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A NOTE ON Lp ESTIMATES FOR SINGULAR INTEGRALS

SHUICHI SATO
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Abstract. In this note we introduce a function space, which is used to define kernels
of singular integrals. The space is useful in proving Lp boundedness of certain singular
integrals via extrapolation arguments under a sharp condition on their kernels.

1. Introduction

Let ∆s, s ≥ 1, denote the family of measurable functions h on R+ = {t ∈ R : t > 0} such
that

‖h‖∆s = sup
j∈Z

(∫ 2j+1

2j

|h(t)|s dt/t

)1/s

< ∞,

where Z denotes the set of integers. We note that ∆s ⊂ ∆t if s > t. Let P (y) =
(P1(y), P2(y), . . . , Pd(y)) be a polynomial mapping, where each Pj is a real-valued poly-
nomial on R

n. We assume n ≥ 2. Define the singular Radon transform T (f) by

T (f)(x) = p.v.

∫
Rn

f(x− P (y))K(y) dy

= lim
ε→0

∫
|y|>ε

f(x − P (y))K(y) dy,
(1.1)

for an appropriate function f on R
d, where K(y) = h(|y|)Ω(y′)|y|−n, y′ = |y|−1y, h ∈ ∆1

and Ω is a function in L1(Sn−1) satisfying∫
Sn−1

Ω(θ) dσ(θ) = 0.

Here dσ denotes the Lebesgue surface measure on the unit sphere Sn−1 in R
n. We denote

by Lq(Sn−1) the space of functions F on Sn−1 such that ‖F‖q =
(∫

Sn−1 |F |q dσ
)1/q

< ∞.
Also, we consider the maximal operator

T ∗(f)(x) = sup
N,ε>0

∣∣∣∣∣
∫

ε<|y|<N

f(x − P (y))K(y) dy

∣∣∣∣∣ ,(1.2)

where P and K are as in (1.1).
In what follows we assume that the polynomial mapping P in (1.1) satisfies P (−y) =

−P (y), P �= 0. The following result is known (see [2]).

Theorem A. If Ω ∈ Lq(Sn−1), q ∈ (1, 2] and h ∈ ∆s, s ∈ (1, 2], then

‖T (f)‖Lp(Rd) ≤ Cp(q − 1)−1(s − 1)−1‖Ω‖q‖h‖∆s‖f‖Lp(Rd)

for all p ∈ (1,∞), where the constant Cp is independent of q, s, Ω, h, and the polynomials
Pj if each of them is of fixed degree.
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We recall that La, a > 0, is the space of functions h on R+ satisfying La(h) < ∞, where

La(h) = sup
j∈Z

∫ 2j+1

2j

|h(r)| (log(2 + |h(r)|))a
dr/r,

and Na is defined to be the space of functions h on R+ such that Na(h) < ∞, where

Na(h) =
∑
m≥1

ma2mdm(h),

with dm(h) = supk∈Z
2−k|E(k,m)|,

E(k,m) = {r ∈ (2k, 2k+1] : 2m−1 < |h(r)| ≤ 2m}, m ≥ 2,

E(k, 1) = {r ∈ (2k, 2k+1] : 0 < |h(r)| ≤ 2}.
It was observed in [2] that Na(h) < ∞ implies La(h) < ∞ and that Na(h) < ∞ if La+b(h) <
∞ for some b > 1.

Let L log L(Sn−1) be the Zygmund class of functions F on Sn−1 satisfying∫
Sn−1

|F (θ)| log(2 + |F (θ)|) dσ(θ) < ∞.

Theorem A implies the following result via an extrapolation argument (see [2] and also
[1, 3, 4, 5]).

Theorem B. If Ω ∈ L log L(Sn−1) and h ∈ N1, then

‖T (f)‖Lp(Rd) ≤ Cp‖f‖Lp(Rd) for all p ∈ (1,∞),

where the constant Cp is independent of the polynomials Pj if they are of fixed degree.

For a > 0, let Ma be the collection of functions h on R+ such that there exist a sequence
{hk}∞k=1 of functions on R+ and a sequence {ak}∞k=1 of non-negative real numbers satisfying
h =

∑∞
k=1 akhk, supk≥1 ‖hk‖∆1+1/k

≤ 1 and
∑∞

k=1 kaak < ∞. For h ∈ Ma, define

‖h‖Ma = inf
{ak}

∞∑
k=1

kaak,

where the infimum is taken over all sequences {ak} of non-negative real numbers such that∑∞
k=1 kaak < ∞ and h =

∑∞
k=1 akhk for some {hk} satisfying supk≥1 ‖hk‖∆1+1/k

≤ 1.
We note the following.

Proposition. For a > 0, let Ma, Na, La be as above. Then,
(1) ‖ · ‖Ma is a norm on the space Ma;
(2) if h ∈ Na, then h ∈ Ma;
(3) if h ∈ Ma, then h ∈ La.

The space M1 is useful in an extrapolation argument. Indeed, Theorem A and extrapo-
lation imply the following Lp boundedness of the singular integral operator T .

Theorem 1. Let T be as in (1.1) with a kernel K(y) = h(|y|)Ω(y′)|y|−n. If h ∈ M1 and
Ω ∈ L log L(Sn−1), then

‖T (f)‖Lp(Rd) ≤ Cp‖f‖Lp(Rd) for all p ∈ (1,∞),

where the constant Cp is independent of the polynomials Pj if each of them is of fixed degree.

Theorem B follows from Theorem 1 by Proposition (2).
Similarly, Theorem 3 of [2] implies the following.
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Theorem 2. Let T ∗ be as in (1.2). Suppose that h ∈ M1 and Ω ∈ L log L(Sn−1). Then

‖T ∗(f)‖Lp(Rd) ≤ Cp‖f‖Lp(Rd) for all p ∈ (1,∞),

where the constant Cp is independent of the polynomials Pj , as in Theorem 1.

Let {At}t>0 be a dilation group on R
n defined by At = tP = exp((log t)P ), where P is

an n × n real matrix whose eigenvalues have positive real parts. Let r be a norm function
on R

n associated with {At}t>0 such that

(1) r is continuous on R
n and infinitely differentiable in R

n \ {0};
(2) r(Atx) = tr(x) for all t > 0 and x ∈ R

n;
(3) r(x + y) ≤ C(r(x) + r(y)) for some C > 0;
(4) dx = tγ−1 dσ dt, that is,∫

Rn

f(x) dx =
∫ ∞

0

∫
Σ

f(Atθ)tγ−1 dσ(θ) dt,

with dσ = ω dσ0, for an appropriate function f , where γ = trace P , ω is a strictly
positive C∞ function on Σ = {x ∈ R

n : r(x) = 1} and dσ0 is the Lebesgue surface
measure on Σ;

(5) Σ = {θ ∈ R
n : 〈Bθ, θ〉 = 1} for a positive symmetric matrix B, where 〈·, ·〉 denotes

the inner product in R
n;

(6)

c1|x|α1 ≤ r(x) ≤ c2|x|α2 if r(x) ≥ 1,

c3|x|β1 ≤ r(x) ≤ c4|x|β2 if r(x) ≤ 1,

for some positive constants c1, c2, c3, c4, α1, α2, β1 and β2.

Let Ω be locally integrable in R
n \ {0} and homogeneous of degree 0 with respect to the

dilation group {At}, that is, Ω(Atx) = Ω(x) for x �= 0, t > 0. We assume that∫
Σ

Ω(θ) dσ(θ) = 0.

We consider a singular integral operator on R
n of the form

S(f)(x) = p.v.

∫
Rn

f(x − y)K(y) dy.(1.3)

where K(y) = h(r(y))Ω(y′)r(y)−γ , y′ = Ar(y)−1y, h ∈ ∆1.
Theorem 1.3 of [3] and an extrapolation argument similar to that for Theorem 1 imply

the following.

Theorem 3. Let S be as in (1.3) with the functions h and Ω satisfying h ∈ M1,∫
Σ

|Ω(θ)| log(2 + |Ω(θ)|) dσ(θ) < ∞.

Then
‖S(f)‖p ≤ Cp‖f‖p for all p ∈ (1,∞).

Theorem 1.4 of [3] follows from this (see also Remark in Section 3 of [3]). We shall
prove Proposition in Section 2 and Theorem 1 in Section 3 by applying results of [2]. The
letter C will be used to denote non-negative constants which may be different in different
occurrences.
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2. Proof of Proposition

Proof of (1). We have to prove the following.

(i) ‖h‖Ma = 0 if and only if h = 0;
(ii) if h ∈ Ma and λ is a complex number, then λh ∈ Ma and ‖λh‖Ma = |λ|‖h‖Ma ;
(iii) if h, � ∈ Ma, then h + � ∈ Ma and ‖h + �‖Ma ≤ ‖h‖Ma + ‖�‖Ma.

It is not difficult to prove these results. To prove (i), note that ‖h‖∆1 ≤∑k ak ≤∑k kaak

if h =
∑

k akhk as in the definition, since ‖hk‖∆1 ≤ ‖hk‖∆1+1/k
≤ 1. This shows that

‖h‖∆1 = 0 and hence h = 0 if ‖h‖Ma = 0. The converse is obvious. We omit proofs of (ii)
and (iii).

Proof of (2). This follows from results in Section 3 of [2]. Let h ∈ Na and E1 = {r ∈
R+ : 0 < |h(r)| ≤ 2}, Em = {r ∈ R+ : 2m−1 < |h(r)| ≤ 2m} for m ≥ 2. Then

‖hχEm‖∆1+1/m
≤ 2m(dm(h))m/(m+1),(2.1)

where χS denotes the characteristic function of a set S. Define hm = 2−m(dm(h))−m/(m+1)hχEm

if dm(h) �= 0 and hm = 0 if dm(h) = 0. Put am = 2m(dm(h))m/(m+1). Then, by (2.1)
‖hm‖∆1+1/m

≤ 1, and h =
∑∞

m=1 amhm. To show h ∈ Ma, it suffices to prove that∑∞
m=1 maam < ∞. To see this we use Young’s inequality

αβ ≤ p−1αp + q−1βq, α, β ≥ 0, 1 < p, q < ∞, 1/p + 1/q = 1.(2.2)

Using (2.2) with α = 1/3, β = (dm(h))m/(m+1), p = m + 1 and q = (m + 1)/m, we have
∞∑

m=1

maam =
∞∑

m=1

ma2m(dm(h))m/(m+1)

≤ 3
∞∑

m=1

ma2m(m + 1)−13−m−1 + 3
∞∑

m=1

ma2m(m/(m + 1))dm(h)

≤ C (1 + Na(h)) .

This completes the proof of part (2).
Proof of (3). The following elementary lemmas are useful.

Lemma 1. Suppose x ≥ 2, 1 < p < ∞, a > 0. Then

x(log x)a ≤ Ca(p − 1)−axp,

where the constant Ca depends only on a.

Lemma 2. If f(x) = x(log x)a, a > 0, x > e1−a, then f ′′(x) > 0.

Let h ∈ Ma and h =
∑

k akhk as in the definition. To show that h ∈ La, we may assume
that

∑
k ak = 1. Since Lemma 2 implies that the function (e +x)(log(e + x))a is convex for

x ≥ 0,

|h| (log (2 + |h|))a ≤ (e + |h|) (log (e + |h|))a(2.3)

≤
∑

ak (e + |hk|) (log (e + |hk|))a
.

By Lemma 1 with p = 1 + 1/k, we have

(2.4) (e + |hk|) (log (e + |hk|))a ≤ Caka(e + |hk|)1+1/k

≤ Caka21/k(e1+1/k + |hk|1+1/k) ≤ Cka(e2 + |hk|1+1/k).
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By (2.3) and (2.4), we see that

sup
j∈Z

∫ 2j+1

2j

|h| (log (2 + |h|))a
dr/r

≤ C
∑

kaak

(
e2 + ‖hk‖1+1/k

∆1+1/k

)
≤ C

∑
kaak < ∞.

This completes the proof.

3. Proof of Theorem 1

We prove Theorem 1 by applying Theorem A with extrapolation. By well-known argu-
ments we have the following (see [6, Chap. XII, pp. 119–120] for relevant results).

Lemma 3. Suppose F ∈ L1(Sn−1) and a > 0. Then, the following two statements are
equivalent :

(1)
∫

Sn−1 |F | (log(2 + |F |))a
dσ < ∞ and

∫
Sn−1 F dσ = 0;

(2) there exist a sequence {Fm}∞m=1 of functions on Sn−1 and a sequence {bm}∞m=1 of
non-negative real numbers such that F =

∑∞
m=1 bmFm, supm≥1 ‖Fm‖1+1/m ≤ 1,∫

Sn−1 Fm dσ = 0,
∑∞

m=1 mabm < ∞.

Proof. First, we prove that (1) implies (2). Put

Um = {θ ∈ Sn−1 : 2m−1 < |F (θ)| ≤ 2m} for m ≥ 2,

U1 = {θ ∈ Sn−1 : |F (θ)| ≤ 2}.

Then, we decompose F as F =
∑∞

m=1 F̃m, where F̃m = FχUm −σ(Sn−1)−1
∫

Um
F dσ. Note

that
∫

F̃m dσ = 0. Set em = σ(Um), m ≥ 1. Then

‖F̃m‖1+1/m ≤ 22mem/(m+1)
m for m ≥ 1.(3.1)

Define Fm = 2−m−1e
−m/(m+1)
m F̃m if em �= 0, Fm = 0 if em = 0, and bm = 2m+1e

m/(m+1)
m for

m ≥ 1. Then, F =
∑∞

m=1 bmFm,
∫

Fm dσ = 0, and (3.1) implies that supm≥1 ‖Fm‖1+1/m ≤
1. Also, by (2.2) we have

∞∑
m=1

mabm =
∞∑

m=1

ma2m+1em/(m+1)
m(3.2)

≤ 2
∞∑

m=1

(m/(m + 1))ma2(m+1)(1+1/m)em + 2
∞∑

m=1

ma2−m−1/(m + 1)

≤ C
∞∑

m=1

ma2mem + C ≤ C

∫
Sn−1

|F | (log(2 + |F |))a dσ + C.

Conversely, by the proof of Proposition (3) we can see that (2) implies (1).

Fix p ∈ (1,∞) and a function f with ‖f‖p ≤ 1. Set S(h, Ω) = ‖T (f)‖p, where T (f)
is as in (1.1). Let h ∈ M1 and Ω ∈ L log L(Sn−1). Write h =

∑∞
k=1 akhk as in the

definition of M1. We may assume
∑∞

k=1 kak ≤ 2‖h‖M1. Also, we have Ω =
∑∞

m=1 bmΩm

by applying Lemma 3 with a = 1, where supm≥1 ‖Ωm‖1+1/m ≤ 1,
∫

Sn−1 Ωm dσ = 0, bm ≥ 0,∑∞
m=1 mbm < ∞. We may assume that

∑∞
m=1 mbm ≤ C

∫
Sn−1 |Ω| log(2 + |Ω|) dσ + C by
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(3.2). Now, the subadditivity of S and Theorem A imply

S(h, Ω) ≤
∞∑

k=1

∞∑
m=1

akbmS(hk, Ωm)

≤ C

∞∑
k=1

∞∑
m=1

kakmbm‖hk‖∆1+1/k
‖Ωm‖1+1/m

≤ C‖h‖M1

(
1 +

∫
Sn−1

|Ω| log(2 + |Ω|) dσ

)
.

The conclusion of Theorem 1 follows from this.
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