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Abstract. Let R be a Noetherian ring and let Z(R) be the set of all zero-divisors of
R. We denote by G(R) the simple graph whose vertices are elements of R and in which
two distinct vertices x and y are joined by an edge if x−y is in Z(R). Let χ(R) be the
chromatic number of the graph G(R). If χ(R) is finite, then R is an integral domain
or R is a finite Artin ring. In the former case we have χ(R) = 1 and in the latter case
we get χ(R) = max{|M1|, . . . , |Mt|} where M1, . . . , Mt are all maximal ideals of R
and |Mi| denotes the number of elements of the set Mi for i = 1, . . . , t.

Let R be a commutative ring with the identity element. An element x of R is called a
zero-divisor of R if there exists a non-zero element y of R satisfyihg xy = 0. We denote
Z(R) the set of all zero-divisors of R. We consider the simple graph G(R) whose vertices
are elements of R and in which distinct two vertices x and y are joined by an edge if x−y is
in Z(R). We color the vertices of G(R) so that no two joined vertices have the same color.
If we color the vertices, we call it a coloring of G(R). The chromatic number χ(R) of the
graph G(R) is the minimum number of colors of colorings of G(R). We denote by V (R) the
vertices of a graph G(R).

Our notation is standard and for unexplained terms, our general reference to commuta-
tive algebra is [1], [3] and our general reference to graph theory is [2].

Example 1. Let Z be the ring of all integers and let R be the residue class ring Z/6Z.
We denote by i the residue class of i + 6Z for i = 0, 1, . . . , 5 because no fear of confusion.
Therefore R = {0, 1, 2, 3, 4, 5}. Then V (R) = {0, 1, 2, 3, 4, 5} and Z(R) = {0, 2, 3, 4}. We
color vertices 0 and 5 as red, 1 and 2 as blue, 3 and 4 as yellow. This is a coloring of G(R)
with three colors. The triangle of vertices 0, 2, 4 needs three colors. Hence χ(R) = 3.

Let C be a non-empty subset of V (R). We call C a clique of G(R) if every pair of
distinct two elements of C is joined by an edge. The clique number C(R) of G(R) is the
maximum number of elements of cliques of G(R).

Example 2. The clique number C(R) of R in Example 1 is 3.

Lemma 3. The following inequality holds:

C(R) � χ(R).
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Proof. In the case that χ(R) is finite, let C be an arbitrary clique of G(R). Then every
vertix of C must be colored with different color because C is a clique of G(R). Moreover,
G(R) needs at least |C| colors because C is a subset of G(R) where |C| denotes the number
of elements of C. Hence C(R) � χ(R). In the case χ(R) is not finite, then C(R) � χ(R)
also holds. Q.E.D.

The symbol
∐

denotes the disjoint union of sets.

Lemma 4. Let
V (R) = V1

∐
V2

∐
· · ·

∐
Vt.

is a disjoint union of V (R) such that no pair of distinct two elements of Vi is joined by an
edge for i = 1, 2, . . . , t. Then χ(R) � t.

Proof. We color all vertices of Vi by the same color and we color the vertices of Vi and
the vertices of Vj by different colors for i �= j. It is a coloring of G(R). We need t kinds of
colors. Hence χ(R) � t. Q.E.D.

Remark 5. If χ(R) = n and c1, . . . , cn are colors of minimum coloring of G(R), then
we set

Vi = {x ∈ V (R);x is colored by a color ci}
Then

V (R) = V1

∐
V2

∐
· · ·

∐
Vn.

is a disjoint union of V (R) such that no pair of distinct two elements of Vi is joined by an
edge.

Proposition 6. If R is an integral domain, then χ(R) = 1

Proof. Let x and y be elements of V (R). If x− y is a zero-divisor, then x = y because
R is an integral domain and 0 is only one zero-divisor of R. Hence G(R) has no edge and
G(R) is colored by a single color. This means that χ(R) = 1. Q.E.D.

Primary decompositions of a Noetherian ring is reffered to [3].

Lemma 7. Let R be a Noetherian ring and

(0) = Q1

⋂
Q2

⋂
· · ·

⋂
Qt

be an irredundant primary decomposition of (0). Set Pi =
√

Qi for i = 1, 2, . . . , t. Then the
following hold:

(1) Z(R) =
⋃t

i=1 Pi

(2) AssR(R) = {P1, P2, . . . .Pt}.
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Under the notations in Lemma 7, Pi is a clique of G(R) for i = 1, 2, . . . , t because x− y
is in Pi ⊂ Z(R) for all x and y in Pi. Therefore by Lemma 3, we have

max{|P |; P ∈ AssR(R)} � C(R) � χ(R).

Theorem 8. Let R be a Noethrian ring. If χ(R) is finite, then R is an integral domain
or R is a finite ring.

Proof. Assume that R is not an integral domain. We will show that R is a finite ring.
The ideal (0) is not a prime ideal of R because R is not an integral domain. Let P be an
arbitrary element of AssR(R), then P �= (0). Since χ(R) is finite, we know that |P | is finite
by the previous argument. Furtheremore there exists a non-zero element a of P . Then
aR ⊂ P , hence |aR| is finite. Let AnnR(a) = {x ∈ R; ax = 0} be the annihilator ideal of
a. Then we know that there is an R-module isomorphism aR ∼= R/AnnR(a). Note that
AnnR(a) ⊂ Z(R) =

⋃
P∈AssR(R) P . Hence |AnnR(a)| �

∑
P∈AssR(R) |P | < ∞. Since |aR| is

finite, we have |R/AnnR(a)| < ∞. This means that |R| is finite. Q.E.D.

Note that a commutative ring R is an Artin ring if and only if every family of ideals of
R has a minimal element with respect to inclusion relation. Hence if R is a finite ring, then
R is an Artin ring.

The following is a structure theorem of Artin rings. A × B denotes the direct product
of sets A and B. If A and B are rings, then we cosider A × B as a ring.

Lemma 9([1] Theorem 8.7) Let R be an Artin ring and

(0) = Q1

⋂
Q2

⋂
· · ·

⋂
Qt

be irredundant primary decomposition of (0). Set mi =
√

Qi for i = 1, 2, . . . .t. Then
(1) R is isomorphic to a finite direct product of Artin local rings:

R ∼= R1 × R2 × · · · × Rt

where R1 = R/Q1, R/Q2, . . . , Rt = R/Qt.
(2) There exists a one-to-one correspondence between the set of maximal ideals of R and

the set of maximal ideals of R1 × R2 × · · · × Rt.

Lemma 10. Let R1 and R2 be commutative rings with the identity element. Let V
and W be finite subsets of V (R1) and V (R2) respectively such that no pair of distinct two
elements of V is joined by an edge and so is W . Then there exist finite subsets U1, . . . , Ur

of V × W satisfying the following:
(1) V × W = U1

∐
U2

∐ · · ·∐Ur.
(2) No pair of distinct two elements of Ui is joined by an edge for i = 1, 2, . . . , r.
(3) |U1| = |U2| = · · · = |Ur|.
(4) r = max{|V |, |W |}.
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Proof. Set n = |V |, m = |W |, V = {a1, . . . , an} and W = {b1, . . . , bm} We will prove
the case n � m. We set

U1 = {(a1, b1), (a2, b2), . . . , (an, bn)},
U2 = {(a1, b2), (a2, b3), . . . , (an, bn+1)},

. . .

Um−n+1 = {(a1, bm−n+1), (a2, bm−n+2), . . . , (an, bm)},
Um−n+2 = {(a1, bm−n+2), (a2, bm−n+3), . . . , (an, b1)},

. . .

Um = {(a1, bm), (a2, b1), . . . , (an, bn−1)}.

Then V × W is equal to the disjoint union U1

∐
U2

∐ · · ·∐Um and m = max{|V |, |W |}.
Furtheremore we have |U1| = |U2| = · · · = |Um| = n = /rmmin{|V |, |W |}. We shall show
that no pair of distinct two elements of Ui is joined by an edge for i = 1, 2, . . . , m. Let
x and y be distinct two elements of Ui and set x = (x1, y1), y = (x2, y2). Then by the
definition of Ui, we see that x1 �= x2 and y1 �= y2. Hence x1 − y1 is not a zero-divisor of R1

because no pair of distinct two elements of V is joined by an edge. Also x2 − y2 is not a
zero-divisor of R2.This means that x − y is not a zero-divisor of R1 × R2. Therefore x and
y are not joined by an edge.

We can also prove the case n > m. Q.E.D.

Lemma 11. Let R1 and R2 be finite commutative rings with the identity element.
Assume that the following hold:

(1) V (R1) = V1

∐
V2

∐ · · ·∐Vr1 .
(2) V (R2) = W1

∐
W2

∐ · · ·∐Wr2 .
(3) V1, V2, . . . , Vr1 are finite subsets of V (R1).
(4) W1, W2, . . . , Wr2 are finite subsets of V (R2).
(5) No pair of distinct two elements of Vi1 is joined by an edge for i1 = 1, 2, . . . , r1.
(6) No pair of distinct two elements of Wi2 is joined by an edge for i2 = 1, 2, . . . , r2.
Then there exist finite subsets T1, T2, . . . , Ts of R1 × R2 satisfying the following condi-

tions:
(a) V (R1 × R2) = T1

∐
T2

∐ · · ·∐Ts.
(b) No pair of distinct two elements of Tk is joined by an edge for k = 1, 2, . . . , s.
(c)

s =
r1∑

i1=1

r2∑

i2=1

max{|Vi1 |, |Wi2 |}.

Proof. We apply Lemma10 to Vi1 and Wi2 . Then there exist finite subsets U
(i1,i2)
1 , . . . , U

(i1,i2)
r(i1,i2)

of Vi1 × Wi2 satisfying the following properties:
(1) Vi1 × Wi2 = U

(i1,i2)
1

∐ · · ·∐ U
(i1,i2)
r(i1,i2)

.

(2) No pair of distinct two elements of U
(i1,i2)
i is joined by an edge for i = 1, 2, . . . , r(i1, i2).

(3) |U (i1,i2)
1 | = · · · = |U (i1,i2)

r(i1,i2)|.
(4) r(i1, i2) = max{|Vi1 |, |Wi2 |}.



THE CHROMATIC NUMBER OF THE SIMPLE GRAPH 49

Hence we have

V (R1 × R2) =
r1∐

i1=1

r2∐

i2=1

Vi1 × Wi2

=
r1∐

i1=1

r2∐

i2=1

(U (i1,i2)
1

∐
· · ·

∐
U

(i1,i2)
r(i1,i2)).

Then we can write
V (R1 × R2) = T1

∐
T2

∐
· · ·

∐
Ts

with the property (b). Moreover,

s =
r1∑

i1=1

r2∑

i2=1

r(i1, i2) =
r1∑

i1=1

r2∑

i2=1

max{|Vi1 |, |Wi2 |}.

Q.E.D.

Lemma 12. Let R1 and R2 be finite commutative rings with the identity element.
Assume that the following hold:

(1) V (R1) = V1

∐
V2

∐ · · ·∐Vr1 .
(2) V (R2) = W1

∐
W2

∐ · · ·∐ Wr2 .
(3) V1, V2, . . . , Vr1 are finite subsets of V (R1).
(4) W1, W2, . . . , Wr2 are finite subsets of V (R2).
(5) |V1| = |V2| = · · · = |Vr1 |.
(6) |W1| = |W2| = · · · = |Wr2 |.
(7) No pair of distinct two elements of Vi1 is joined by an edge for i1 = 1, 2, . . . , r1.
(8) No pair of distinct two elements of Wi2 is joined by an edge for i2 = 1, 2, . . . , r2.
Then there exist finite subsets T1, T2, . . . , Ts of R1 × R2 satisfying the following condi-

tions:
(a) V (R1 × R2) = T1

∐
T2

∐ · · ·∐ Ts.
(b) |T1| = |T2| = · · · = |Ts|.
(c) No pair of distinct two elements of Tk is joined by an edge for k = 1, 2, . . . , s.
(d) s = max{r1|R2|, |R1|r2}.

Proof. Set t1 = |Vi1 | for i1 = 1, 2, . . . , r1 and t2 = |Wi2 | for i2 = 1, 2, . . . , r2. Under
the notations in the proof of Lemma 11, note that

|U (i1,i2)
1 | = · · · = |U (i1,i2)

r(i1,i2)
| = min{|Vi1 |, |Wi2 |} = min{t1, t2}.

Hence we know that |T1| = |T2| = · · · = |Ts|. On the other hand, we see that |R1| = r1t1
and |R2| = r2t2. This asserts that

s =
r1∑

i1=1

r2∑

i2=1

max{|Vi1 |, |Wi2 |} =
r1∑

i1=1

r2∑

i2=1

max{t1, t2}

= r1r2max{t1, t2} = max{r1r2t1, r1r2t2}
= max{|R1|r2, r1|R2|}.

Q.E.D.
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Example 13. Set R1 = R2 = Z/4Z. We denote by i the residue class of i + 4Z for
i = 0, 1, 2, 3. Let m1 and m2 be the maximal ideals of R1 and R2 respectively. Then
m1 = m2 = {0, 2}. Set V1 = W1 = {0, 1} and V2 = W2 = {2, 3} Then

V (R1) = V1

∐
V2, V (R2) = W1

∐
W2.

Set R = R1 × R2 and set

T1 = {(0, 0), (1, 1)}, T2 = {(0, 1), (1, 0)},
T3 = {(0, 2), (1, 3)}, T4 = {(0, 3), (1, 2)},
T5 = {(2, 0), (3, 1)}, T6 = {(2, 1), (3, 0)},
T7 = {(2, 2), (3, 3)}, T8 = {(2, 3), (3, 2)}.

Then no pair of distinct two elements of Tk is joined by an edge for k = 1, 2, . . . , 8 and
V (R) = T1

∐ · · ·∐ T8.

Proposition 14. Let R1, . . . , Rt be finite commutative rings with the identity element.
Assume that the following hold:

(1) V (Ri) = V
(i)
1

∐ · · ·∐V
(i)
ri for i = 1, 2, . . . , t.

(2) V
(i)
1 , . . . , V

(i)
ri are finite subsets of V (Ri) for i = 1, 2, . . . , t.

(3) |V (i)
1 | = · · · = |V (i)

ri | for i = 1, 2, . . . , t.
(4) No pair of distinct two elements of V

(i)
k is joined by an edge for k = 1, 2, . . . , ri and

for i = 1, 2, . . . , t.
Then there exist finite subsets U1, . . . , Us of R1 × · · · × Rt satisfying the following con-

ditions:
(a) V (R1 × · · · × Rt) = U1

∐ · · ·∐ Us.
(b) |U1| = · · · = |Us|.
(c) No pair of distinct two elements of Uj is joined by an edge for j = 1, 2, . . . , s.
(d) s = max{|R1| · · · · · |Ri−1|ri|Ri+1| · · · · · |Rt|; i = 1, 2, . . . , t}.

Proof. We shall show Proposition 14 by induction on t. The case t = 1 is obvious.
Suppose that t � 1 and the assertion holds for t. Then by the induction hypothesis, we get
V (R1 × · · · × Rt) = U1

∐ · · ·∐Us with the properties (a)-(d). Furthermore

V (Rt+1) = V
(t+1)
1

∐
· · ·

∐
V (t+1)

rt+1

with |V (t+1)
1 | = · · · = |V (t+1)

rt+1 |. By Lemma 12, there exist finite subsets T1, . . . , Ts′ of
(R1 × · · · × Rt) × Rt+1 satisfying the following conditions:

(1) V ((R1 × · · · × Rt) × Rt+1) = T1

∐ · · ·∐Ts′ .
(2) |T1| = · · · = |Ts′ |.
(3) No pair of distinct two elements of Tk is joined by an edge for k = 1, 2, . . . , s

′
.

(4) s
′
= max{s|Rt+1|, |R1 × · · · × Rt|rt+1}.

Hence s
′
= max{|R1| · · · ·· |Ri−1|ri|Ri+1| · · · ·· |Rt+1|; i = 1, 2, . . . , t}. We prove the assertion.

Q.E.D.

Proposition 15. Let (R,m) be finite Artin local ring. Then the following assertions
hold:
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(1) There exist finite subsets T1, T2, . . . , Tr of R satisfying the following conditions:
(a) V (R) = T1

∐
T2

∐ · · ·∐Tr.
(b) |T1| · · · = |Tr| = |R/m|.
(c) No pair of distinct two elements of Tj is joined by an edge for j = 1, 2, . . . , r.
(d) r = |m|.
(2) χ(R) = |m|.

Proof. (1) Let a1+m, . . . , at+m be all residue classes of R/m and set m = {x1, . . . , xr}.
Furthermore set yij = ai + xj for i = 1, 2, . . . , t and j = 1, 2, . . . , r. Then we have
R = {yij ; i = 1, 2, . . . , t; j = 1, 2, . . . , r}. Set Tj = {yij ; i = 1, 2, . . . , t} for j = 1, 2, . . . , r.
Then we get V (R) = T1

∐
T2

∐ · · ·∐Tr and |T1| = · · · = |Tr| = t = |R/m|. Let yij and ykj

be distinct two elements of Tj(j = 1, 2, . . . , r). Then

yij − ykj = (ai + xj) − (ak + xj) = ai − ak /∈ m = Z(R).

Hence no pair of distinct two elements of Tj is joined by an edge for j = 1, 2, . . . , r.
(2) By the assertion (1) and Lemma 4 we see that χ(R) � r. Note that m = Z(R)

because AssR(R) = {m}. Therefore m is a clique of G(R). By Lemma 3 we have r � χ(R).
This means that χ(R) = r = |m|. Q.E.D.

Theorem 16. Let (R1, m1), . . . , (Rt, mt) be finite Artin local rings. Then the following
assertions hold:

(1) There exist finite subsets U1, . . . , Us of R1 × · · · × Rt satisfying the following condi-
tions:

(a) V (R1 × · · · × Rt) = U1

∐
U2

∐ · · ·∐Us.
(b) |U1| = · · · = |Us|.
(c) No pair of distinct two elements of Uj is joined by an edge for j = 1, 2, . . . , s.
(d) s = max{|R1| · · · · · |Ri−1||mi||Ri+1| · · · · · |Rt|; i = 1, 2, . . . , t}.
(2) χ(R1 × · · · × Rt) = max{|R1| · · · · · |Ri−1||mi||Ri+1| · · · · · |Rt|; i = 1, 2, . . . , t}.

Proof. (1) By Propositions 14 and 15, we get the assertion (1) noting that ri = |mi|
under the notation ri in Proposition 15.

(2) Lemma 4 asserts that

χ(R1 × · · · × Rt) � max{|R1| · · · · · |Ri−1||mi||Ri+1| · · · · · |Rt|; i = 1, 2, . . . , t}.

On the other hand R1 × · · · × Ri−1 × mi × Ri+1 × · · · × Rt is a clique of G(R1 × · · · × Rt).
Hence by Lemma 3 we have

max{|R1| · · · · · |Ri−1||mi||Ri+1| · · · · · |Rt|; i = 1, 2, . . . , t} � χ(R1 × · · · × Rt).

Hence we get the assertion (2). Q.E.D.

Let R be a Noetherian ring. If χ(R) is finite, then R is an integral domain or R is a
finite ring by Theorem 8.

Theorem 17. Let R be a Noetherian ring. Assume that χ(R) is finite. Then the
following assertions hold:

(1) If R is an integral domain, then χ(R) = 1.
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(2) If R is a finite ring, then

χ(R) = max{|M1|, . . . , |Mt|}

where M1, . . . , Mt are all maximal ideals of R.

Proof. (1) The assertion (1) is clear from Proposition 6.
(2) If R is a finite ring, then R is a finite Artin ring. By Lemma 9, we know that R is

isomorphic to a finite direct product of Artin local rings (R1, m1), . . . , (Rt, mt). Moreover,
there is a one-to-one correspondence between {M1 · · · · · Mt} and {R1 × · · · × Ri−1 × mi ×
Ri+1 × · · · × Rt; i = 1, 2, . . . , t} by Lemma 9 (2). Hence Theorem 16 asserts that χ(R) =
max{|M1|, . . . , |Mt|}. Q.E.D.
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