A NOTE ON L^{p} ESTIMATES FOR SINGULAR INTEGRALS

SHUICHI SATO

Received January 26, 2010

Abstract

In this note we introduce a function space, which is used to define kernels of singular integrals. The space is useful in proving L^{p} boundedness of certain singular integrals via extrapolation arguments under a sharp condition on their kernels.

1. Introduction

Let $\Delta_{s}, s \geq 1$, denote the family of measurable functions h on $\mathbb{R}_{+}=\{t \in \mathbb{R}: t>0\}$ such that

$$
\|h\|_{\Delta_{s}}=\sup _{j \in \mathbb{Z}}\left(\int_{2^{j}}^{2^{j+1}}|h(t)|^{s} d t / t\right)^{1 / s}<\infty
$$

where \mathbb{Z} denotes the set of integers. We note that $\Delta_{s} \subset \Delta_{t}$ if $s>t$. Let $P(y)=$ $\left(P_{1}(y), P_{2}(y), \ldots, P_{d}(y)\right)$ be a polynomial mapping, where each P_{j} is a real-valued polynomial on \mathbb{R}^{n}. We assume $n \geq 2$. Define the singular Radon transform $T(f)$ by

$$
\begin{align*}
T(f)(x) & =\text { p.v. } \int_{\mathbb{R}^{n}} f(x-P(y)) K(y) d y \\
& =\lim _{\epsilon \rightarrow 0} \int_{|y|>\epsilon} f(x-P(y)) K(y) d y \tag{1.1}
\end{align*}
$$

for an appropriate function f on \mathbb{R}^{d}, where $K(y)=h(|y|) \Omega\left(y^{\prime}\right)|y|^{-n}, y^{\prime}=|y|^{-1} y, h \in \Delta_{1}$ and Ω is a function in $L^{1}\left(S^{n-1}\right)$ satisfying

$$
\int_{S^{n-1}} \Omega(\theta) d \sigma(\theta)=0
$$

Here $d \sigma$ denotes the Lebesgue surface measure on the unit sphere S^{n-1} in \mathbb{R}^{n}. We denote by $L^{q}\left(S^{n-1}\right)$ the space of functions F on S^{n-1} such that $\|F\|_{q}=\left(\int_{S^{n-1}}|F|^{q} d \sigma\right)^{1 / q}<\infty$.

Also, we consider the maximal operator

$$
\begin{equation*}
T^{*}(f)(x)=\sup _{N, \epsilon>0}\left|\int_{\epsilon<|y|<N} f(x-P(y)) K(y) d y\right|, \tag{1.2}
\end{equation*}
$$

where P and K are as in (1.1).
In what follows we assume that the polynomial mapping P in (1.1) satisfies $P(-y)=$ $-P(y), P \neq 0$. The following result is known (see [2]).
Theorem A. If $\Omega \in L^{q}\left(S^{n-1}\right), q \in(1,2]$ and $h \in \Delta_{s}, s \in(1,2]$, then

$$
\|T(f)\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq C_{p}(q-1)^{-1}(s-1)^{-1}\|\Omega\|_{q}\|h\|_{\Delta_{s}}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

for all $p \in(1, \infty)$, where the constant C_{p} is independent of q, s, Ω, h, and the polynomials P_{j} if each of them is of fixed degree.

[^0]We recall that $\mathcal{L}_{a}, a>0$, is the space of functions h on \mathbb{R}_{+}satisfying $L_{a}(h)<\infty$, where

$$
L_{a}(h)=\sup _{j \in \mathbb{Z}} \int_{2^{j}}^{2^{j+1}}|h(r)|(\log (2+|h(r)|))^{a} d r / r,
$$

and \mathcal{N}_{a} is defined to be the space of functions h on \mathbb{R}_{+}such that $N_{a}(h)<\infty$, where

$$
N_{a}(h)=\sum_{m \geq 1} m^{a} 2^{m} d_{m}(h)
$$

with $d_{m}(h)=\sup _{k \in \mathbb{Z}} 2^{-k}|E(k, m)|$,

$$
\begin{gathered}
E(k, m)=\left\{r \in\left(2^{k}, 2^{k+1}\right]: 2^{m-1}<|h(r)| \leq 2^{m}\right\}, \quad m \geq 2, \\
E(k, 1)=\left\{r \in\left(2^{k}, 2^{k+1}\right]: 0<|h(r)| \leq 2\right\} .
\end{gathered}
$$

It was observed in [2] that $N_{a}(h)<\infty$ implies $L_{a}(h)<\infty$ and that $N_{a}(h)<\infty$ if $L_{a+b}(h)<$ ∞ for some $b>1$.

Let $L \log L\left(S^{n-1}\right)$ be the Zygmund class of functions F on S^{n-1} satisfying

$$
\int_{S^{n-1}}|F(\theta)| \log (2+|F(\theta)|) d \sigma(\theta)<\infty
$$

Theorem A implies the following result via an extrapolation argument (see [2] and also $[1,3,4,5])$.
Theorem B. If $\Omega \in L \log L\left(S^{n-1}\right)$ and $h \in \mathcal{N}_{1}$, then

$$
\|T(f)\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \quad \text { for all } p \in(1, \infty)
$$

where the constant C_{p} is independent of the polynomials P_{j} if they are of fixed degree.
For $a>0$, let \mathcal{M}_{a} be the collection of functions h on \mathbb{R}_{+}such that there exist a sequence $\left\{h_{k}\right\}_{k=1}^{\infty}$ of functions on \mathbb{R}_{+}and a sequence $\left\{a_{k}\right\}_{k=1}^{\infty}$ of non-negative real numbers satisfying $h=\sum_{k=1}^{\infty} a_{k} h_{k}, \sup _{k \geq 1}\left\|h_{k}\right\|_{\Delta_{1+1 / k}} \leq 1$ and $\sum_{k=1}^{\infty} k^{a} a_{k}<\infty$. For $h \in \mathcal{M}_{a}$, define

$$
\|h\|_{\mathcal{M}_{a}}=\inf _{\left\{a_{k}\right\}} \sum_{k=1}^{\infty} k^{a} a_{k}
$$

where the infimum is taken over all sequences $\left\{a_{k}\right\}$ of non-negative real numbers such that $\sum_{k=1}^{\infty} k^{a} a_{k}<\infty$ and $h=\sum_{k=1}^{\infty} a_{k} h_{k}$ for some $\left\{h_{k}\right\}$ satisfying $\sup _{k \geq 1}\left\|h_{k}\right\|_{\Delta_{1+1 / k}} \leq 1$.

We note the following.
Proposition. For $a>0$, let $\mathcal{N}_{a}, \mathcal{N}_{a}, \mathcal{L}_{a}$ be as above. Then,
(1) $\|\cdot\|_{\mathcal{M}_{a}}$ is a norm on the space \mathcal{M}_{a};
(2) if $h \in \mathcal{N}_{a}$, then $h \in \mathcal{M}_{a}$;
(3) if $h \in \mathcal{M}_{a}$, then $h \in \mathcal{L}_{a}$.

The space \mathcal{M}_{1} is useful in an extrapolation argument. Indeed, Theorem A and extrapolation imply the following L^{p} boundedness of the singular integral operator T.

Theorem 1. Let T be as in (1.1) with a kernel $K(y)=h(|y|) \Omega\left(y^{\prime}\right)|y|^{-n}$. If $h \in \mathcal{M}_{1}$ and $\Omega \in L \log L\left(S^{n-1}\right)$, then

$$
\|T(f)\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \quad \text { for all } p \in(1, \infty)
$$

where the constant C_{p} is independent of the polynomials P_{j} if each of them is of fixed degree.
Theorem B follows from Theorem 1 by Proposition (2).
Similarly, Theorem 3 of [2] implies the following.

Theorem 2. Let T^{*} be as in (1.2). Suppose that $h \in \mathcal{M}_{1}$ and $\Omega \in L \log L\left(S^{n-1}\right)$. Then

$$
\left\|T^{*}(f)\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)} \quad \text { for all } p \in(1, \infty)
$$

where the constant C_{p} is independent of the polynomials P_{j}, as in Theorem 1.
Let $\left\{A_{t}\right\}_{t>0}$ be a dilation group on \mathbb{R}^{n} defined by $A_{t}=t^{P}=\exp ((\log t) P)$, where P is an $n \times n$ real matrix whose eigenvalues have positive real parts. Let r be a norm function on \mathbb{R}^{n} associated with $\left\{A_{t}\right\}_{t>0}$ such that
(1) r is continuous on \mathbb{R}^{n} and infinitely differentiable in $\mathbb{R}^{n} \backslash\{0\}$;
(2) $r\left(A_{t} x\right)=\operatorname{tr}(x)$ for all $t>0$ and $x \in \mathbb{R}^{n}$;
(3) $r(x+y) \leq C(r(x)+r(y))$ for some $C>0$;
(4) $d x=t^{\gamma-1} d \sigma d t$, that is,

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} \int_{\Sigma} f\left(A_{t} \theta\right) t^{\gamma-1} d \sigma(\theta) d t
$$

with $d \sigma=\omega d \sigma_{0}$, for an appropriate function f, where $\gamma=$ trace P, ω is a strictly positive C^{∞} function on $\Sigma=\left\{x \in \mathbb{R}^{n}: r(x)=1\right\}$ and $d \sigma_{0}$ is the Lebesgue surface measure on Σ;
(5) $\Sigma=\left\{\theta \in \mathbb{R}^{n}:\langle B \theta, \theta\rangle=1\right\}$ for a positive symmetric matrix B, where $\langle\cdot, \cdot\rangle$ denotes the inner product in \mathbb{R}^{n};
(6)

$$
\begin{aligned}
& c_{1}|x|^{\alpha_{1}} \leq r(x) \leq c_{2}|x|^{\alpha_{2}} \quad \text { if } r(x) \geq 1 \\
& c_{3}|x|^{\beta_{1}} \leq r(x) \leq c_{4}|x|^{\beta_{2}} \quad \text { if } r(x) \leq 1
\end{aligned}
$$

for some positive constants $c_{1}, c_{2}, c_{3}, c_{4}, \alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2}.
Let Ω be locally integrable in $\mathbb{R}^{n} \backslash\{0\}$ and homogeneous of degree 0 with respect to the dilation group $\left\{A_{t}\right\}$, that is, $\Omega\left(A_{t} x\right)=\Omega(x)$ for $x \neq 0, t>0$. We assume that

$$
\int_{\Sigma} \Omega(\theta) d \sigma(\theta)=0
$$

We consider a singular integral operator on \mathbb{R}^{n} of the form

$$
\begin{equation*}
S(f)(x)=\text { p.v. } \int_{\mathbb{R}^{n}} f(x-y) K(y) d y \tag{1.3}
\end{equation*}
$$

where $K(y)=h(r(y)) \Omega\left(y^{\prime}\right) r(y)^{-\gamma}, y^{\prime}=A_{r(y)^{-1}} y, h \in \Delta_{1}$.
Theorem 1.3 of [3] and an extrapolation argument similar to that for Theorem 1 imply the following.

Theorem 3. Let S be as in (1.3) with the functions h and Ω satisfying $h \in \mathcal{M}_{1}$,

$$
\int_{\Sigma}|\Omega(\theta)| \log (2+|\Omega(\theta)|) d \sigma(\theta)<\infty
$$

Then

$$
\|S(f)\|_{p} \leq C_{p}\|f\|_{p} \quad \text { for all } p \in(1, \infty)
$$

Theorem 1.4 of [3] follows from this (see also Remark in Section 3 of [3]). We shall prove Proposition in Section 2 and Theorem 1 in Section 3 by applying results of [2]. The letter C will be used to denote non-negative constants which may be different in different occurrences.

2. Proof of Proposition

Proof of (1). We have to prove the following.
(i) $\|h\|_{\mathcal{M}_{a}}=0$ if and only if $h=0$;
(ii) if $h \in \mathcal{M}_{a}$ and λ is a complex number, then $\lambda h \in \mathcal{M}_{a}$ and $\|\lambda h\|_{\mathcal{M}_{a}}=|\lambda|\|h\|_{\mathcal{M}_{a}}$;
(iii) if $h, \ell \in \mathcal{M}_{a}$, then $h+\ell \in \mathcal{M}_{a}$ and $\|h+\ell\|_{\mathcal{M}_{a}} \leq\|h\|_{\mathcal{M}_{a}}+\|\ell\|_{\mathcal{M}_{a}}$.

It is not difficult to prove these results. To prove (i), note that $\|h\|_{\Delta_{1}} \leq \sum_{k} a_{k} \leq \sum_{k} k^{a} a_{k}$ if $h=\sum_{k} a_{k} h_{k}$ as in the definition, since $\left\|h_{k}\right\|_{\Delta_{1}} \leq\left\|h_{k}\right\|_{\Delta_{1+1 / k}} \leq 1$. This shows that $\|h\|_{\Delta_{1}}=0$ and hence $h=0$ if $\|h\|_{\mathcal{M}_{a}}=0$. The converse is obvious. We omit proofs of (ii) and (iii).

Proof of (2). This follows from results in Section 3 of [2]. Let $h \in \mathcal{N}_{a}$ and $E_{1}=\{r \in$ $\left.\mathbb{R}_{+}: 0<|h(r)| \leq 2\right\}, E_{m}=\left\{r \in \mathbb{R}_{+}: 2^{m-1}<|h(r)| \leq 2^{m}\right\}$ for $m \geq 2$. Then

$$
\begin{equation*}
\left\|h \chi_{E_{m}}\right\|_{\Delta_{1+1 / m}} \leq 2^{m}\left(d_{m}(h)\right)^{m /(m+1)} \tag{2.1}
\end{equation*}
$$

where χ_{S} denotes the characteristic function of a set S. Define $h_{m}=2^{-m}\left(d_{m}(h)\right)^{-m /(m+1)} h \chi_{E_{m}}$ if $d_{m}(h) \neq 0$ and $h_{m}=0$ if $d_{m}(h)=0$. Put $a_{m}=2^{m}\left(d_{m}(h)\right)^{m /(m+1)}$. Then, by (2.1) $\left\|h_{m}\right\|_{\Delta_{1+1 / m}} \leq 1$, and $h=\sum_{m=1}^{\infty} a_{m} h_{m}$. To show $h \in \mathcal{M}_{a}$, it suffices to prove that $\sum_{m=1}^{\infty} m^{a} a_{m}<\infty$. To see this we use Young's inequality

$$
\begin{equation*}
\alpha \beta \leq p^{-1} \alpha^{p}+q^{-1} \beta^{q}, \quad \alpha, \beta \geq 0, \quad 1<p, q<\infty, \quad 1 / p+1 / q=1 \tag{2.2}
\end{equation*}
$$

Using (2.2) with $\alpha=1 / 3, \beta=\left(d_{m}(h)\right)^{m /(m+1)}, p=m+1$ and $q=(m+1) / m$, we have

$$
\begin{aligned}
& \sum_{m=1}^{\infty} m^{a} a_{m}=\sum_{m=1}^{\infty} m^{a} 2^{m}\left(d_{m}(h)\right)^{m /(m+1)} \\
& \leq 3 \sum_{m=1}^{\infty} m^{a} 2^{m}(m+1)^{-1} 3^{-m-1}+3 \sum_{m=1}^{\infty} m^{a} 2^{m}(m /(m+1)) d_{m}(h) \\
& \leq C\left(1+N_{a}(h)\right)
\end{aligned}
$$

This completes the proof of part (2).
Proof of (3). The following elementary lemmas are useful.
Lemma 1. Suppose $x \geq 2,1<p<\infty, a>0$. Then

$$
x(\log x)^{a} \leq C_{a}(p-1)^{-a} x^{p}
$$

where the constant C_{a} depends only on a.
Lemma 2. If $f(x)=x(\log x)^{a}, a>0, x>e^{1-a}$, then $f^{\prime \prime}(x)>0$.
Let $h \in \mathcal{M}_{a}$ and $h=\sum_{k} a_{k} h_{k}$ as in the definition. To show that $h \in \mathcal{L}_{a}$, we may assume that $\sum_{k} a_{k}=1$. Since Lemma 2 implies that the function $(e+x)(\log (e+x))^{a}$ is convex for $x \geq 0$,

$$
\begin{align*}
|h|(\log (2+|h|))^{a} & \leq(e+|h|)(\log (e+|h|))^{a} \tag{2.3}\\
& \leq \sum a_{k}\left(e+\left|h_{k}\right|\right)\left(\log \left(e+\left|h_{k}\right|\right)\right)^{a}
\end{align*}
$$

By Lemma 1 with $p=1+1 / k$, we have

$$
\begin{align*}
\left(e+\left|h_{k}\right|\right)\left(\log \left(e+\left|h_{k}\right|\right)\right)^{a} & \leq C_{a} k^{a}\left(e+\left|h_{k}\right|\right)^{1+1 / k} \tag{2.4}\\
& \leq C_{a} k^{a} 2^{1 / k}\left(e^{1+1 / k}+\left|h_{k}\right|^{1+1 / k}\right) \leq C k^{a}\left(e^{2}+\left|h_{k}\right|^{1+1 / k}\right)
\end{align*}
$$

By (2.3) and (2.4), we see that

$$
\begin{aligned}
\sup _{j \in \mathbb{Z}} \int_{2^{j}}^{2^{j+1}}|h|(\log (2+|h|))^{a} d r / r & \\
& \leq C \sum k^{a} a_{k}\left(e^{2}+\left\|h_{k}\right\|_{\Delta 1+1 / k}^{1+1 / k}\right) \leq C \sum k^{a} a_{k}<\infty
\end{aligned}
$$

This completes the proof.

3. Proof of Theorem 1

We prove Theorem 1 by applying Theorem A with extrapolation. By well-known arguments we have the following (see [6, Chap. XII, pp. 119-120] for relevant results).

Lemma 3. Suppose $F \in L^{1}\left(S^{n-1}\right)$ and $a>0$. Then, the following two statements are equivalent:
(1) $\int_{S^{n-1}}|F|(\log (2+|F|))^{a} d \sigma<\infty$ and $\int_{S^{n-1}} F d \sigma=0$;
(2) there exist a sequence $\left\{F_{m}\right\}_{m=1}^{\infty}$ of functions on S^{n-1} and a sequence $\left\{b_{m}\right\}_{m=1}^{\infty}$ of non-negative real numbers such that $F=\sum_{m=1}^{\infty} b_{m} F_{m}$, $\sup _{m \geq 1}\left\|F_{m}\right\|_{1+1 / m} \leq 1$, $\int_{S^{n-1}} F_{m} d \sigma=0, \sum_{m=1}^{\infty} m^{a} b_{m}<\infty$.

Proof. First, we prove that (1) implies (2). Put

$$
\begin{gathered}
U_{m}=\left\{\theta \in S^{n-1}: 2^{m-1}<|F(\theta)| \leq 2^{m}\right\} \quad \text { for } m \geq 2 \\
U_{1}=\left\{\theta \in S^{n-1}:|F(\theta)| \leq 2\right\}
\end{gathered}
$$

Then, we decompose F as $F=\sum_{m=1}^{\infty} \tilde{F}_{m}$, where $\tilde{F}_{m}=F \chi_{U_{m}}-\sigma\left(S^{n-1}\right)^{-1} \int_{U_{m}} F d \sigma$. Note that $\int \tilde{F}_{m} d \sigma=0$. Set $e_{m}=\sigma\left(U_{m}\right), m \geq 1$. Then

$$
\begin{equation*}
\left\|\tilde{F}_{m}\right\|_{1+1 / m} \leq 22^{m} e_{m}^{m /(m+1)} \quad \text { for } m \geq 1 \tag{3.1}
\end{equation*}
$$

Define $F_{m}=2^{-m-1} e_{m}^{-m /(m+1)} \tilde{F}_{m}$ if $e_{m} \neq 0, F_{m}=0$ if $e_{m}=0$, and $b_{m}=2^{m+1} e_{m}^{m /(m+1)}$ for $m \geq 1$. Then, $F=\sum_{m=1}^{\infty} b_{m} F_{m}, \int F_{m} d \sigma=0$, and (3.1) implies that $\sup _{m \geq 1}\left\|F_{m}\right\|_{1+1 / m} \leq$ 1. Also, by (2.2) we have

$$
\begin{align*}
& \sum_{m=1}^{\infty} m^{a} b_{m}=\sum_{m=1}^{\infty} m^{a} 2^{m+1} e_{m}^{m /(m+1)} \tag{3.2}\\
& \leq 2 \sum_{m=1}^{\infty}(m /(m+1)) m^{a} 2^{(m+1)(1+1 / m)} e_{m}+2 \sum_{m=1}^{\infty} m^{a} 2^{-m-1} /(m+1) \\
& \leq C \sum_{m=1}^{\infty} m^{a} 2^{m} e_{m}+C \leq C \int_{S^{n-1}}|F|(\log (2+|F|))^{a} d \sigma+C
\end{align*}
$$

Conversely, by the proof of Proposition (3) we can see that (2) implies (1).
Fix $p \in(1, \infty)$ and a function f with $\|f\|_{p} \leq 1$. Set $S(h, \Omega)=\|T(f)\|_{p}$, where $T(f)$ is as in (1.1). Let $h \in \mathcal{M}_{1}$ and $\Omega \in L \log L\left(S^{n-1}\right)$. Write $h=\sum_{k=1}^{\infty} a_{k} h_{k}$ as in the definition of \mathcal{M}_{1}. We may assume $\sum_{k=1}^{\infty} k a_{k} \leq 2\|h\|_{\mathcal{M}_{1}}$. Also, we have $\Omega=\sum_{m=1}^{\infty} b_{m} \Omega_{m}$ by applying Lemma 3 with $a=1$, where $\sup _{m \geq 1}\left\|\Omega_{m}\right\|_{1+1 / m} \leq 1, \int_{S^{n-1}} \Omega_{m} d \sigma=0, b_{m} \geq 0$, $\sum_{m=1}^{\infty} m b_{m}<\infty$. We may assume that $\sum_{m=1}^{\infty} m b_{m} \leq C \int_{S^{n-1}}|\Omega| \log (2+|\Omega|) d \sigma+C$ by
(3.2). Now, the subadditivity of S and Theorem A imply

$$
\begin{aligned}
S(h, \Omega) & \leq \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} a_{k} b_{m} S\left(h_{k}, \Omega_{m}\right) \\
& \leq C \sum_{k=1}^{\infty} \sum_{m=1}^{\infty} k a_{k} m b_{m}\left\|h_{k}\right\|_{\Delta_{1+1 / k}}\left\|\Omega_{m}\right\|_{1+1 / m} \\
& \leq C\|h\|_{\mathcal{M}_{1}}\left(1+\int_{S^{n-1}}|\Omega| \log (2+|\Omega|) d \sigma\right)
\end{aligned}
$$

The conclusion of Theorem 1 follows from this.

References

[1] A. Al-Salman and Y. Pan, Singular integrals with rough kernels in $L \log L\left(S^{n-1}\right)$, J. London Math. Soc. (2) 66 (2002), 153-174.
[2] S. Sato, Estimates for singular integrals and extrapolation, Studia Math. 192 (2009), 219-233.
[3] S. Sato, Estimates for singular integrals along surfaces of revolution, J. Aust. Math. Soc. 86 (2009), 413-430.
[4] S. Sato, Estimates for Littlewood-Paley functions and extrapolation, Integr. equ. oper. theory 62 (2008), 429-440.
[5] S. Sato, Estimates for singular integrals on homogeneous groups, preprint.
[6] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, London, New York and Melbourne, 1977.

Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, JAPAN

E-mail address: shuichi@kenroku.kanazawa-u.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 42B20, 42B35.
 Key Words and Phrases. Singular integrals, extrapolation.

