJXi) → (X, FJX))i∈I be a final sink in FPUConv or
in FSUConv , i.e. FJX = {F ∈ FL(X × X) : there is some i ∈ I and some Fi ∈ FJXi

with (f × f)(Fi) ⊂ F} ∪ {ẋ × ẋ : x ∈ X}, such that all (Xi, FJXi) are locally (weakly)
compact. Then (X, FJX) is locally (weakly) compact.

3.17 Corollary. Let (fi : (Xi, qi) → (X, q))i∈I be a final sink in FGConv, i.e. q =
{(F , x) ∈ FL(X) × X : there is some i ∈ I and some (Fi, xi) ∈ qi with fi(Fi) ⊂ F and
fi(xi) = x} ∪ {(ẋ, x) : x ∈ X}, such that all (Xi, qi) are locally compact. Then (X, q) is
locally compact.

Proof. By 3.9.2, FPConv is concretely isomorphic to FGConv and bicoreflective in FPU-
Conv. Thus, final structures in FPConv (∼= FGConv) are formed as in FPUConv.
Furthermore,
1◦ For each (X, q) ∈ |FGConv| the corresponding fuzzy preconvergence structure FJq is
given by FJq = {H ∈ FL(X × X) : there is some (F , x) ∈ q with ẋ ×F ⊂ H}.
2◦ A sink (fi : (Xi, qi) → (X, q))i∈I in FGConv is final iff the sink (fi : (Xi, FJqi) →
(X, FJq))i∈I is final in FPConv.
3◦ (X, q) ∈ |FGConv| is locally compact iff (X, FJq) is locally weakly compact (use 3.12
and note that qFJq = q).
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Thus, 3.17 follows from 3.16.

3.18 Remark. It follows from 3.17 that quotients of locally compact fuzzy generalized
convergence spaces are locally compact. This is highly remarkable since such a result cannot
be obtained for the construct FTop of fuzzy topological spaces, because it is false already
in case L = {0, 1}, e.g. R

N is (as a compactly generated topological space) a quotient
space of a locally compact topological space but it is not locally compact. By the way,
a fuzzy topological space (X, t) is locally compact iff its corresponding fuzzy generalized
convergence space (X, qt) is locally compact where (F , x) ∈ qt iff F ⊃ Ut(x) (here Ut(x)
denotes the fuzzy neighborhood filter of x with respect to t, i.e. Ut(x)(f) = (inttf)(x)
with inttf =

∨
g∈t,g≤f

g for each f ∈ LX). Since FTop can be embedded into FGConv

as a (bireflective) subconstruct (cf. [12]), quotients in FGConv of locally compact fuzzy
topological spaces are locally compact by 3.17. In other words: Quotients in FGConv are
better behaved than in FTop. The same is true for quotients in FPUConv, FKConvs, or
FSUConv (note that the construct FTops of symmetric fuzzy topological spaces can be
embedded in FKConvs and thus in FSUConv, where a fuzzy topological space (X, t) is
called symmetric iff its corresponding fuzzy Kent convergence space (X, qt) is symmetric).

3.19 Proposition. Let ((Xi, FJXi))i∈I be a family of locally (weakly) compact fuzzy pre-
uniform convergence spaces such that (Xi, FJXi) is (weakly) compact for all but finitely
many i ∈ I. Then the product space

∏
i∈I

(Xi, FJXi) is locally (weakly) compact.

Proof. Let X =
∏
i∈I

Xi, (X, FJX) =
∏
i∈I

(Xi, FJXi), and F ∈ FJX . Hence, for each i ∈ I,

(pi × pi)(F) ∈ FJXi , where pi : X → Xi denotes the i-th projection. By assumption,
there are finitely many elements i1, . . . , in of I such that (Xi, FJXi) is (weakly) compact
for each i ∈ I\{i1, . . . , in}, and for each i ∈ {i1, . . . , in}, there is a (weakly) compact subset
Ki of (Xi, FJXi) × (Xi, FJXi) such that χKi ∈ base (pi × pi)(F). Put Ki = Xi × Xi

for each i ∈ I\{i1, . . . , in}. Let p′i :
∏
i∈I

Xi × Xi → Xi × Xi be the i-th projection and

j :
∏
i∈I

Xi × Xi → ∏
i∈I

Xi ×
∏
i∈I

Xi the canonical isomorphism. Then χKi1
◦ p′i1 ∧ · · · ∧

χKin
◦ p′in

= χ�Ki
belongs to a base of

∏
i∈I

pi × pi(F) and j[χ�Ki
] = χj[

�
Ki] ∈ base

j(
∏
i∈I

pi × pi(F)). Furthermore,
∏
i∈I

Ki is (weakly) compact by 2.12. Thus, j[
∏

Ki] is

(weakly) compact by 2.15 since j is fuzzy uniformly continuous and χj[
�

Ki] ∈ base F
because j(

∏
pi × pi(F)) = j(

∏
p′i × p′i(j

−1(F))) ⊂ j(j−1(F)) = F .

3.20 Proposition. Let (X, FJX) be a locally (weakly) compact fuzzy preuniform conver-
gence space and A ⊂ X (pre) closed. Then the subspace (A,FJA) of (X, FJX) is locally
(weakly) compact.

Proof. Let F ∈ FJA and let iA : A → X be the inclusion map. By assumption, there
is a non-empty (weakly) compact subset K of (X, FJX) × (X, FJX) such that χK ∈ base
(iA × iA)(F). Thus, since 1̄ ∈ base F , χA×A = iA × iA[1̄] ∈ base iA × iA(F). Consequently,
χK∩(A×A) = χK ∧ χA×A ∈ base (iA × iA)(F) and sup χK∩(A×A) = sup(χK ∧ χA×A) =
supχK ∧ sup χA×A = 1 if A 
= ∅ which may be assumed without loss of generality. Hence,
K ∩ (A × A) 
= ∅. Furthermore, K ∩ (A × A) is (weakly) compact as a (pre) closed
subspace of the subspace (K, FJK) of (X, FJX) × (X, FJX) and thus (weakly) compact
in (A,FJA) × (A,FJA). Finally, the characteristic function of K ∩ (A × A) w.r.t. A × A,
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denoted by χA×A
K∩(A×A), belongs to

base F since F(χA×A
K∩(A×A)) = F(χK ◦ (iA × iA)) = (iA × iA)(F)(χK) = supχK = 1 =

sup χA×A
K∩(A×A) because K ∩ (A × A) 
= ∅.

3.21 Theorem. The construct LC-FPUConv (resp. LWC-FPUConv) as well as
the construct LC-FSUConv (resp. LWC-FSUConv) is a cartesian closed topological
construct.

Proof. By 3.14 LC-FPUConv (resp. LWC-FPUConv) is bicoreflective in FPUConv
and by 3.19 closed under formation of finite products. Since FPUConv is cartesian closed
(cf. [11]), LC-FPUConv (resp. LWC-FPUConv) is cartesian closed too and, since
FPUConv is topological, LC-FPUConv (resp. LWC-FPUConv) is also topological
(cf. [9; 3.1.7]). Similarly, LC-FSUConv (resp. LWC-FSUConv) is bicoreflective in
FSUConv (cf. 3.15) and closed under formation of finite products since products in FSU-
Conv are formed as in FPUConv. Thus, LC-FSUConv (resp. LWC-FSUConv) is a
cartesian closed topological construct because FSUConv is a cartesian closed topological
construct (cf. [11]).

3.22 Corollary. The construct LC-FGConv of locally compact fuzzy generalized conver-
gence spaces is a cartesian closed topological construct.

Proof. Since the concrete isomorphism between FPConv and FGConv (cf. [11]) leads to
a concrete isomorphism between the constructs LWC-FPConv of locally weakly compact
fuzzy preconvergence spaces and LC-FGConv it suffices to prove that LWC-FPConv
is cartesian closed: Since LWC-FPConv is the intersection of the bicoreflective subcon-
structs LWC-FPUConv and FGConv of FPUConv it is bicoreflective in FPUConv.
Furthermore, it is closed under formation of finite products in FPUConv (cf. 3.19 and
note that FPUConv is closed under formation of finite pro-ducts by [11]). Consequently,
LWC-FPConv is cartesian closed because FPUConv is cartesian closed.

3.23 Remark. 1. The natural function spaces in LC-FPUConv (or LWC-FPUConv)
and LC-FSUConv (or LWC-FSUConv) are obtained by bicoreflective modifica-
tion of the natural function spaces in FPUConv and FSUConv respectively (cf.[9;
3.1.7]), e.g. if X = (X, FJX) and Y = (Y, FJY ) are locally compact fuzzy preuniform
convergence spaces, then the natural function space YX in LC-FPUConv is the set
[X,Y] of all fuzzy uniformly continuous maps from X to Y endowed with the LC-
FPUConv-structure (FJX,Y )LC = {Φ ∈ FJX,Y : there is some non-empty compact
subset K of
([X,Y], FJX,Y )×([X,Y], FJX,Y ) with χK ∈ base Φ}, where FJX,Y = {Φ ∈ FL([X,Y]×
[X,Y]) : eX,Y × eX,Y (H×Φ) ∈ FJY for each H ∈ FJX} and eX,Y : X × [X,Y] → Y
denotes the evaluation map, i.e. eX,Y (x, f) = f(x) for each (x, f) ∈ X × [X,Y], and
(X × [X,Y]) × (X × [X,Y]) is identified with (X × X) × ([X,Y] × [X,Y]).

2. For each (X, q) ∈ |FGConv|, 1X : (X, q∗) → (X, q) with q∗ = {(F , x) ∈ q : there is
some non-empty compact subset K of (X, q) with χK ∈ base F} is the bicoreflection
of (X, q) w.r.t. LC-FGConv since (X, q) and (X, q∗) have the same compact subsets
(cf. also the proof of 3.13). Furthermore, LC-FGConv is closed under formation of
finite products formed in FGConv (cf. the proof of 3.22 and note that LC-FGConv
and FGConv are concretely isomorphic to LWC-FPConv and FPConv respec-
tively and FPConv is closed under formation of finite products in FPUConv by
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[11].). Thus, the natural function spaces in LC-FGConv are constructed by bicore-
flective modification of the natural function spaces in FGConv, i.e. if X = (X, q)
and X′ = (X ′, q′) are locally compact fuzzy generalized convergence spaces then the
power-object X′X (= natural function space) in LC-FGConv is the set [X,X′] of all
fuzzy continuous maps from X into X′ endowed with the LC-FGConv structure (q̂)∗

defined by:
(Φ, f) ∈ (q̂)∗ ⇔ (Φ, f) ∈ q̂ and there is a non-empty compact subset

K of ([X,X′], q̂) with χK ∈ base Φ
where q̂ is the structure of fuzzy continuous convergence which means (Φ, f) ∈ q̂ ⇔
(eX,X′(F × Φ), f(x)) ∈ q′ for each (F , x) ∈ q.

3. Since LC-FGConv is cartesian closed, the construct LCT2-FGConv of locally com-
pact T2 fuzzy generalized convergence spaces (and fuzzy continuous maps) is cartesian
closed too where a fuzzy generalized convergence space is T2 iff the fuzzy filter con-
vergence is unique (note: 1◦ The fuzzy natural function space structure in FGConv
is the structure of fuzzy continuous convergence which is T2 whenever its codomain
is T2. 2◦ This structure is coarser than the fuzzy natural function space structure in
LC-FGConv and thus it is T2 whenever the latter one is T2, i.e. LCT2-FGConv
is closed under formation of function spaces in LC-FGConv. 3◦ LCT2-FGConv is
closed under formation of finite products in LC-FGConv since these ones are formed
as in FGConv.). In particular, the fuzzy natural function spaces in LCT2-FGConv
are formed as in LC-FGConv. The cartesian closedness of LCT2-FGConv is highly
remarkable because the construct LCT2-FTop of locally compact T2 fuzzy topolog-
ical spaces is not even cartesian closed in case L = {0, 1}, i.e. in the non-fuzzy case,
which is well-known (remember the fact that for locally compact Hausdorff spaces X
and Y the compact open topology on the set C(X,Y) of all continuous maps form X
into Y is proper [=splitting] and admissible [=conjoining] but not locally compact in
general).
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