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Abstract. The article concerns the influence of one Nagata’s idea with the dimension
theory of general topological spaces. The addition to the article contains proofs of very
general sufficient conditions for the Ind-product theorem (for Tychonoff products) and
for the Ind-subset theorem (which were published without proofs earlier).

The aim of this article to show how one notion due to Nagata stimulated obtaining many
important assertions of dimension theory (the product theorem, the subspace theorem, the
inverse limit theorem are among them) in as general as possible situations.

Below, ”space” is a topological space and ”map” is a continuous mapping between
spaces.

The product theorem in dimension theory states that for a topological product X × Y ,
X ∪ Y �= ∅,

dim X × Y ≤ dim X + dim Y (1)

or

Ind X × Y ≤ Ind X + Ind Y. (2)

Note that inequality (2) with ind instead of Ind (let it be inequality (3)) is also considered
but rather seldom. Note also that (2) concerns normal spaces only (because there is no
satisfied definition of the dimension Ind even for Tychonoff spaces).

In 1952 Katětov [6] and in 1954 Morita [15] established that (1) (and (2) because
dim X = Ind X for any metrizable space X) is true for any metrizable spaces X and
Y . After this the following problem arose:

When do inequalities (1) and (2) hold for non-metrizable spaces?

In 1960 Nagami [17] proved that (2) is true if X is metrizable and Y is a perfectly
normal paracompactum; in 1963 Kimura [8] proved (2) for metrizable X and totally normal
countably compact X × Y ; in 1966 Katuta [7] proved that (2) holds if X × Y is totally
normal and either X × Y is strongly paracompact or X is a paracompactum and Y is a
locally compact paracompactum.

In 1967 Nagata [18] gave the following definitions (recall that a subset A × B of a
topological product X × Y is called a closed (respectively, (functionally) open) rectangle of
X × Y if A is a closed (respectively, (functionally) open) subset of X and B is a closed
(respectively, (functionally) open) subset of Y ).
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Nagata’s definition. A pair {F ,U}, consisting of the family F of closed sets Fα in a
space X and the family U of open sets Uα in a space X , α ∈ A, is called a tissue of X if
Fα ⊂ Uα for every α. The tissue {F ,U} of X separates a pair {K, L} of disjoint closed sets
of X if there is B ⊂ A for which

∪{Fα : α ∈ B} = X and {Uα : α ∈ B} is a refinement of {X \ K, X \ L}.
A topological product X × Y is called an F -product if for any pair {K, L} of disjoint

closed sets of X × Y there is a tissue {F ,U} of X × Y such that
i) F consists of closed rectangles;
ii) U consists of open rectangles and is σ-locally finite;
iii) {F ,U} separates {K, L}.
At first time, the definition seems too artificial, too complicated. But the main idea

of the definition seems very interesting, because the use of rectangles in the products al-
lows to reduce the consideration of dimensional properties of topological products to the
consideration of dimensional properties of their factors.

It was clarified later that very many topological products are F -products and yet more
of topological products are rectangular and piece-wise rectangular (see below).

Nagata himself showed in [18] that a topological product X × Y is an F -product if
1. X and Y are paracompact M -spaces, or
2. X is metrizable and Y is a normal P -space, or
3. X is a locally compact paracompactum and Y is a paracompactum.

Nagata’s theorem ([18]). (2) is true if X × Y is an F -product and the space X × Y
is totally normal.

Independently, Lifanov [11]–[14] also discovered a very important role of rectangles in
the products for obtaining inequality (2) in some classes of compacta. (For example, he
showed that (2) is true for totally normal compacta X and Y and for compacta X , Y with
Ind X = Ind Y = 1).

Very interesting Nagata’s idea of F -product, Lifanov’s papers and Morita’s and Filippiv’s
results concerning inequality (1) (for example, see [10] about them) stimulated me (in
particular, for considering the covering dimension in the class of arbitrary (not necessary
normal) spaces) to modify the notion of the F -product in the following way.

Definition 1 ([20, 21] for finite topological products). A topological product X × Y
is called rectangular if for any finite functionally open cover λ of X × Y there exists its
σ-locally finite refinement consisting of functionally open rectangles of X × Y .

It is not difficult to prove that if the space X × Y is normal then X × Y is rectangular
iff it is an F -product.

Remark 1. Many cases of rectangularity (and piecewise rectangularity (see below))
and non-rectangularity of topological products are considered in [5],[22] and [10].

The following two assertions showed that Nagata’s intuition did not deceive him when
he decided to introduce and consider the notion of F -product.

Theorem 1 ([19, 20, 21, 25]). If the product X × Y is rectangular, the space X × Y
is normal (thus X × Y is an F -product) and the finite sum theorem for Ind holds in the
factors X and Y (for example, X and Y are totally normal or Ind X = Ind Y = 1) then
(2) is true.

Theorem 2 ([21, 22]). If the product X × Y is rectangular then (1) is true.

Considering of rectangular products led to the following their generalization.
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Definition 2 ([23, 24]). A topological product X × Y is called piecewise rectangular if
for any finite functionally open cover λ of X ×Y , there exists its σ-locally finite refinement
µ with the following property:

For any U ∈ µ there is a functionally open rectangle V (U) of the product X × Y such
that U is closed-open in V (U).

The class of piecewise rectangular products is interesting by three reasons. In the first
place, this class is essentially wider than the class of rectangular products. For example,
the topological square of the Sorgenfrey line is piecewise rectangular but not rectangular.
In the second place, the following is true.

Theorem 3 ( [23, 24, 25]). Theorems 1 and 2 remain true if to consider piecewise
rectangular products instead of rectangular ones in them.

Finally, the piecewise rectangularity allows to characterize 0-dimensional products in
the following way.

Theorem 4 ([23, 24]). If dim X = dim Y = 0, then dim X × Y = 0 iff the product
X × Y is piecewise rectangular.

Problem 1. To find criteria (or as general as possible sufficient conditions) for dim X×
Y ≤ m + n if dim X = m and dim Y = n.

Theorems 1-3 may be generalized in the following way.
Definition 3 ([9, 10]). A subset A of a product X × Y is called piecewise rectangularly

posed (respectively, rectangularly posed) if for any finite functionally open cover λ of A,
there exists its σ-locally finite refinement µ with the following property:

For any U ∈ µ there is a functionally open rectangle V (U) of the product X × Y such
that U is closed-open in A ∩ V (U) (respectively, such that U = A ∩ V (U)).

Theorem 5 ([9, 10]). If a subset A of a product X ×Y is piecewise rectangularly posed,
then dim A ≤ dim X + dim Y .

In connection with Theorem 5, note that there exist products X×Y such that dim X×
Y > dim X + dim Y .

Note yet that we consider only topological products of two factors. But Definitions 1-3
may be given for any finite topological products and for Tychonoff products and Theorems
1-5 are true for all these products (see, for example, [10]).

Further considering of rectangular and piecewise rectangular products showed a con-
nection between the product and the subset theorems. Indeed, it is well known that a)
(1) is true for any compacta X and Y [4] and b) dimβX = dim X for any Tychonoff
space X and IndβX = IndX for any normal Hausdorff space X . Hence dimβX × βY ≤
dimβX + dimβY = dimX + dimY and X × Y ⊂ βX × βY . Thus we can use sufficient
conditions for dimX × Y ≤ dimβX × βY to obtain (1). Such a condition is contained in
the following definition.

Definition 4 ([23, 24]). A subset A of a space X is called d-posed (respectively, d-
right) if for any finite functionally open cover λ of A, there exists its σ-locally finite (and
functionally open) refinement µ with the following property:

For any U ∈ µ there is a functionally open set V (U) in X such that U = A ∩ V (U)
(respectively, U is closed-open in A ∩ V (U)).

Remark 2. Evidently, Definition 3 is close to Definitions 1 and 2.
Remark 3. More detailed information on d-posedness and d-rightness may by found

in [10]. In [3] Filippov defined a property of d-posedness of a subset of a space that is
equivalent to d-posedness from Definition 3 in the class of normal spaces.



210 B.A.PASYNKOV

Theorem 6 ([23, 24]). If a subset A of a space X is d-right (in particular, d-posed),
then

dimA ≤ dim X. (4)

Theorem 7 ([23, 24]). Let dimX = 0 and A ⊂ X. Then (4) is true iff A is a d-right
subset of X.

Remark 4. Possibly, at this moment d-rightness is the most general sufficient condition
for the subset theorem for the covering dimension dim outside of the class of hereditarily
normal spaces (but perhaps more general sufficient conditions for this theorem are contained
in [1] and [26]).

Theorem 8 ([23, 24]). A topological product of Tychonoff spaces X and Y is rectangular
(respectively, piecewise rectangular) iff X × Y is a d-posed (respectively, d-right) subset of
βX × βY .

Remark 5. Theorems 6 and 8 imply Theorem 2 and the part of Theorem 3 concerning
the covering dimension dim for Tychonoff spaces X and Y .

Pass to the dimension Ind.

Theorem 9 ([23]). Let a space X and its subspace A be normal. If A is a d-right subset
of X and the finite sum theorem holds either in X or in A, then

IndA ≤ IndX. (5)

The d-rightness plays very important role in the proof of the following assertion.
Theorem 10 ([10]). Any paracompactum (respectively, non-zero-dimensional paracom-

pactum) Y is the image of a paracompactum X = X(Y ) of dimension dimX = 1 under
perfect open map with path-connected (respectively, zero-dimensional) fibers.

The following is an analog of Theorems 6 and 9.
Theorem 11 ([10]). If B is a non-empty subparacompactum of a paracompactum Y

and Y is the image of a paracompactum X with dimX = 0 under a closed ≤ (n + 1)-to-
1 map, then B also is the image of a paracompactum A with dimA = 0 under a closed
≤ (n + 1)-to-1 map, n = 0, 1, 2, . . .

The d-rightness is connected with the following class of maps.
Definition 5 ([24, 10] ). A map f : A → X is called d-right if for any finite functionally

open cover λ of A, there exists a σ-locally finite (functionally open) refinement µ with the
following property:

For any U ∈ µ there is a functionally open set V (U) in X such that U is closed-open in
f−1V (U).

Remark 6. In [24] d-right maps are called strongly decomposing.

The following is a generalization of Theorem 6.

Theorem 12 ([10]). If a map f : A → X is d-right, then we have (4).
Remark 7. It is not difficult to prove that dim f−1x ≤ 0 in Theorem 12 if the space

A is normal and X is a T1-space. Hence for d-right maps, Hurewicz’s formula dimA ≤
dimX + dim f is true.

Theorem 12 may be generalized in the following way.
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Recall that a map of a space A to an inverse system S = {Xα, pβα; α ∈ A} is a system
ϕ of maps ϕα : A → Xα, α ∈ A, such that fα = pβα ◦ fβ if α ≤ β.

Definition 6 ([10] ). A map ϕ = {ϕα : α ∈ A} of a space A to an inverse system
S = {Xα, pβα; α ∈ A} is called d-right if for any finite functionally open cover λ of A there
exists a σ-locally finite (functionally open) refinement µ with the following property:

For any U ∈ µ there are α(U) ∈ A and a functionally open set V (U) in Xα(U) such that
U is closed-open in ϕ−1

α(U)V (U).

Theorem 13 ([10]). If a space A admits a d-right map to an inverse system S =
{Xα, pβα; α ∈ A}, then

dimA ≤ sup{dim Xα : α ∈ A}. (6)

Remark 8. Evidently, Theorem 6 is a very special case of Theorem 13 (when |A| = 1).

Corollary 1 (The inverse limit theorem) ([24, 10]) . Let A be the limit of an
inverse system S = {Xα, pβα; α ∈ A} and let the system ϕ of all projections pα : A → Xα

be d-right. Then we have (6).

Let now S be an inverse sequence {Xi, pji; i ∈ N} with limit X and projections pi : X →
Xi. Then, by Corollary 1,

dim X ≤ sup{dimXi : i ∈ N} (7)

if the system of all projections {pi} is d-right.
However, for inverse sequences, more simple sufficient condition for d-rightness of ϕ may

be found.

Corollary 2 ([10]) . Let A ⊂ X and for any functionally open set U in A there exist
(functionally open in A) sets Ui ⊂ A, i ∈ N, with the following property:

For any i there is a functionally open set Vi in Xi such that Ui is closed-open in A∩p−1
i Vi

and U = ∪{Ui : i ∈ N}.
Then A is d-right in X and dimA ≤ sup{dim Xi : i ∈ N}.
The inverse sequence limit theorem. If A = X in Corollary 2, then we have (7).

Formally, at this moment, this corollary generalize all previous sufficient conditions for
(7) (see [10], 1.6).

My short review shows that Nagata’s idea has turned out to be very fruitful. It may be
considered as one from origins of dimension theory of general topological spaces.

Addition

The addition contains proofs of a product theorem for Tychonoff products and a subset
theorem for the dimension Ind. They were published in [23] without proof.

Below, let Π be the Tychonoff product of spaces Xi �= ∅, i ∈ I, and If denote the set of
all non-empty finite subsets of I. Set m = sup{IndXi1 + . . . + IndXik

: {i1, . . . , ik} ∈ If}.
A set of the form {x = (xi)i∈I ∈ Π : xi ∈ Oi for i ∈ a ∈ If}, where Oi is functionally

open in Xi, will be called a functionally open rectangle of the product Π. A closed-open
subset of a functionally open rectangle is called a functionally open rectangular piece of
Π. A cover of the product Π by functionally open rectangular pieces (rectangles) is called
functionally open piecewise rectangular (rectangular).
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Definition 7. The Tychonoff product Π is called piecewise rectangular [23, 24] (rectan-
gular [3]) if each of its finite functionally open cover has a σ-locally finite functionally open
piecewise rectangular (rectangular) refinement.

Theorem 14 ([23]). If the Tychonoff product Π is piecewise rectangular, the space Π is
normal and the finite sum theorem for Ind holds in every factor Xi then Ind Π ≤ m.

The proof will be given later. We need some auxiliary assertions.

If I = I1 ∪ I2, I1 ∩ I2 = ∅, I1 �= ∅ �= I2, Πk =
∏{Xi : i ∈ Ik}, k = 1, 2, then we shall

identify Π with Π1 × Π2 identifying x = (xi)i∈I ∈ Π with ((xi)i∈I1 , (xi)i∈I2 ) ∈ Π1 × Π2.
Note that every functionally open rectangle {x = (xi)i∈I ∈ Π : xi ∈ Oi for i ∈ a ∈ If} of Π,
where Oi is functionally open in Xi, is a functionally open rectangle U1 × U2 of Π1 × Π2,
where Uk = {x = (xi)i∈Ik

∈ Πk : xi ∈ Oi for i ∈ a ∩ Ik}, k = 1, 2. It follows from this the
following assertion.

Lemma 1. If the product Π is piecewise rectangular (rectangular) and I = I1 ∪ I2,
I1 ∩ I2 = ∅, I1 �= ∅ �= I2, Πk =

∏{Xi : i ∈ Ik}, k = 1, 2, then the product Π1 × Π2 is also
piecewise rectangular (rectangular).

Lemma 2. If the product Π is piecewise rectangular (rectangular) and I1 ⊂ I, then the
subproduct Π1 =

∏{Xi : i ∈ I1} is also piecewise rectangular (rectangular).

Proof. Fix a point x0 = (x0
i )i∈I ∈ Π and identify Π1 with a subspace of Π identifying

every x1 = (xi)i∈I ∈ Π1 with x ∈ Π with coordinates xi for i ∈ I1 and x0
i for I \ I1.

Take a finite functionally open cover Ω of Π1. If pr is the projection of Π onto Π1, then
Ω′ = pr−1Ω is a finite functionally open cover of Π. Hence we can take a σ-locally finite
piecewise rectangular (rectangular) refinement ω of Ω′. Then Π1 ∧ ω = {Π1 ∩ O : O ∈ ω}
is a σ-locally finite piecewise rectangular (rectangular) refinement of Ω.

Now we consider the dimensional invariant Id. Recall some necessary definitions.

Let X be a space. A system σ of closed subsets of X is called additive if ∪σ′ ∈ σ for any
finite σ′ ⊂ σ. And σ is called monotone if every closed subset of any F ∈ σ is an element
of σ.

For systems λ and µ of closed subsets of X , we say that λ breaks µ if for every F ∈ µ
and any closed subsets A and B of F , that are functionally separated in X , there exists a
partition C ∈ λ in F between A and B.

A system λ of subsets of X is called finite relatively to a system ω of subsets of X if for
any O ∈ ω the system {F ∈ λ : F ∩ O �= ∅} is finite. A system λ of subsets of X is called
uniformly locally finite (ULF, for short) if λ is finite relatively to a functionally open locally
finite (FOLF, for short) cover of X .

Definition 8 ([25]). A system λ′ of subsets of X uniformly generates a system λ if for
every L ∈ λ there is a ULF system µL consisting of closed subsets of some members of λ′

such that L = ∪µL.

Definition 9 ([19, 21]). Let Id X = −1 iff X = ∅. Put IdX ≤ n, n = 0, 1, 2, . . . , if
there are systems of closed subsets σi, i = −1, 0, 1, . . . , k ≤ n, in X satisfying the following
conditions:

(a) σ−1 = {∅}, X ∈ σk, σi ⊂ σi+1, −1 ≤ i ≤ k − 1;
(b) σi breaks σi+1, i < k;
(c) σi is additive for any i;
(d) σi is monotone for any i.
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Remark 9. The word “determines” is used instead of the word “separates” on line 7 of
Definition 1 from [19] in Russian and on line 6 of Definition 1 from the translation of [19]
in English. (These words have a similar look in Russian.)

Remark 10. Sometimes we shall use the following condition (a′) instead of (a) (not
assume that k ≤ n):

(a′) σ−1 = {∅}, σi ⊂ σi+1, −1 ≤ i ≤ k − 1.

It is not difficult to prove the following.

Lemma 3. Let X be a normal space. Then we have the following.
1. If systems of closed subsets σi, i = −1, 0, 1, . . . , k, in X have properties (a′) and (b)

from Definition 9, then IndF ≤ i for any F ∈ σi, i = −1, 0, 1, . . . , k.
2. The systems σ(i,Ind) = {F : F is closed in X, IndF ≤ i}, i = −1, · · · , k (respectively,

and k = IndX), have properties (a′) (respectively, (a)),(b),(d) from Definition 9. (Note
that σ(i,Ind) has property (c) if the finite sum theorem for Ind is true in X .)

Proposition 1 ([19, 23, 25]). Let X be a normal space. Then 1) IndX ≤ Id X and 2)
IndX = Id X if the finite sum theorem for Ind is satisfied in X.

Proposition 2. If systems σi of closed sets in a space X, i = −1, 0, 1, . . . , k, have
properties (a′) (respectively, (a)),(b) − (d) from Definition 9 and for all i, σ′

i is uniformly
generated by σi. Then the systems σ′

i also have properties (a′) (respectively, (a)),(b) − (d)
from Definition 9 and, additionally,

(c)ULF for any i, the system σ′′
i uniformly generated by σ′

i coincides with σ′
i.

Proof. The systems σ′
i are monotone, additive and (a′) (respectively, (a)) is true for them.

By Lemma 2 from [26] (≡ Lemma 2 from [27]) σ′
i breaks σ′

i+1. Finally, (c)ULF follows from
Lemma 3 of [26].

Corollary 3 (The uniformly locally finite sum theorem for Ind) ([27]). Let the
finite sum theorem for Ind be true in a normal space X. If F is the union of an ULF system
of closed sets Fα in X with IndFα ≤ r, α ∈ A, then IndF ≤ r, r = −1, 0, . . .

Proof. By Lemma 3, the systems σ(i,Ind), i ≤ r, have properties (a′),(b)-(d). By Proposition
2 (using notation of it), the systems σ′

(i,Ind) also have properties (a′),(b)-(d). By Lemma 3
(because F ∈ σ(r,Ind)), IndF ≤ r.

Proposition 3. For any space X, the equalities dimX = 0 and Id X = 0 are equivalent.

Proof. Let Id X = 0. Then there are closed families σ−1 and σ0 in X such that σ−1 = {∅},
σ0 � X and σ−1 breaks σ0. Take a finite functionally open cover Ω = {Oi : i = 1, . . . , s}
of X . Then there exist a separable metrizable space Y , its finite functionally open cover
λ = {L1, . . . , Ls} and a map f of X onto Y such that f−1Li = Oi. Take a finite closed
cover {Fi : i = 1, . . . , s} of Y such that Fi ⊂ Li. Then {Gi = f−1Fi : i = 1, . . . , s} is a
closed cover of X such that Gi and X \Oi are functionally separated. Since σ−1 breaks σ0,
there is an empty partition between Gi and X \ Oi and so for any i, there is a closed-open
set Ui in X such that Gi ⊂ Ui ⊂ Oi. Hence {Ui : i = 1, . . . , s} is a closed-open refinement
of Ω and U1, U2 \ U1, . . . , Us \ (U1 ∪ . . . Us−1) is an open disjoint refinement of Ω. Thus
dim X = 0.

Now let dimX = 0. Take closed families σ−1 = {∅} and σ0 consisting of all closed
subsets of X . Evidently, these families are monotone and additive. Prove that σ−1 breaks
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σ0. Let subsets A and B of F ∈ σ0 be closed and functionally separated in X . Take a
map f : X → [0, 1] such that A ⊂ f−10 and B ⊂ f−11. Then Ω = {O0 = f−1(0, 1], O1 =
O0 = f−1[0, 1)} is a finite functionally open cover of X . Hence there exists a finite open
disjoint refinement ω of Ω. Without loss of generality, we can suppose that ω = {U0, U1}
with Ui ⊂ Oi, i = 0, 1. Hence there is an empty partition between A and B in X and in F .
Thus Id X = 0.

Now we can prove an assertion that implies Theorem 14.
Theorem 15 ([23]). If the Tychonoff product Π is piecewise rectangular, then

Id Π ≤ sup{Id Xi1 + . . . + Id Xik
: {i1, . . . , ik} ∈ If} (8).

Proof. We put l = sup{Id Xi1 + . . . + Id Xik
: {i1, . . . , ik} ∈ If}. First suppose that I is

finite. It is proved in [25] that the theorem is true for |I| = 2. Suppose that it is true for
all I with |I| < n, n > 2, and let |I| = n. Then I = I1 ∪ I2, where |I1| = n − 1 (and
|I2| = 1). Then by Lemmas 1 and 2 and the inductive hypothesis, (for Π1 = X1 × . . . Xn−1

and Π2 = Xn) Id Π = Id Π1 + Id Xn ≤ (IdX1 + . . . + Id Xn−1) + Id Xn = l.
Now let |I| ≥ ℵ0 and I1 = {i ∈ I : Id Xi > 0}. If I1 is infinite, then the theorem is true.

Let I1 be finite and I2 = I \ I1. For Πk =
∏{Xi : i ∈ Ik}, k = 1, 2, by Lemma 3 and since

I1 is finite, Id Π ≤ Id Π1 + Id Π2 ≤ ∑{IdXi : i ∈ I1} + Id Π2.
Prove that Id Π2 = 0. By Proposition 3, dimXi = Id Xi = 0 for any i ∈ I2. It follows

from [24] that dimΠ2 = 0. Hence Id Π2 = 0 and so Id Π ≤ ∑{IdXi : i ∈ I1} + 0 ≤ l.

Proof of Theorem 14. By Proposition 1 and Theorem 15, IndΠ ≤ Id Π ≤ sup{IdXi1 + . . .+
Id Xik

: {i1, . . . , ik} ∈ If} = sup{IndXi1 + . . . + IndXik
: {i1, . . . , ik} ∈ If}.

Pass to a subset theorem for Ind (see Theorem 9).

Lemma 4. Let a subset A of a space X be d-right, λ∗ and µ∗ be monotone families of
closed subsets in X and λ∗ break µ∗. If λ∧ = A ∧ λ∗ = {A ∩ L : L ∈ λ∗}, µ∧ = A ∧ µ∗ =
{A ∩ M : M ∈ µ∗} and λ is uniformly generated by λ∧, then λ breaks µ∧.

Proof. First note that the monotonicity of λ∗ implies the monotonicity of λ∧.
Now take F ∈ µ∧ and closed subsets C and D of F functionally separated in A. Then

there exist functionally open sets U and V in A such that C ⊂ U , D ⊂ V , A = U ∪ V and
C ∩ V = ∅ = D ∩ U .

Since A is d-right in X , there exists a σ-locally finite refinement Ω of the cover {U, V }
of A with the following property: For any O ∈ Ω there is a functionally open set O∗ in X
such that O is closed-open in O∧ = A ∩ O∗. For every O ∈ Ω, take a map fO : X → [0, 1]
with O∗ = f−1

O (0, 1]. For j = 2, 3, . . . and O ∈ Ω, let Oj = O ∩ f−1
O (1/j, 1] and Oc

j =
O ∩ f−1

O [1/j, 1]. Then
(∗) Oj ⊂ Oc

j ⊂ Oj+1.
Since O is closed-open in O∧, all Oj are functionally open and all Oc

j are functionally
closed in A.

Let Ω be the union of locally finite families Ωl, l ∈ N. Put Ωlj = {Oj : O ∈ Ωl} and
Ωc

lj = {Oc
j : O ∈ Ωl}. Then the families Ωlj are FOLF in A and the families Ωc

lj are
functionally closed in A. By [16] (see Lemma 6 from [25] (≡ Lemma 5 from [27] (on the
first line of this lemma must be Oα instead of Qα))) and by (∗),
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(∗∗) all families Ωlj are ULF in A.
Besides,

(∗ ∗ ∗) ∪Ωl = ∪{∪Ωlj : j = 2, 3, . . . }.
Let F ∗ ∈ µ∗ be such that A∩F ∗ = F . For any O ∈ Ω and j = 2, 3, . . . , the sets (F ∗

Oj)
′ =

F ∗ ∩ f−1
O [1/j, 1] and (F ∗

Oj)
′′ = F ∗ ∩ f−1

O [0, 1/(j + 1)] are closed in F ∗ and functionally
separated in X . Hence there is a partition P ∗

Oj ∈ λ∗ between them in F ∗. Then P∧
Oj =

F ∩ P ∗
Oj ∈ λ∧ is a partition between (F∧

Oj)
′ = F ∩ (F ∗

Oj)
′ = F ∩ f−1

O [1/j, 1] and (F∧
Oj)

′′ =
F ∩ (F ∗

Oj)
′′ = F ∩ f−1

O [0, 1/(j + 1)] in F . Since P ∗
Oj ⊂ O∗, we have that P∧

Oj ⊂ O∧. Since
O is closed-open in O∧, POj = O ∩ P∧

Oj ∈ λ∧ is a partition between F ′
Oj = O ∩ (F∧

Oj)
′ =

O∩F ∩f−1
O [1/j, 1] and F ′′

Oj = (F \O)∪(O∩(F∧
Oj)

′′) = (F \O)∪(O∩F ∩f−1
O [0, 1/(j+1)]) in

F . Hence F \POj is the disjoint union of open sets GOj and HOj in F such that F ′
Oj ⊂ GOj

and F ′′
Oj ⊂ HOj and so GOj ⊂ cl GOj ⊂ GOj∪POj ⊂ F \HOj ⊂ F \F ′′

Oj = F \((F \O)∪(O∩
F ∩f−1

O [0, 1/(j+1)])) = O∩(F \(O∩f−1
O [0, 1/(j+1)])) = (O∩F )\(O∩f−1

O [0, 1/(j+1)]) =
(O ∩ F ) \ f−1

O [0, 1/(j + 1)]) = (O ∩ F ) ∩ f−1
O (1/(j + 1), 1] ⊂ F ∩ Oj+1 ⊂ Oj+1. Hence 1)

bd GOj ⊂ POj and so bd GOj ∈ λ∧ and 2) (see (∗∗)) all ωlj = {GOj : O ∈ Ωl} are ULF in A
and in F . It follows from the definition of F ′

Oj that F∩Oj = F∩O∩f−1
O (1/j, 1] ⊂ F ′

Oj ⊂ GOj

and so F ∩ (∪Ωlj) ⊂ ∪ωlj , l ∈ N, j = 2, 3, . . . Since Ωlj is FOLF in A, the union ∪Ωlj is
functionally open in A.

By (∗ ∗ ∗) and our construction, ω = {GOj : j = 2, 3, . . . , O ∈ Ω} is an open cover of
F ; every member of ω is disjoint from either C or D; ω = ∪{ωlj : l ∈ N, j = 2, 3, . . . },
where all ωlj are ULF in A; the cover Ω′ = {∪Ωlj : l ∈ N, j = 2, 3, . . . } of A is countable,
functionally open and F ∧ Ω′ = {F ∩ (∪Ωlj) : l ∈ N, j = 2, 3, . . .} refines the cover ω′ =
{∪ωlj : l ∈ N, j = 2, 3, . . .} of F . Since every countable functionally open cover of a space
has a (countable) FOLF refinement, by Lemma 5 from [25] (≡ Lemma 4 from [27]), there
exists a closed and ULF family κ in A, such that for any K ∈ κ, there is GOj ∈ ω with
K ⊂ bd GOj ∈ λ∧ and P = ∪κ is a partition between C and D in F . Since P ∈ λ, we have
proved that λ breaks µ∧.

Theorem 16 ([23]). If a subset A of a space X is d-right (in particular, d-posed), then

Id A ≤ Id X. (9)

Proof. Let Id X = n, n = 0, 1, 2, . . . Take closed families σ∗
i , i = −1, 0, . . . , k ≤ n, in X

that satisfy conditions (a)-(d) from Definition 9.
Put σ∧

i = A ∧ σ∗
i = {A ∩ F ∗ : F ∗ ∈ σ∗

i }, i = −1, 0, . . . , k. Evidently, families σ∧
i satisfy

conditions (a), (c) and (d) from Definition 9. Let σi be uniformly generated by σ∧
i . Then

these families also satisfy conditions (a), (c) and (d) from Definition 9. By Lemma 4, σi−1

brakes σ∧
i . By Lemma 3 from [25], the family uniformly generated by σi−1 coincides with

σi−1. Hence by Lemma 2 from [25] (≡ Lemma 2 from [27]), σi−1 breaks σi.

Lemma 5. If F is a closed subset of a normal subspace A of a space X and A is d-right
(d-posed) subset of X, then A is also d-right (d-posed) subset of X.

Proof. Let Ω be a finite functionally open cover of F . Since A is normal, for any O ∈ Ω, there
is a functionally open set UO in A such that O = A∩UO. Then F and G = A\∪{UO : O ∈ Ω}
are disjoint closed sets in the normal space A. Hence there exists a functionally open set
U in A that contains G and is contained in A \ F . Then Ω′ = {U} ∪ {UO : O ∈ Ω} is a
finite functionally open cover of A and so there exists its σ-locally finite (and functionally
open) refinement µ with the following property: For any V ∈ µ, there is a functionally open
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set W (V ) in X such that V is closed-open in A ∩ W (V ) (respectively, V = A ∩ W (V )).
It follows from this that F ∧ µ = {F ∩ V : V ∈ µ} is a σ-locally finite (and functionally
open) refinement of Ω with the following property: For any F ∩ V , V ∈ µ, there is a
functionally open set W (V ) in X such that F ∩V is closed-open in F ∩W (V ) (respectively,
F ∩ V = F ∩ W (V )).

Proof of Theorem 9. If the finite sum theorem for Ind is true in X , then by Proposition
1 and Theorem 16, IndA ≤ Id A ≤ Id X = IndX .

Now let the finite sum theorem for Ind is true in A.
If IndX = −1, then IndA = −1 ≤ IndX . Let (5) be true for IndX < k, k > −1, and

let IndX = k.
Take σ∗

(i,Ind) = {F ∗ ⊂ X : F ∗ is closed in X, IndF ∗ ≤ i}, i = −1, . . . , k = IndX .
Then the families σ∗

(i,Ind) have properties (a), (b) and (d) from Definition 9 and the families
σ∧

(i,Ind) = A∧ σ∗
(i,Ind) (in A) has properties (a) and (d) from Definition 9. By Lemma 5, for

any F ∗ ∈ σ∗
(i,Ind), i < k, the set F∧ = A ∩ F ∗ is d-right in X and (so) in F ∗. Then by the

inductive hypothesis, IndF∧ ≤ IndF ∗ ≤ i. Let σk−1 be the family uniformly generated
by σ∧

(k−1,rmInd). Then by Corollary 3, IndF ≤ k − 1 for any F ∈ σk−1. By Lemma 3,
σk−1 breaks the family σ∧

(k,Ind). Since X ∈ σ∗
(k,Ind), we have that A ∈ σ∧

(k,Ind) and so
IndA ≤ k = Ind X .
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