THE SET OF REGULAR ELEMENTS IN ORDERED SEMIGROUPS

Niovi Kehayopulu and Michael Tsingelis

Received March 12, 2010

Abstract

For a semigroup or an ordered semigroup S, we denote by $\operatorname{Reg}(S)$, $L R e g(S), G r(S)$ the set of regular, left regular, completely regular elements of S respectively, and for a subsemigroup T of S, we denote by $\operatorname{reg}(T)$ the set of elements of T which are regular in S. For a subset H of an ordered semigroup $S,(H]$ denotes the set of elements $t \in S$ such that $t \leq h$ for some $h \in H$. We characterize the ordered semigroups S in which the set of regular elements is a subset of the set of left regular elements as the ordered semigroups such that $\operatorname{reg}(S a)=\operatorname{Reg}(S a]$ for every $a \in S$. We prove that this type of ordered semigroups is actually the class of semigroups for which $\operatorname{reg}(S e)=\operatorname{Reg}(S e]$ for every $e \in S$ such that $e \leq e^{2}$. As a consequence, for a semigroup S (without order), condition $\operatorname{reg}(S e)=R e g(S e)$ for every idempotent element of S is equivalent to the condition $\operatorname{reg}(S a)=\operatorname{Reg}(S a)$ for every $a \in S$. For an ordered semigroup S it remains an open problem if condition $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$ implies $\operatorname{Reg}(S)=G r(S)$.

1. Introduction and prerequisites. An element a of a semigroup S is called regular if there exists an element $x \in S$ such that $a=a x a$; left (resp. right) regular if there exists $x \in S$ such that $a=x a^{2}$ (resp. $a=a^{2} x$) [1]; completely regular if there exists $x \in S$ such that $a=a^{2} x a^{2}$ [8]. Keeping the notations given in [7], $\operatorname{Reg}(S)$ denotes the set of regular elements of $S, L \operatorname{Reg}(S)$ (resp. $R R e g(S)$) the set of left (resp. right) regular elements of S and, for every subsemigroup T of $S, \operatorname{reg}(T)$ denotes the intersection $T \cap \operatorname{Reg}(S)$, that is the set of elements of T which are regular in S. As usual, $E(S)$ is the set of idempotent elements of S. As far as the set of completely regular elements is concerned, although $\operatorname{CReg}(S)$ suits better in our case (i.e. for ordered semigroups), we will keep the notation $\operatorname{Gr}(S)$ already existed in the bibliography to be easier for the reader to follow the aim of the paper. According to the main result in [7], for a semigroup S, the following five conditions are equivalent and the right analogue of the same results also hold:
(i) $\operatorname{reg}(S e)=G r(S e) \quad \forall e \in E(S)$
(ii) $\operatorname{reg}(S e)=\operatorname{Reg}(S e) \quad \forall e \in E(S)$
(iii) $\operatorname{reg}(S e) \subseteq L R e g(S e) \quad \forall e \in E(S)$
(iv) $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$
(v) $\operatorname{Reg}(S)=G r(S)$.

The following question arises: Are there similar characterizations in case of ordered semigroups? In positive case, we obtain generalizations of the corresponding results on semigroups as every semigroup endowed with the equality relation is an ordered semigroup. This is by no means gratuitous generalization: the structure of order on an algebraic system is a very natural additional structure to require, and the quasi-topological nature of the structure creates substantial changes in the methodology.

If ($S, ., \leq$) is an ordered semigroup, then a nonempty subset A of S is called a left (resp. right) ideal of S if 1) $S A \subseteq A$ (resp. $A S \subseteq A$) and 2) If $a \in A$ and $b \in S$ such that $b \leq a$,

[^0]then $b \in A[2]$. For an ordered semigroup $(S, ., \leq)$ and a subset H of S, we denote by $(H]$ the subset of S defined by:
$$
(H]:=\{t \in S \mid t \leq h \text { for some } h \in H\}
$$

Recall that, if S is a semigroup and $a \in S$, then the left ideal of S generated by $S a$ is the set $S a$; the right ideal of S generated by $a S$ is the set $a S$. If S is an ordered semigroup and a an element of S, then the left ideal of S generated by ($S a]$ is the set $(S a]$, and the right ideal of S generated by $(a S]$ is the set $(a S]$.

An element a of an ordered semigroup $(S, ., \leq)$ is called regular if there exists $x \in S$ such that $a \leq a x a$ [5]; left (resp. right) regular if there exists $x \in S$ such that $a \leq x a^{2}$ (resp. $a \leq a^{2} x$) [3]; completely regular if it is regular, left regular and right regular, in other words, if there exists $x \in S$ such that $a \leq a^{2} x a^{2}$ [4]. As in semigroups, for an ordered semigroup S we denote by $\operatorname{Reg}(S), \operatorname{Leg}(S), \operatorname{Reg}(S), G r(S)$ the set of regular, left regular, right regular, and completely regular elements of S, respectively. For a subsemigroup T of S, we denote $\operatorname{reg}(T):=T \cap \operatorname{reg}(S)$ that is, the elements of T which are regular in S. We have $\operatorname{Reg}(T) \subseteq \operatorname{reg}(T)$ and the inclusion can be strict as every ordered semigroup can be embedded in a regular ordered (in particular, poe-) semigroup [6]. The present paper characterizes the ordered semigroups S in which the set of regular elements is a subset of the set of left regular elements. We show that this type of ordered semigroups satisfies the condition $\operatorname{reg}(S e]=\operatorname{Reg}(S e]$ for every $e \in S$ such that $e \leq e^{2}$ if and only if $\operatorname{reg}(S a]=\operatorname{Reg}(S a]$ for every $a \in S$. As a consequence, for a semigroup S (without order) we have the additional information that

$$
\operatorname{reg}(S e)=\operatorname{Reg}(S e) \forall e \in E(S) \Longleftrightarrow \operatorname{reg}(S a)=\operatorname{Reg}(S a) \forall a \in S
$$

We add the condition $\operatorname{reg}(S a)=\operatorname{Reg}(S a) \quad \forall a \in S$ among the five equivalent conditions of the main Theorem in [7]. So the characterization of semigroups with reg $(S e)=$ $\operatorname{Reg}(S e) \forall e \in E(S)$ (the so called "related by idempotents" [7]) is actually the characterization of semigroups with $\operatorname{reg}(S a)=\operatorname{Reg}(S a) \forall a \in S$. The right analogue of our results also hold. Part of the results in [7] can be also obtained as application of the results of the present paper. On the other hand, while for semigroups (without order) we have $\operatorname{Reg}(S) \subseteq \operatorname{LReg}(S)$ if and only if $\operatorname{Reg}(S)=\operatorname{Gr}(S)$, for an ordered semigroup S the situation is as follows: $\operatorname{Reg}(S)=\operatorname{Gr}(S)$ implies $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$, but it remains as an open problem if condition $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$ implies $\operatorname{Reg}(S)=G r(S)$.

2. Main results

Notation 1. For an ordered semigroup ($S, ., \leq$), let $E(S):=\left\{x \in S \mid x \leq x^{2}\right\}$.
Definition 2. If $(S, ., \leq)$ is an ordered semigroup, we denote by $\operatorname{Reg}(S)$ the set of regular elements of S, by $\operatorname{LReg}(S)$ the set of left regular elements, and by $R \operatorname{Reg}(S)$ the set of right regular elements of S. That is,

$$
\begin{aligned}
\operatorname{Reg}(S) & :=\{a \in S \mid a \leq a x a \text { for some } x \in S\} \\
\operatorname{LReg}(S) & :=\left\{a \in S \mid a \leq x a^{2} \text { for some } x \in S\right\} \\
\operatorname{RReg}(S) & :=\left\{a \in S \mid a \leq a^{2} x \text { for some } x \in S\right\}
\end{aligned}
$$

We write $\operatorname{Reg}(S a]$ (resp. $\operatorname{reg}(S a])$ instead of $\operatorname{Reg}((S a])$ (resp. $\operatorname{reg}((S a]))(a \in S)$.
Definition 3. If $(S, ., \leq)$ is an ordered semigroup and T a subsemigroup of S, we define

$$
\operatorname{reg}(T):=T \cap \operatorname{Reg}(S)
$$

Lemma 4. If $(S, ., \leq)$ is an ordered semigroup and $a \in S$, then the set $(S a]$ is a subsemigroup of S.

Proof. First of all, $\emptyset \neq(S a] \subseteq S$ (since $\left.a^{2} \in S a \subseteq(S a]\right)$. If now $b, c \in(S a]$, then $b \leq s a$ for some $s \in S$ and $c \leq t a$ for some $t \in S$. Then $b c \leq(s a t) a \in S a$, so $b c \in(S a]$.
Lemma 5. Let $(S, ., \leq)$ be an ordered semigroup and $a, x \in S$ such that $a \leq a x a$. Then $a x, x a \in E(S)$.
Proof. Since $a \leq a x a$, we have $a x \leq(a x a) x=(a x)^{2}$ and $x a \leq x(a x a)=(x a)^{2}$, so $a x$ and xa belong to $E(S)$.
Lemma 6. Let $(S, ., \leq)$ be an ordered semigroup and $a, b \in S$. Then the set $a S b$ is a subsemigroup of S.
Proof. Clearly $\emptyset \neq a S b \subseteq S$. If now $c, d \in a S b$, then $c=a s b$ for some $s \in S$ and $d=a t b$ for some $t \in S$. Then $c d=a(s b a t) b \in a S b$.

Proposition 7. Let $(S, ., \leq)$ is an ordered semigroup and T a subsemigroup of S. Then $\operatorname{Reg}(T) \subseteq \operatorname{reg}(T)$.

Proof. Since T is a subsemigroup of $S, \operatorname{Reg}(T) \subseteq T$ and $\operatorname{Reg}(T) \subseteq \operatorname{Reg}(S)$, we have $\operatorname{Reg}(T) \subseteq T \cap \operatorname{Reg}(S):=\operatorname{reg}(T)$.

Theorem 8. Let $(S, ., \leq)$ be an ordered semigroup. The following are equivalent:

1) $\operatorname{reg}(S a]=\operatorname{Reg}(S a] \quad \forall a \in S$
2) $\operatorname{reg}(S e]=\operatorname{Reg}(S e] \quad \forall e \in E(S)$
3) $\operatorname{reg}(S e] \subseteq L R e g(S e] \quad \forall e \in E(S)$
4) $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$.

Proof. 1) $\Longrightarrow 2$). This is obvious since $E(S) \subseteq S$.
$2) \Longrightarrow 3)$. Let $e \in E(S)$ and $b \in \operatorname{reg}(S e]$. Since $e \in E(S)$, by 2$)$, we have $\operatorname{reg}(S e]=R e g(S e]$. Then $b \in \operatorname{Reg}(S e]$, so $b \in(S e]$ and $b \leq b x b$ for some $x \in(S e]$. Since $b \leq b x b \in S x b$, we have $b \in(S x b]$. Since $b \in S$ and $b \leq b x b, x \in S$, we have $b \in \operatorname{Reg}(S)$. Thus we have $b \in(S x b] \cap \operatorname{Reg}(S)$. Since $x b \in S$, by Lemma 4, $(S x b]$ is a subsemigroup of S. Then, by Definition 3, $\operatorname{reg}(S x b]=(S x b] \cap \operatorname{Reg}(S)$. Hence we obtain $b \in \operatorname{reg}(S x b]$. Since $b, x \in S$ and $b \leq b x b$, by Lemma 5 , we have $x b \in E(S)$. Then, by 2$)$, $r e g(S x b]=\operatorname{Reg}(S x b]$, so $b \in \operatorname{Reg}(S x b]$. Then $b \leq b y b$ for some $y \in(S x b]$ and $y \leq s x b$ for some $s \in S$. Then we have $b \leq b(s x b) b=b s x b^{2}$. Since $x \in(S e], x \leq t e$ for some $t \in S$. Then $b \leq(b s t e) b^{2}$. Since $b \in(S e], b \leq(b s t e) b^{2}$ and bste $\in(S e]$, we get $b \in L R e g(S e]$.
$3) \Longrightarrow 4)$. Let $b \in \operatorname{Reg}(S)$. Then $b \in S$ and $b \leq b x b$ for some $x \in S$. Since $b \leq b x b \in S x b$, we have $b \in(S x b]$. Thus $b \in(S x b] \cap \operatorname{Reg}(S)$. By Lemma $6, S x b$ is a subsemigroup of S. Then, by Definition 3, $\operatorname{reg}(S x b]=(S x b] \cap \operatorname{Reg}(S)$, so $b \in \operatorname{reg}(S x b]$. Since $b, x \in S$ and $b \leq b x b$, by Lemma 5 , we have $x b \in E(S)$. Then, by 3$)$, $\operatorname{reg}(S x b] \subseteq L R e g(S x b]$. Thus $b \in \operatorname{LReg}(S x b]$, that is, $b \leq z b^{2}$ for some $z \in(S x b]$. Since $b, z \in S$ and $b \leq z b^{2}$, we have $b \in L \operatorname{Reg}(S)$.
$4) \Longrightarrow 1$). Let $a \in S$. Since ($S a]$ is a subsemigroup of S (cf. Lemma 4), by Proposition 7, we have $\operatorname{Reg}(S a] \subseteq \operatorname{reg}(S a]$. Let now $b \in \operatorname{reg}(S a]$. Again since ($S a]$ is a subsemigroup of S, by Definition 3, we have $\operatorname{reg}(S a]=(S a] \cap \operatorname{Reg}(S)$. Since $b \in \operatorname{reg}(S a]$, we have $b \in(S a]$ and $b \in \operatorname{Reg}(S)$. Since $b \in \operatorname{Reg}(S)$, we have $b \leq b x b$ for some $x \in S$. By 4), $\operatorname{Reg}(S) \subseteq L \operatorname{Reg}(S)$, so $b \in \operatorname{LReg}(S)$. Then $b \leq y b^{2}$ for some $y \in S$, and $b \leq b(x y b) b$. Since $b \in(S a]$, we have $b \leq w a$ for some $w \in S$. Thus we have $x y b \leq x y w a \in S a$, so $x y b \in(S a]$. Since $b \in(S a]$, $b \leq b(x y b) b$ and $x y b \in(S a]$, we have $b \in \operatorname{Reg}(S a]$. Thus $\operatorname{reg}(S a] \subseteq \operatorname{Reg}(S a]$ and the proof is complete.

Proposition 9. If $(S, ., \leq)$ is an ordered semigroup then, for each $e \in E(S)$, we have

$$
r e g(e S e)=\operatorname{Reg}(e S e)
$$

Proof. Let $e \in E(S)$. Since $e S e$ is a subsemigroup of S (cf. Lemma 6), by Proposition 7, we have $\operatorname{Reg}(e S e) \subseteq \operatorname{reg}(e S e)$. Let now $a \in \operatorname{reg}(e S e)$. Again since $e S e$ is a subsemigroup of S, by Definition 3, we have $\operatorname{reg}(e S e)=e S e \cap \operatorname{Reg}(S)$, thus $a \in e S e$ and $a \in \operatorname{Reg}(S)$. Since $a \in e S e$, we have $a=e$ se for some $s \in S$. Since $a \in \operatorname{Reg}(S)$, we have $a \leq a x a$ for some $x \in S$. Therefore we have

$$
\begin{aligned}
a \leq a x a & =(\text { ese }) x(e s e) \leq e s e^{2} x e^{2} \text { se }\left(\text { since } e \leq e^{2}\right) \\
& =(\text { ese })(e x e)(e s e)=a(e x e) a
\end{aligned}
$$

Since $e S e$ is a subsemigroup of $S, a \in e S e, a \leq a(e x e) a$ and exe $\in e S e$, we obtain $a \in$ $\operatorname{Reg}(e S e)$. Thus reg $(e S e) \subseteq R e g(e S e)$ and the proof is complete.

Notation 10. For an ordered semigroup ($S, ., \leq$), we denote by $G r(S)$ the set of completely regular elements of S. That is,

$$
G r(S):=\left\{a \in S \mid a \leq a^{2} x a^{2} \text { for some } x \in S\right\}
$$

We write $G r(S a]$ instead of $G r((S a])(a \in S)$.
Remark 11. For every subsemigroup T of S, we have $G r(T) \subseteq T$ and $G r(T) \subseteq G r(S)$, so $G r(T) \subseteq T \cap G r(S)$.
Proposition 12. Let $(S, ., \leq)$ be an ordered semigroup and $a \in S$. Then

$$
G r(S a]=(S a] \cap G r(S)
$$

Proof. Since ($S a]$ is a subsemigroup of S (cf. Lemma 4), the set $G r(S a]$ is well defined and, by Remark 11, $G r(S a] \subseteq(S a] \cap G r(S)$. Let now $b \in(S a] \cap G r(S)$. Since $b \in(S a]$, $b \leq t a$ for some $t \in S$. Since $b \in G r(S), b \leq b^{2} s b^{2}$ for some $s \in S$. Then we have

$$
b \leq b^{2} s b^{2} \leq b^{2} s\left(b^{2} s b^{2}\right) b=b^{2} s b^{2} s b b^{2} \leq b^{2}\left(s b^{2} s t a\right) b^{2}
$$

Since $(S a]$ is a semigroup, $b \in(S a], b \leq b^{2}\left(s b^{2} s t a\right) b^{2}$, and $s b^{2} s t a \in S a \subseteq$ ($\left.S a\right]$, we have $b \in G r(S a]$. Thus $(S a] \cap G r(S) \subseteq G r(S a]$, and so $(S a] \cap G r(S)=G r(S a]$.
Proposition 13. Let $(S, ., \leq)$ be an ordered semigroup such that $\operatorname{Reg}(S)=G r(S)$. Then, for every $a \in S$, we have $\operatorname{reg}(S a]=G r(S a]$.
Proof. Let $a \in S$. Since ($S a]$ is a semigroup, the sets $r e g(S a]$ and $G r(S a]$ are well defined and by hypothesis and Proposition 12, we obtain

$$
\operatorname{reg}(S a]:=(S a] \cap \operatorname{Reg}(S)=(S a] \cap G r(S)=G r(S a]
$$

Proposition 14. If $(S, ., \leq)$ is an ordered semigroup and T a subsemigroup of S, then

$$
G r(T) \subseteq \operatorname{Reg}(T) \subseteq \operatorname{reg}(T)
$$

Proof. Let $a \in G r(T)$. Then $a \in T$ and $a \leq a^{2} x a^{2}$ for some $x \in T$. Then $a \leq a(a x a) a$. Since $a, x \in T$ and T is a subsemigroup of S, we have $a x a \in T$. Since $a \in T, a \leq a(a x a) a$ and $a x a \in T$, we have $a \in \operatorname{Reg}(T)$. That is, $\operatorname{Gr}(T) \subseteq \operatorname{Reg}(T)$. Moreover, by Proposition 7, $\operatorname{Reg}(T) \subseteq \operatorname{reg}(T)$.

Proposition 15. Let $(S, ., \leq)$ be an ordered semigroup such that $\operatorname{reg}(S a]=G r(S a]$ for every $a \in S$. Then, for every $a \in S$, we have $\operatorname{reg}(S a]=\operatorname{Reg}(S a]$.

Proof. Let $a \in S$. Since ($S a]$ is a subsemigroup of S the sets $\operatorname{reg}(S a]$ and $\operatorname{Reg}(S a]$ are well defined and, by hypothesis and Proposition 14, we get

$$
G r(S a] \subseteq \operatorname{Reg}(S a] \subseteq \operatorname{reg}(S a]=G r(S a]
$$

so $\operatorname{reg}(S a]=\operatorname{Reg}(S a]$.
Remark 16. By Proposition 14, we have $\operatorname{Reg}(S)=G r(S)$ if and only if $\operatorname{Reg}(S) \subseteq G r(S)$.
Remark 17. The right analogue of the results of this paper also hold. As far as the Theorem 8 is concerned, its right analogue reads as follows: For an ordered semigroup S, the following are equivalent: 1) $\operatorname{reg}(a S]=\operatorname{Reg}(a S] \forall a \in S$. 2) $\operatorname{reg}(e S]=\operatorname{Reg}(e S]$ $\forall e \in E(S)$. 3) $r e g(e S] \subseteq R \operatorname{Reg}(e S] \forall e \in E(S)$. 4) $\operatorname{Reg}(S) \subseteq R \operatorname{Reg}(S)$.

Problem 18. According to Propositions 13 and 15,

$$
\begin{aligned}
\operatorname{Reg}(S)=G r(S) & \Longrightarrow \operatorname{reg}(S a]=G r(S a] \forall a \in S \\
& \Longrightarrow \operatorname{reg}(S a]=\operatorname{Reg}(S a] \forall a \in S .
\end{aligned}
$$

Let us add two more conditions the condition 5) and 6) below in conditions 1)-4) of Theorem 8.
5) $\operatorname{Reg}(S)=G r(S)$
6) $\operatorname{reg}(S a]=G r(S a] \quad \forall a \in S$.

We have already proved that

$$
5) \Longrightarrow 6) \Longrightarrow 1) \Longleftrightarrow 2) \Longleftrightarrow 3) \Longleftrightarrow 4)
$$

It is interesting to know under what conditions the implication 4) $\Longrightarrow 5$) holds. We set it as an open problem.

Acknowledgment. The authors would like to thank the editor of the journal Professor Kiyoshi Iséki for editing, communicating the paper, and his prompt reply.

References

[1] A.H. Clifford, G.B. Preston, The Algebraic Theory of Semigroups I, Mathematical Surveys, no. 7, American Mathematical Society, Providence, Rhode Island 1961. xv+224 pp.
[2] N. Kehayopulu, On weakly prime ideals of ordered semigroups, Math. Japon. 35, no. 6 (1990), 1051-1056.
[3] N. Kehayopulu, On right regular and right duo ordered semigroups, Math. Japon. 36, no. 2 (1991), 201-206.
[4] N. Kehayopulu, On completely regular poe-semigroups, Math. Japon. 37, no. 1 (1992), 123130.
[5] N. Kehayopulu, On regular duo ordered semigroups, Math. Japon. 37, no. 3 (1992), 535-540.
[6] N. Kehayopulu, On adjoining greatest element to ordered semigroups, Math. Japon. 38, no. 1 (1993), 61-66.
[7] M. Mitrović, Regular subsets of semigroups related to their idempotents, Semigroup Forum 70, no. 3 (2005), 356-360.
[8] M. Petrich, Introduction to Semigroups, Merrill Research and Lecture Series, Charles E. Merrill Publishing Co., Columbus, Ohio, 1973. viii +198 pp.

University of Athens
Department of Mathematics
15784 Panepistimiopolis
Athens, Greece

[^0]: 2000 Mathematics Subject Classification. 06F05 (20M10).
 Key words and phrases. Ordered semigroup, regular, left regular, completely regular element.

