A NOTE ON L^p ESTIMATES FOR SINGULAR INTEGRALS

SHUICHI SATO

Received January 26, 2010

ABSTRACT. In this note we introduce a function space, which is used to define kernels of singular integrals. The space is useful in proving L^p boundedness of certain singular integrals via extrapolation arguments under a sharp condition on their kernels.

1. INTRODUCTION

Let $\Delta_s, s \ge 1$, denote the family of measurable functions h on $\mathbb{R}_+ = \{t \in \mathbb{R} : t > 0\}$ such that

$$\|h\|_{\Delta_s} = \sup_{j \in \mathbb{Z}} \left(\int_{2^j}^{2^{j+1}} |h(t)|^s \, dt/t \right)^{1/s} < \infty,$$

where \mathbb{Z} denotes the set of integers. We note that $\Delta_s \subset \Delta_t$ if s > t. Let $P(y) = (P_1(y), P_2(y), \ldots, P_d(y))$ be a polynomial mapping, where each P_j is a real-valued polynomial on \mathbb{R}^n . We assume $n \geq 2$. Define the singular Radon transform T(f) by

(1.1)
$$T(f)(x) = \text{p.v.} \int_{\mathbb{R}^n} f(x - P(y)) K(y) \, dy$$
$$= \lim_{\epsilon \to 0} \int_{|y| > \epsilon} f(x - P(y)) K(y) \, dy,$$

for an appropriate function f on \mathbb{R}^d , where $K(y) = h(|y|)\Omega(y')|y|^{-n}$, $y' = |y|^{-1}y$, $h \in \Delta_1$ and Ω is a function in $L^1(S^{n-1})$ satisfying

$$\int_{S^{n-1}} \Omega(\theta) \, d\sigma(\theta) = 0.$$

Here $d\sigma$ denotes the Lebesgue surface measure on the unit sphere S^{n-1} in \mathbb{R}^n . We denote by $L^q(S^{n-1})$ the space of functions F on S^{n-1} such that $||F||_q = \left(\int_{S^{n-1}} |F|^q \, d\sigma\right)^{1/q} < \infty$. Also, we consider the maximal operator

(1.2)
$$T^*(f)(x) = \sup_{N,\epsilon>0} \left| \int_{\epsilon<|y|$$

where P and K are as in (1.1).

In what follows we assume that the polynomial mapping P in (1.1) satisfies P(-y) = -P(y), $P \neq 0$. The following result is known (see [2]).

Theorem A. If $\Omega \in L^q(S^{n-1})$, $q \in (1,2]$ and $h \in \Delta_s$, $s \in (1,2]$, then

$$|T(f)||_{L^{p}(\mathbb{R}^{d})} \leq C_{p}(q-1)^{-1}(s-1)^{-1} ||\Omega||_{q} ||h||_{\Delta_{s}} ||f||_{L^{p}(\mathbb{R}^{d})}$$

for all $p \in (1, \infty)$, where the constant C_p is independent of q, s, Ω , h, and the polynomials P_j if each of them is of fixed degree.

²⁰⁰⁰ Mathematics Subject Classification. Primary 42B20, 42B35.

Key Words and Phrases. Singular integrals, extrapolation.

SHUICHI SATO

We recall that \mathcal{L}_a , a > 0, is the space of functions h on \mathbb{R}_+ satisfying $L_a(h) < \infty$, where

$$L_{a}(h) = \sup_{j \in \mathbb{Z}} \int_{2^{j}}^{2^{j+1}} |h(r)| \left(\log(2 + |h(r)|) \right)^{a} dr/r,$$

and \mathcal{N}_a is defined to be the space of functions h on \mathbb{R}_+ such that $N_a(h) < \infty$, where

$$N_a(h) = \sum_{m \ge 1} m^a 2^m d_m(h).$$

with $d_m(h) = \sup_{k \in \mathbb{Z}} 2^{-k} |E(k,m)|,$

$$\begin{split} E(k,m) &= \{r \in (2^k,2^{k+1}]: 2^{m-1} < |h(r)| \le 2^m\}, \quad m \ge 2, \\ E(k,1) &= \{r \in (2^k,2^{k+1}]: 0 < |h(r)| \le 2\}. \end{split}$$

It was observed in [2] that $N_a(h) < \infty$ implies $L_a(h) < \infty$ and that $N_a(h) < \infty$ if $L_{a+b}(h) < \infty$ for some b > 1.

Let $L \log L(S^{n-1})$ be the Zygmund class of functions F on S^{n-1} satisfying

$$\int_{S^{n-1}} |F(\theta)| \log(2 + |F(\theta)|) \, d\sigma(\theta) < \infty$$

Theorem A implies the following result via an extrapolation argument (see [2] and also [1, 3, 4, 5]).

Theorem B. If $\Omega \in L \log L(S^{n-1})$ and $h \in \mathcal{N}_1$, then

$$|T(f)||_{L^p(\mathbb{R}^d)} \le C_p ||f||_{L^p(\mathbb{R}^d)} \quad for \ all \ p \in (1,\infty),$$

where the constant C_p is independent of the polynomials P_j if they are of fixed degree.

For a > 0, let \mathcal{M}_a be the collection of functions h on \mathbb{R}_+ such that there exist a sequence $\{h_k\}_{k=1}^{\infty}$ of functions on \mathbb{R}_+ and a sequence $\{a_k\}_{k=1}^{\infty}$ of non-negative real numbers satisfying $h = \sum_{k=1}^{\infty} a_k h_k$, $\sup_{k\geq 1} \|h_k\|_{\Delta_{1+1/k}} \leq 1$ and $\sum_{k=1}^{\infty} k^a a_k < \infty$. For $h \in \mathcal{M}_a$, define

$$\|h\|_{\mathcal{M}_a} = \inf_{\{a_k\}} \sum_{k=1}^{\infty} k^a a_k,$$

where the infimum is taken over all sequences $\{a_k\}$ of non-negative real numbers such that $\sum_{k=1}^{\infty} k^a a_k < \infty$ and $h = \sum_{k=1}^{\infty} a_k h_k$ for some $\{h_k\}$ satisfying $\sup_{k\geq 1} \|h_k\|_{\Delta_{1+1/k}} \leq 1$. We note the following.

Proposition. For a > 0, let \mathcal{M}_a , \mathcal{N}_a , \mathcal{L}_a be as above. Then,

- (1) $\|\cdot\|_{\mathcal{M}_a}$ is a norm on the space \mathcal{M}_a ;
- (2) if $h \in \mathbb{N}_a$, then $h \in \mathbb{M}_a$;
- (3) if $h \in \mathcal{M}_a$, then $h \in \mathcal{L}_a$.

The space \mathcal{M}_1 is useful in an extrapolation argument. Indeed, Theorem A and extrapolation imply the following L^p boundedness of the singular integral operator T.

Theorem 1. Let T be as in (1.1) with a kernel $K(y) = h(|y|)\Omega(y')|y|^{-n}$. If $h \in \mathcal{M}_1$ and $\Omega \in L \log L(S^{n-1})$, then

$$||T(f)||_{L^{p}(\mathbb{R}^{d})} \leq C_{p}||f||_{L^{p}(\mathbb{R}^{d})} \text{ for all } p \in (1,\infty),$$

where the constant C_p is independent of the polynomials P_j if each of them is of fixed degree.

Theorem B follows from Theorem 1 by Proposition (2). Similarly, Theorem 3 of [2] implies the following. **Theorem 2.** Let T^* be as in (1.2). Suppose that $h \in \mathcal{M}_1$ and $\Omega \in L \log L(S^{n-1})$. Then

$$||T^*(f)||_{L^p(\mathbb{R}^d)} \le C_p ||f||_{L^p(\mathbb{R}^d)} \quad for \ all \ p \in (1,\infty),$$

where the constant C_p is independent of the polynomials P_j , as in Theorem 1.

Let $\{A_t\}_{t>0}$ be a dilation group on \mathbb{R}^n defined by $A_t = t^P = \exp((\log t)P)$, where P is an $n \times n$ real matrix whose eigenvalues have positive real parts. Let r be a norm function on \mathbb{R}^n associated with $\{A_t\}_{t>0}$ such that

- (1) r is continuous on \mathbb{R}^n and infinitely differentiable in $\mathbb{R}^n \setminus \{0\}$;
- (2) $r(A_t x) = tr(x)$ for all t > 0 and $x \in \mathbb{R}^n$;
- (3) $r(x+y) \le C(r(x) + r(y))$ for some C > 0;
- (4) $dx = t^{\gamma-1} d\sigma dt$, that is,

$$\int_{\mathbb{R}^n} f(x) \, dx = \int_0^\infty \int_\Sigma f(A_t \theta) t^{\gamma - 1} \, d\sigma(\theta) \, dt,$$

with $d\sigma = \omega \, d\sigma_0$, for an appropriate function f, where $\gamma = \text{trace } P$, ω is a strictly positive C^{∞} function on $\Sigma = \{x \in \mathbb{R}^n : r(x) = 1\}$ and $d\sigma_0$ is the Lebesgue surface measure on Σ ;

(5) $\Sigma = \{\theta \in \mathbb{R}^n : \langle B\theta, \theta \rangle = 1\}$ for a positive symmetric matrix B, where $\langle \cdot, \cdot \rangle$ denotes the inner product in \mathbb{R}^n ;

$$c_1 |x|^{\alpha_1} \le r(x) \le c_2 |x|^{\alpha_2}$$
 if $r(x) \ge 1$,
 $c_3 |x|^{\beta_1} \le r(x) \le c_4 |x|^{\beta_2}$ if $r(x) \le 1$,

for some positive constants $c_1, c_2, c_3, c_4, \alpha_1, \alpha_2, \beta_1$ and β_2 .

Let Ω be locally integrable in $\mathbb{R}^n \setminus \{0\}$ and homogeneous of degree 0 with respect to the dilation group $\{A_t\}$, that is, $\Omega(A_t x) = \Omega(x)$ for $x \neq 0, t > 0$. We assume that

$$\int_{\Sigma} \Omega(\theta) \, d\sigma(\theta) = 0.$$

We consider a singular integral operator on \mathbb{R}^n of the form

(1.3)
$$S(f)(x) = \text{p.v.} \int_{\mathbb{R}^n} f(x-y)K(y) \, dy.$$

where $K(y) = h(r(y))\Omega(y')r(y)^{-\gamma}, y' = A_{r(y)^{-1}}y, h \in \Delta_1.$

Theorem 1.3 of [3] and an extrapolation argument similar to that for Theorem 1 imply the following.

Theorem 3. Let S be as in (1.3) with the functions h and Ω satisfying $h \in \mathcal{M}_1$,

$$\int_{\Sigma} |\Omega(\theta)| \log(2 + |\Omega(\theta)|) \, d\sigma(\theta) < \infty$$

Then

$$||S(f)||_p \le C_p ||f||_p \quad \text{for all } p \in (1,\infty).$$

Theorem 1.4 of [3] follows from this (see also Remark in Section 3 of [3]). We shall prove Proposition in Section 2 and Theorem 1 in Section 3 by applying results of [2]. The letter C will be used to denote non-negative constants which may be different in different occurrences.

2. Proof of Proposition

Proof of (1). We have to prove the following.

(i) $||h||_{\mathcal{M}_a} = 0$ if and only if h = 0;

- (ii) if $h \in \mathcal{M}_a$ and λ is a complex number, then $\lambda h \in \mathcal{M}_a$ and $\|\lambda h\|_{\mathcal{M}_a} = |\lambda| \|h\|_{\mathcal{M}_a}$;
- (iii) if $h, \ell \in \mathcal{M}_a$, then $h + \ell \in \mathcal{M}_a$ and $\|h + \ell\|_{\mathcal{M}_a} \le \|h\|_{\mathcal{M}_a} + \|\ell\|_{\mathcal{M}_a}$.

It is not difficult to prove these results. To prove (i), note that $\|h\|_{\Delta_1} \leq \sum_k a_k \leq \sum_k k^a a_k$ if $h = \sum_k a_k h_k$ as in the definition, since $\|h_k\|_{\Delta_1} \leq \|h_k\|_{\Delta_{1+1/k}} \leq 1$. This shows that $\|h\|_{\Delta_1} = 0$ and hence h = 0 if $\|h\|_{\mathcal{M}_a} = 0$. The converse is obvious. We omit proofs of (ii) and (iii).

Proof of (2). This follows from results in Section 3 of [2]. Let $h \in \mathbb{N}_a$ and $E_1 = \{r \in \mathbb{R}_+ : 0 < |h(r)| \le 2\}$, $E_m = \{r \in \mathbb{R}_+ : 2^{m-1} < |h(r)| \le 2^m\}$ for $m \ge 2$. Then

(2.1)
$$\|h\chi_{E_m}\|_{\Delta_{1+1/m}} \le 2^m (d_m(h))^{m/(m+1)},$$

where χ_S denotes the characteristic function of a set S. Define $h_m = 2^{-m} (d_m(h))^{-m/(m+1)} h \chi_{E_m}$ if $d_m(h) \neq 0$ and $h_m = 0$ if $d_m(h) = 0$. Put $a_m = 2^m (d_m(h))^{m/(m+1)}$. Then, by (2.1) $\|h_m\|_{\Delta_{1+1/m}} \leq 1$, and $h = \sum_{m=1}^{\infty} a_m h_m$. To show $h \in \mathcal{M}_a$, it suffices to prove that $\sum_{m=1}^{\infty} m^a a_m < \infty$. To see this we use Young's inequality

(2.2)
$$\alpha\beta \le p^{-1}\alpha^p + q^{-1}\beta^q, \quad \alpha, \beta \ge 0, \quad 1 < p, q < \infty, \quad 1/p + 1/q = 1.$$

Using (2.2) with $\alpha = 1/3$, $\beta = (d_m(h))^{m/(m+1)}$, p = m + 1 and q = (m+1)/m, we have

$$\sum_{m=1}^{\infty} m^a a_m = \sum_{m=1}^{\infty} m^a 2^m (d_m(h))^{m/(m+1)}$$

$$\leq 3 \sum_{m=1}^{\infty} m^a 2^m (m+1)^{-1} 3^{-m-1} + 3 \sum_{m=1}^{\infty} m^a 2^m (m/(m+1)) d_m(h)$$

$$\leq C (1+N_a(h)).$$

This completes the proof of part (2).

Proof of (3). The following elementary lemmas are useful.

Lemma 1. Suppose $x \ge 2$, 1 , <math>a > 0. Then

$$x(\log x)^a \le C_a(p-1)^{-a}x^p,$$

where the constant C_a depends only on a.

Lemma 2. If $f(x) = x(\log x)^a$, a > 0, $x > e^{1-a}$, then f''(x) > 0.

Let $h \in \mathcal{M}_a$ and $h = \sum_k a_k h_k$ as in the definition. To show that $h \in \mathcal{L}_a$, we may assume that $\sum_k a_k = 1$. Since Lemma 2 implies that the function $(e+x)(\log(e+x))^a$ is convex for $x \ge 0$,

(2.3)
$$|h| (\log (2+|h|))^{a} \le (e+|h|) (\log (e+|h|))^{a} \le \sum a_{k} (e+|h_{k}|) (\log (e+|h_{k}|))^{a}$$

By Lemma 1 with p = 1 + 1/k, we have

$$(2.4) \quad (e+|h_k|) \left(\log\left(e+|h_k|\right)\right)^a \le C_a k^a (e+|h_k|)^{1+1/k} \\ \le C_a k^a 2^{1/k} (e^{1+1/k}+|h_k|^{1+1/k}) \le C k^a (e^2+|h_k|^{1+1/k}).$$

By (2.3) and (2.4), we see that

$$\sup_{j \in \mathbb{Z}} \int_{2^{j}}^{2^{j+1}} |h| \left(\log \left(2 + |h| \right) \right)^{a} dr/r$$

$$\leq C \sum k^{a} a_{k} \left(e^{2} + ||h_{k}||_{\Delta 1 + 1/k}^{1 + 1/k} \right) \leq C \sum k^{a} a_{k} < \infty.$$

This completes the proof.

3. Proof of Theorem 1

We prove Theorem 1 by applying Theorem A with extrapolation. By well-known arguments we have the following (see [6, Chap. XII, pp. 119–120] for relevant results).

Lemma 3. Suppose $F \in L^1(S^{n-1})$ and a > 0. Then, the following two statements are equivalent:

- (1) ∫_{Sⁿ⁻¹} |F| (log(2 + |F|))^a dσ < ∞ and ∫_{Sⁿ⁻¹} F dσ = 0;
 (2) there exist a sequence {F_m}[∞]_{m=1} of functions on Sⁿ⁻¹ and a sequence {b_m}[∞]_{m=1} of non-negative real numbers such that F = ∑[∞]_{m=1} b_mF_m, sup_{m≥1} ||F_m||_{1+1/m} ≤ 1, ∫_{Sⁿ⁻¹} F_m dσ = 0, ∑[∞]_{m=1} m^ab_m < ∞.

Proof. First, we prove that (1) implies (2). Put

$$U_m = \{ \theta \in S^{n-1} : 2^{m-1} < |F(\theta)| \le 2^m \} \text{ for } m \ge 2, \\ U_1 = \{ \theta \in S^{n-1} : |F(\theta)| \le 2 \}.$$

Then, we decompose F as $F = \sum_{m=1}^{\infty} \tilde{F}_m$, where $\tilde{F}_m = F\chi_{U_m} - \sigma(S^{n-1})^{-1} \int_{U_m} F \, d\sigma$. Note that $\int \tilde{F}_m d\sigma = 0$. Set $e_m = \sigma(U_m), m \ge 1$. Then

(3.1)
$$\|\tilde{F}_m\|_{1+1/m} \le 22^m e_m^{m/(m+1)}$$
 for $m \ge 1$.

Define $F_m = 2^{-m-1} e_m^{-m/(m+1)} \tilde{F}_m$ if $e_m \neq 0$, $F_m = 0$ if $e_m = 0$, and $b_m = 2^{m+1} e_m^{m/(m+1)}$ for $m \ge 1$. Then, $F = \sum_{m=1}^{\infty} b_m F_m$, $\int F_m \, d\sigma = 0$, and (3.1) implies that $\sup_{m\ge 1} \|F_m\|_{1+1/m} \le 1$. 1. Also, by (2.2) we have

(3.2)
$$\sum_{m=1}^{\infty} m^{a} b_{m} = \sum_{m=1}^{\infty} m^{a} 2^{m+1} e_{m}^{m/(m+1)}$$
$$\leq 2 \sum_{m=1}^{\infty} (m/(m+1)) m^{a} 2^{(m+1)(1+1/m)} e_{m} + 2 \sum_{m=1}^{\infty} m^{a} 2^{-m-1} / (m+1)$$
$$\leq C \sum_{m=1}^{\infty} m^{a} 2^{m} e_{m} + C \leq C \int_{S^{n-1}} |F| (\log(2+|F|))^{a} d\sigma + C.$$

Conversely, by the proof of Proposition (3) we can see that (2) implies (1).

Fix $p \in (1,\infty)$ and a function f with $||f||_p \leq 1$. Set $S(h,\Omega) = ||T(f)||_p$, where T(f)is as in (1.1). Let $h \in \mathcal{M}_1$ and $\Omega \in L \log L(S^{n-1})$. Write $h = \sum_{k=1}^{\infty} a_k h_k$ as in the definition of \mathcal{M}_1 . We may assume $\sum_{k=1}^{\infty} k a_k \leq 2 \|h\|_{\mathcal{M}_1}$. Also, we have $\Omega = \sum_{m=1}^{\infty} b_m \Omega_m$ by applying Lemma 3 with a = 1, where $\sup_{m\geq 1} \|\Omega_m\|_{1+1/m} \leq 1$, $\int_{S^{n-1}} \Omega_m d\sigma = 0$, $b_m \geq 0$, $\sum_{m=1}^{\infty} m b_m < \infty$. We may assume that $\sum_{m=1}^{\infty} m b_m \leq C \int_{S^{n-1}} |\Omega| \log(2 + |\Omega|) d\sigma + C$ by

(3.2). Now, the subadditivity of S and Theorem A imply

$$S(h,\Omega) \leq \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} a_k b_m S(h_k,\Omega_m)$$

$$\leq C \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} k a_k m b_m \|h_k\|_{\Delta_{1+1/k}} \|\Omega_m\|_{1+1/m}$$

$$\leq C \|h\|_{\mathcal{M}_1} \left(1 + \int_{S^{n-1}} |\Omega| \log(2 + |\Omega|) \, d\sigma\right).$$

The conclusion of Theorem 1 follows from this.

References

- A. Al-Salman and Y. Pan, Singular integrals with rough kernels in L log L(Sⁿ⁻¹), J. London Math. Soc. (2) 66 (2002), 153–174.
- [2] S. Sato, Estimates for singular integrals and extrapolation, Studia Math. 192 (2009), 219–233.
- [3] S. Sato, Estimates for singular integrals along surfaces of revolution, J. Aust. Math. Soc. 86 (2009), 413–430.
- S. Sato, Estimates for Littlewood-Paley functions and extrapolation, Integr. equ. oper. theory 62 (2008), 429–440.
- [5] S. Sato, Estimates for singular integrals on homogeneous groups, preprint.
- [6] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, London, New York and Melbourne, 1977.

Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan

 $E\text{-}mail\ address:$ shuichi@kenroku.kanazawa-u.ac.jp