THE CHROMATIC NUMBER OF THE SIMPLE GRAPH ASSOCIATED WITH A COMMUTATIVE RING

Junro Sato* and Kiyoshi Baba**

Received September 24, 2009

Abstract

Let R be a Noetherian ring and let $Z(R)$ be the set of all zero-divisors of R. We denote by $G(R)$ the simple graph whose vertices are elements of R and in which two distinct vertices x and y are joined by an edge if $x-y$ is in $Z(R)$. Let $\chi(R)$ be the chromatic number of the graph $G(R)$. If $\chi(R)$ is finite, then R is an integral domain or R is a finite Artin ring. In the former case we have $\chi(R)=1$ and in the latter case we get $\chi(R)=\max \left\{\left|M_{1}\right|, \ldots,\left|M_{t}\right|\right\}$ where M_{1}, \ldots, M_{t} are all maximal ideals of R and $\left|M_{i}\right|$ denotes the number of elements of the set M_{i} for $i=1, \ldots, t$.

Let R be a commutative ring with the identity element. An element x of R is called a zero-divisor of R if there exists a non-zero element y of R satisfyihg $x y=0$. We denote $Z(R)$ the set of all zero-divisors of R. We consider the simple graph $G(R)$ whose vertices are elements of R and in which distinct two vertices x and y are joined by an edge if $x-y$ is in $Z(R)$. We color the vertices of $G(R)$ so that no two joined vertices have the same color. If we color the vertices, we call it a coloring of $G(R)$. The chromatic number $\chi(R)$ of the graph $G(R)$ is the minimum number of colors of colorings of $G(R)$. We denote by $V(R)$ the vertices of a graph $G(R)$.

Our notation is standard and for unexplained terms, our general reference to commutative algebra is [1], [3] and our general reference to graph theory is [2].

Example 1. Let \mathbf{Z} be the ring of all integers and let R be the residue class ring $\mathbf{Z} / 6 \mathbf{Z}$. We denote by i the residue class of $i+6 \mathbf{Z}$ for $i=0,1, \ldots, 5$ because no fear of confusion. Therefore $R=\{0,1,2,3,4,5\}$. Then $V(R)=\{0,1,2,3,4,5\}$ and $Z(R)=\{0,2,3,4\}$. We color vertices 0 and 5 as red, 1 and 2 as blue, 3 and 4 as yellow. This is a coloring of $G(R)$ with three colors. The triangle of vertices $0,2,4$ needs three colors. Hence $\chi(R)=3$.

Let C be a non-empty subset of $V(R)$. We call C a clique of $G(R)$ if every pair of distinct two elements of C is joined by an edge. The clique number $C(R)$ of $G(R)$ is the maximum number of elements of cliques of $G(R)$.

Example 2. The clique number $C(R)$ of R in Example 1 is 3 .

Lemma 3. The following inequality holds:

$$
C(R) \leqq \chi(R) .
$$

2000 Mathematics Subject Classification. Primary 05C15, Secondary 13E10 .
Key words and phrases. Artin ring, zero-divisor, simple graph, chromatic number.

Proof. In the case that $\chi(R)$ is finite, let C be an arbitrary clique of $G(R)$. Then every vertix of C must be colored with different color because C is a clique of $G(R)$. Moreover, $G(R)$ needs at least $|C|$ colors because C is a subset of $G(R)$ where $|C|$ denotes the number of elements of C. Hence $C(R) \leqq \chi(R)$. In the case $\chi(R)$ is not finite, then $C(R) \leqq \chi(R)$ also holds.

The symbol \coprod denotes the disjoint union of sets.
Lemma 4. Let

$$
V(R)=V_{1} \coprod V_{2} \coprod \cdots \coprod V_{t}
$$

is a disjoint union of $V(R)$ such that no pair of distinct two elements of V_{i} is joined by an edge for $i=1,2, \ldots, t$. Then $\chi(R) \leqq t$.

Proof. We color all vertices of V_{i} by the same color and we color the vertices of V_{i} and the vertices of V_{j} by different colors for $i \neq j$. It is a coloring of $G(R)$. We need t kinds of colors. Hence $\chi(R) \leqq t$.
Q.E.D.

Remark 5. If $\chi(R)=n$ and c_{1}, \ldots, c_{n} are colors of minimum coloring of $G(R)$, then we set

$$
V_{i}=\left\{x \in V(R) ; x \text { is colored by a color } c_{i}\right\}
$$

Then

$$
V(R)=V_{1} \coprod V_{2} \coprod \cdots \coprod V_{n} .
$$

is a disjoint union of $V(R)$ such that no pair of distinct two elements of V_{i} is joined by an edge.

Proposition 6. If R is an integral domain, then $\chi(R)=1$
Proof. Let x and y be elements of $V(R)$. If $x-y$ is a zero-divisor, then $x=y$ because R is an integral domain and 0 is only one zero-divisor of R. Hence $G(R)$ has no edge and $G(R)$ is colored by a single color. This means that $\chi(R)=1$.
Q.E.D.

Primary decompositions of a Noetherian ring is reffered to [3].
Lemma 7. Let R be a Noetherian ring and

$$
(0)=Q_{1} \bigcap Q_{2} \bigcap \cdots \bigcap Q_{t}
$$

be an irredundant primary decomposition of (0). Set $P_{i}=\sqrt{Q_{i}}$ for $i=1,2, \ldots, t$. Then the following hold:
(1) $Z(R)=\bigcup_{i=1}^{t} P_{i}$
(2) $\operatorname{Ass}_{R}(R)=\left\{P_{1}, P_{2}, \ldots . P_{t}\right\}$.

Under the notations in Lemma $7, P_{i}$ is a clique of $G(R)$ for $i=1,2, \ldots, t$ because $x-y$ is in $P_{i} \subset Z(R)$ for all x and y in P_{i}. Therefore by Lemma 3, we have

$$
\max \left\{|P| ; P \in \operatorname{Ass}_{R}(R)\right\} \leqq C(R) \leqq \chi(R)
$$

Theorem 8. Let R be a Noethrian ring. If $\chi(R)$ is finite, then R is an integral domain or R is a finite ring.

Proof. Assume that R is not an integral domain. We will show that R is a finite ring. The ideal (0) is not a prime ideal of R because R is not an integral domain. Let P be an arbitrary element of $\operatorname{Ass}_{R}(R)$, then $P \neq(0)$. Since $\chi(R)$ is finite, we know that $|P|$ is finite by the previous argument. Furtheremore there exists a non-zero element a of P. Then $a R \subset P$, hence $|a R|$ is finite. Let $\operatorname{Ann}_{R}(a)=\{x \in R ; a x=0\}$ be the annihilator ideal of a. Then we know that there is an R-module isomorphism $a R \cong R / \operatorname{Ann}_{R}(a)$. Note that $\operatorname{Ann}_{R}(a) \subset Z(R)=\bigcup_{P \in \operatorname{Ass}_{R}(R)} P$. Hence $\left|\operatorname{Ann}_{R}(a)\right| \leqq \sum_{P \in \operatorname{Ass}_{R}(R)}|P|<\infty$. Since $|a R|$ is finite, we have $\left|R / \operatorname{Ann}_{R}(a)\right|<\infty$. This means that $|R|$ is finite.
Q.E.D.

Note that a commutative ring R is an Artin ring if and only if every family of ideals of R has a minimal element with respect to inclusion relation. Hence if R is a finite ring, then R is an Artin ring.

The following is a structure theorem of Artin rings. $A \times B$ denotes the direct product of sets A and B. If A and B are rings, then we cosider $A \times B$ as a ring.

Lemma 9 ([1] Theorem 8.7) Let R be an Artin ring and

$$
(0)=Q_{1} \bigcap Q_{2} \bigcap \cdots \bigcap Q_{t}
$$

be irredundant primary decomposition of (0). Set $m_{i}=\sqrt{Q_{i}}$ for $i=1,2, \ldots$.t. Then
(1) R is isomorphic to a finite direct product of Artin local rings:

$$
R \cong R_{1} \times R_{2} \times \cdots \times R_{t}
$$

where $R_{1}=R / Q_{1}, R / Q_{2}, \ldots, R_{t}=R / Q_{t}$.
(2) There exists a one-to-one correspondence between the set of maximal ideals of R and the set of maximal ideals of $R_{1} \times R_{2} \times \cdots \times R_{t}$.

Lemma 10. Let R_{1} and R_{2} be commutative rings with the identity element. Let V and W be finite subsets of $V\left(R_{1}\right)$ and $V\left(R_{2}\right)$ respectively such that no pair of distinct two elements of V is joined by an edge and so is W. Then there exist finite subsets U_{1}, \ldots, U_{r} of $V \times W$ satisfying the following:
(1) $V \times W=U_{1} \coprod U_{2} \coprod \cdots \coprod U_{r}$.
(2) No pair of distinct two elements of U_{i} is joined by an edge for $i=1,2, \ldots, r$.
(3) $\left|U_{1}\right|=\left|U_{2}\right|=\cdots=\left|U_{r}\right|$.
(4) $r=\max \{|V|,|W|\}$.

Proof. Set $n=|V|, m=|W|, V=\left\{a_{1}, \ldots, a_{n}\right\}$ and $W=\left\{b_{1}, \ldots, b_{m}\right\}$ We will prove the case $n \leqq m$. We set

$$
\begin{aligned}
U_{1}= & \left\{\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right\} \\
U_{2}= & \left\{\left(a_{1}, b_{2}\right),\left(a_{2}, b_{3}\right), \ldots,\left(a_{n}, b_{n+1}\right)\right\} \\
& \ldots \\
U_{m-n+1}= & \left\{\left(a_{1}, b_{m-n+1}\right),\left(a_{2}, b_{m-n+2}\right), \ldots,\left(a_{n}, b_{m}\right)\right\}, \\
U_{m-n+2}= & \left\{\left(a_{1}, b_{m-n+2}\right),\left(a_{2}, b_{m-n+3}\right), \ldots,\left(a_{n}, b_{1}\right)\right\}, \\
& \ldots \\
U_{m}= & \left\{\left(a_{1}, b_{m}\right),\left(a_{2}, b_{1}\right), \ldots,\left(a_{n}, b_{n-1}\right)\right\} .
\end{aligned}
$$

Then $V \times W$ is equal to the disjoint union $U_{1} \coprod U_{2} \coprod \cdots \coprod U_{m}$ and $m=\max \{|V|,|W|\}$. Furtheremore we have $\left|U_{1}\right|=\left|U_{2}\right|=\cdots=\left|U_{m}\right|=n=/ \operatorname{rmmin}\{|V|,|W|\}$. We shall show that no pair of distinct two elements of U_{i} is joined by an edge for $i=1,2, \ldots, m$. Let x and y be distinct two elements of U_{i} and set $x=\left(x_{1}, y_{1}\right), y=\left(x_{2}, y_{2}\right)$. Then by the definition of U_{i}, we see that $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. Hence $x_{1}-y_{1}$ is not a zero-divisor of R_{1} because no pair of distinct two elements of V is joined by an edge. Also $x_{2}-y_{2}$ is not a zero-divisor of R_{2}. This means that $x-y$ is not a zero-divisor of $R_{1} \times R_{2}$. Therefore x and y are not joined by an edge.

We can also prove the case $n>m$.
Q.E.D.

Lemma 11. Let R_{1} and R_{2} be finite commutative rings with the identity element. Assume that the following hold:
(1) $V\left(R_{1}\right)=V_{1} \amalg V_{2} \coprod \cdots \amalg V_{r_{1}}$.
(2) $V\left(R_{2}\right)=W_{1} \amalg W_{2} \amalg \cdots \amalg W_{r_{2}}$.
(3) $V_{1}, V_{2}, \ldots, V_{r_{1}}$ are finite subsets of $V\left(R_{1}\right)$.
(4) $W_{1}, W_{2}, \ldots, W_{r_{2}}$ are finite subsets of $V\left(R_{2}\right)$.
(5) No pair of distinct two elements of $V_{i_{1}}$ is joined by an edge for $i_{1}=1,2, \ldots, r_{1}$.
(6) No pair of distinct two elements of $W_{i_{2}}$ is joined by an edge for $i_{2}=1,2, \ldots, r_{2}$.

Then there exist finite subsets $T_{1}, T_{2}, \ldots, T_{s}$ of $R_{1} \times R_{2}$ satisfying the following conditions:
(a) $V\left(R_{1} \times R_{2}\right)=T_{1} \amalg T_{2} \amalg \cdots \coprod T_{s}$.
(b) No pair of distinct two elements of T_{k} is joined by an edge for $k=1,2, \ldots, s$.
(c)

$$
s=\sum_{i_{1}=1}^{r_{1}} \sum_{i_{2}=1}^{r_{2}} \max \left\{\left|V_{i_{1}}\right|,\left|W_{i_{2}}\right|\right\}
$$

Proof. We apply Lemma10 to $V_{i_{1}}$ and $W_{i_{2}}$. Then there exist finite subsets $U_{1}^{\left(i_{1}, i_{2}\right)}, \ldots, U_{r\left(i_{1}, i_{2}\right)}^{\left(i_{1}, i_{2}\right)}$ of $V_{i_{1}} \times W_{i_{2}}$ satisfying the following properties:
(1) $V_{i_{1}} \times W_{i_{2}}=U_{1}^{\left(i_{1}, i_{2}\right)} \amalg \cdots \amalg U_{r\left(i_{1}, i_{2}\right)}^{\left(i_{1}, i_{2}\right)}$.
(2) No pair of distinct two elements of $U_{i}^{\left(i_{1}, i_{2}\right)}$ is joined by an edge for $i=1,2, \ldots, r\left(i_{1}, i_{2}\right)$.
(3) $\left|U_{1}^{\left(i_{1}, i_{2}\right)}\right|=\cdots=\left|U_{r\left(i_{1}, i_{2}\right)}^{\left(i_{1}, i_{2}\right)}\right|$.
(4) $r\left(i_{1}, i_{2}\right)=\max \left\{\left|V_{i_{1}}\right|,\left|W_{i_{2}}\right|\right\}$.

Hence we have

$$
\begin{aligned}
V\left(R_{1} \times R_{2}\right) & =\coprod_{i_{1}=1}^{r_{1}} \coprod_{i_{2}=1}^{r_{2}} V_{i_{1}} \times W_{i_{2}} \\
& =\coprod_{i_{1}=1}^{r_{1}} \coprod_{i_{2}=1}^{r_{2}}\left(U_{1}^{\left(i_{1}, i_{2}\right)} \coprod \cdots \coprod U_{r\left(i_{1}, i_{2}\right)}^{\left(i_{1}, i_{2}\right)}\right) .
\end{aligned}
$$

Then we can write

$$
V\left(R_{1} \times R_{2}\right)=T_{1} \coprod T_{2} \coprod \cdots \coprod T_{s}
$$

with the property (b). Moreover,

$$
s=\sum_{i_{1}=1}^{r_{1}} \sum_{i_{2}=1}^{r_{2}} r\left(i_{1}, i_{2}\right)=\sum_{i_{1}=1}^{r_{1}} \sum_{i_{2}=1}^{r_{2}} \max \left\{\left|V_{i_{1}}\right|,\left|W_{i_{2}}\right|\right\}
$$

Q.E.D.

Lemma 12. Let R_{1} and R_{2} be finite commutative rings with the identity element. Assume that the following hold:
(1) $V\left(R_{1}\right)=V_{1} \amalg V_{2} \amalg \cdots \amalg V_{r_{1}}$.
(2) $V\left(R_{2}\right)=W_{1} \amalg W_{2} \amalg \cdots \amalg W_{r_{2}}$.
(3) $V_{1}, V_{2}, \ldots, V_{r_{1}}$ are finite subsets of $V\left(R_{1}\right)$.
(4) $W_{1}, W_{2}, \ldots, W_{r_{2}}$ are finite subsets of $V\left(R_{2}\right)$.
(5) $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{r_{1}}\right|$.
(6) $\left|W_{1}\right|=\left|W_{2}\right|=\cdots=\left|W_{r_{2}}\right|$.
(7) No pair of distinct two elements of $V_{i_{1}}$ is joined by an edge for $i_{1}=1,2, \ldots, r_{1}$.
(8) No pair of distinct two elements of $W_{i_{2}}$ is joined by an edge for $i_{2}=1,2, \ldots, r_{2}$.

Then there exist finite subsets $T_{1}, T_{2}, \ldots, T_{s}$ of $R_{1} \times R_{2}$ satisfying the following conditions:
(a) $V\left(R_{1} \times R_{2}\right)=T_{1} \coprod T_{2} \amalg \cdots \coprod T_{s}$.
(b) $\left|T_{1}\right|=\left|T_{2}\right|=\cdots=\left|T_{s}\right|$.
(c) No pair of distinct two elements of T_{k} is joined by an edge for $k=1,2, \ldots, s$.
(d) $s=\max \left\{r_{1}\left|R_{2}\right|,\left|R_{1}\right| r_{2}\right\}$.

Proof. Set $t_{1}=\left|V_{i_{1}}\right|$ for $i_{1}=1,2, \ldots, r_{1}$ and $t_{2}=\left|W_{i_{2}}\right|$ for $i_{2}=1,2, \ldots, r_{2}$. Under the notations in the proof of Lemma 11, note that

$$
\left|U_{1}^{\left(i_{1}, i_{2}\right)}\right|=\cdots=\left|U_{r\left(i_{1}, i_{2}\right)}^{\left(i_{1}, i_{2}\right)}\right|=\min \left\{\left|V_{i_{1}}\right|,\left|W_{i_{2}}\right|\right\}=\min \left\{t_{1}, t_{2}\right\}
$$

Hence we know that $\left|T_{1}\right|=\left|T_{2}\right|=\cdots=\left|T_{s}\right|$. On the other hand, we see that $\left|R_{1}\right|=r_{1} t_{1}$ and $\left|R_{2}\right|=r_{2} t_{2}$. This asserts that

$$
\begin{aligned}
s & =\sum_{i_{1}=1}^{r_{1}} \sum_{i_{2}=1}^{r_{2}} \max \left\{\left|V_{i_{1}}\right|,\left|W_{i_{2}}\right|\right\}=\sum_{i_{1}=1}^{r_{1}} \sum_{i_{2}=1}^{r_{2}} \max \left\{t_{1}, t_{2}\right\} \\
& =r_{1} r_{2} \max \left\{t_{1}, t_{2}\right\}=\max \left\{r_{1} r_{2} t_{1}, r_{1} r_{2} t_{2}\right\} \\
& =\max \left\{\left|R_{1}\right| r_{2}, r_{1}\left|R_{2}\right|\right\}
\end{aligned}
$$

Q.E.D.

Example 13. Set $R_{1}=R_{2}=\mathbf{Z} / 4 \mathbf{Z}$. We denote by i the residue class of $i+4 \mathbf{Z}$ for $i=0,1,2,3$. Let m_{1} and m_{2} be the maximal ideals of R_{1} and R_{2} respectively. Then $m_{1}=m_{2}=\{0,2\}$. Set $V_{1}=W_{1}=\{0,1\}$ and $V_{2}=W_{2}=\{2,3\}$ Then

$$
V\left(R_{1}\right)=V_{1} \coprod V_{2}, V\left(R_{2}\right)=W_{1} \coprod W_{2}
$$

Set $R=R_{1} \times R_{2}$ and set

$$
\begin{aligned}
& T_{1}=\{(0,0),(1,1)\}, T_{2}=\{(0,1),(1,0)\} \\
& T_{3}=\{(0,2),(1,3)\}, T_{4}=\{(0,3),(1,2)\} \\
& T_{5}=\{(2,0),(3,1)\}, T_{6}=\{(2,1),(3,0)\} \\
& T_{7}=\{(2,2),(3,3)\}, T_{8}=\{(2,3),(3,2)\}
\end{aligned}
$$

Then no pair of distinct two elements of T_{k} is joined by an edge for $k=1,2, \ldots, 8$ and $V(R)=T_{1} \coprod \cdots \coprod T_{8}$.

Proposition 14. Let R_{1}, \ldots, R_{t} be finite commutative rings with the identity element. Assume that the following hold:
(1) $V\left(R_{i}\right)=V_{1}^{(i)} \amalg \cdots \coprod V_{r_{i}}^{(i)}$ for $i=1,2, \ldots, t$.
(2) $V_{1}^{(i)}, \ldots, V_{r_{i}}^{(i)}$ are finite subsets of $V\left(R_{i}\right)$ for $i=1,2, \ldots, t$.
(3) $\left|V_{1}^{(i)}\right|=\cdots=\left|V_{r_{i}}^{(i)}\right|$ for $i=1,2, \ldots, t$.
(4) No pair of distinct two elements of $V_{k}^{(i)}$ is joined by an edge for $k=1,2, \ldots, r_{i}$ and for $i=1,2, \ldots, t$.

Then there exist finite subsets U_{1}, \ldots, U_{s} of $R_{1} \times \cdots \times R_{t}$ satisfying the following conditions:
(a) $V\left(R_{1} \times \cdots \times R_{t}\right)=U_{1} \amalg \cdots \coprod U_{s}$.
(b) $\left|U_{1}\right|=\cdots=\left|U_{s}\right|$.
(c) No pair of distinct two elements of U_{j} is joined by an edge for $j=1,2, \ldots, s$.
(d) $s=\max \left\{\left|R_{1}\right| \cdots \cdot\left|R_{i-1}\right| r_{i}\left|R_{i+1}\right| \cdots \cdot\left|R_{t}\right| ; i=1,2, \ldots, t\right\}$.

Proof. We shall show Proposition 14 by induction on t. The case $t=1$ is obvious. Suppose that $t \geqq 1$ and the assertion holds for t. Then by the induction hypothesis, we get $V\left(R_{1} \times \cdots \times R_{t}\right)=U_{1} \amalg \cdots \coprod U_{s}$ with the properties (a)-(d). Furthermore

$$
V\left(R_{t+1}\right)=V_{1}^{(t+1)} \coprod \cdots \coprod V_{r_{t+1}}^{(t+1)}
$$

with $\left|V_{1}^{(t+1)}\right|=\cdots=\left|V_{r_{t+1}}^{(t+1)}\right|$. By Lemma 12, there exist finite subsets $T_{1}, \ldots, T_{s^{\prime}}$ of $\left(R_{1} \times \cdots \times R_{t}\right) \times R_{t+1}$ satisfying the following conditions:
(1) $V\left(\left(R_{1} \times \cdots \times R_{t}\right) \times R_{t+1}\right)=T_{1} \amalg \cdots \coprod T_{s^{\prime}}$.
(2) $\left|T_{1}\right|=\cdots=\left|T_{s^{\prime}}\right|$.
(3) No pair of distinct two elements of T_{k} is joined by an edge for $k=1,2, \ldots, s^{\prime}$.
(4) $s^{\prime}=\max \left\{s\left|R_{t+1}\right|,\left|R_{1} \times \cdots \times R_{t}\right| r_{t+1}\right\}$.

Hence $s^{\prime}=\max \left\{\left|R_{1}\right| \cdots \cdots\left|R_{i-1}\right| r_{i}\left|R_{i+1}\right| \cdots \cdots\left|R_{t+1}\right| ; i=1,2, \ldots, t\right\}$. We prove the assertion.
Q.E.D.

Proposition 15. Let (R, m) be finite Artin local ring. Then the following assertions hold:
(1) There exist finite subsets $T_{1}, T_{2}, \ldots, T_{r}$ of R satisfying the following conditions:
(a) $V(R)=T_{1} \amalg T_{2} \amalg \cdots \amalg T_{r}$ 。
(b) $\left|T_{1}\right| \cdots=\left|T_{r}\right|=|R / m|$.
(c) No pair of distinct two elements of T_{j} is joined by an edge for $j=1,2, \ldots, r$.
(d) $r=|m|$.
(2) $\chi(R)=|m|$.

Proof. (1) Let $a_{1}+m, \ldots, a_{t}+m$ be all residue classes of R / m and set $m=\left\{x_{1}, \ldots, x_{r}\right\}$. Furthermore set $y_{i j}=a_{i}+x_{j}$ for $i=1,2, \ldots, t$ and $j=1,2, \ldots, r$. Then we have $R=\left\{y_{i j} ; i=1,2, \ldots, t ; j=1,2, \ldots, r\right\}$. Set $T_{j}=\left\{y_{i j} ; i=1,2, \ldots, t\right\}$ for $j=1,2, \ldots, r$. Then we get $V(R)=T_{1} \amalg T_{2} \amalg \cdots \coprod T_{r}$ and $\left|T_{1}\right|=\cdots=\left|T_{r}\right|=t=|R / m|$. Let $y_{i j}$ and $y_{k j}$ be distinct two elements of $T_{j}(j=1,2, \ldots, r)$. Then

$$
y_{i j}-y_{k j}=\left(a_{i}+x_{j}\right)-\left(a_{k}+x_{j}\right)=a_{i}-a_{k} \notin m=Z(R) .
$$

Hence no pair of distinct two elements of T_{j} is joined by an edge for $j=1,2, \ldots, r$.
(2) By the assertion (1) and Lemma 4 we see that $\chi(R) \leqq r$. Note that $m=Z(R)$ because $\operatorname{Ass}_{R}(R)=\{m\}$. Therefore m is a clique of $G(R)$. By Lemma 3 we have $r \leqq \chi(R)$. This means that $\chi(R)=r=|m|$.
Q.E.D.

Theorem 16. Let $\left(R_{1}, m_{1}\right), \ldots,\left(R_{t}, m_{t}\right)$ be finite Artin local rings. Then the following assertions hold:
(1) There exist finite subsets U_{1}, \ldots, U_{s} of $R_{1} \times \cdots \times R_{t}$ satisfying the following conditions:
(a) $V\left(R_{1} \times \cdots \times R_{t}\right)=U_{1} \coprod U_{2} \coprod \cdots \coprod U_{s}$.
(b) $\left|U_{1}\right|=\cdots=\left|U_{s}\right|$.
(c) No pair of distinct two elements of U_{j} is joined by an edge for $j=1,2, \ldots, s$.
(d) $s=\max \left\{\left|R_{1}\right| \cdots \cdot\left|R_{i-1}\right|\left|m_{i}\right|\left|R_{i+1}\right| \cdots \cdots\left|R_{t}\right| ; i=1,2, \ldots, t\right\}$.
(2) $\chi\left(R_{1} \times \cdots \times R_{t}\right)=\max \left\{\left|R_{1}\right| \cdots \cdot\left|R_{i-1}\right|\left|m_{i}\right|\left|R_{i+1}\right| \cdots \cdot\left|R_{t}\right| ; i=1,2, \ldots, t\right\}$.

Proof. (1) By Propositions 14 and 15, we get the assertion (1) noting that $r_{i}=\left|m_{i}\right|$ under the notation r_{i} in Proposition 15.
(2) Lemma 4 asserts that

$$
\chi\left(R_{1} \times \cdots \times R_{t}\right) \leqq \max \left\{\left|R_{1}\right| \cdots \cdots\left|R_{i-1}\right|\left|m_{i}\right|\left|R_{i+1}\right| \cdots \cdots\left|R_{t}\right| ; i=1,2, \ldots, t\right\}
$$

On the other hand $R_{1} \times \cdots \times R_{i-1} \times m_{i} \times R_{i+1} \times \cdots \times R_{t}$ is a clique of $G\left(R_{1} \times \cdots \times R_{t}\right)$. Hence by Lemma 3 we have

$$
\max \left\{\left|R_{1}\right| \cdots \cdot\left|R_{i-1}\right|\left|m_{i}\right|\left|R_{i+1}\right| \cdots \cdot\left|R_{t}\right| ; i=1,2, \ldots, t\right\} \leqq \chi\left(R_{1} \times \cdots \times R_{t}\right)
$$

Hence we get the assertion (2).
Q.E.D.

Let R be a Noetherian ring. If $\chi(R)$ is finite, then R is an integral domain or R is a finite ring by Theorem 8 .

Theorem 17. Let R be a Noetherian ring. Assume that $\chi(R)$ is finite. Then the following assertions hold:
(1) If R is an integral domain, then $\chi(R)=1$.
(2) If R is a finite ring, then

$$
\chi(R)=\max \left\{\left|M_{1}\right|, \ldots,\left|M_{t}\right|\right\}
$$

where M_{1}, \ldots, M_{t} are all maximal ideals of R.
Proof. (1) The assertion (1) is clear from Proposition 6.
(2) If R is a finite ring, then R is a finite Artin ring. By Lemma 9 , we know that R is isomorphic to a finite direct product of Artin local rings $\left(R_{1}, m_{1}\right), \ldots,\left(R_{t}, m_{t}\right)$. Moreover, there is a one-to-one correspondence between $\left\{M_{1} \cdots \cdots M_{t}\right\}$ and $\left\{R_{1} \times \cdots \times R_{i-1} \times m_{i} \times\right.$ $\left.R_{i+1} \times \cdots \times R_{t} ; i=1,2, \ldots, t\right\}$ by Lemma 9 (2). Hence Theorem 16 asserts that $\chi(R)=$ $\max \left\{\left|M_{1}\right|, \ldots,\left|M_{t}\right|\right\}$.
Q.E.D.

References

[1] M. F. Atiyah and I, G, MacDonald: Introduction to commutative algebra, Addison-Wesley Publishing Com. Inc., (1969).
[2] J. A. Bondy and V. S. R. Murthy: Graph theory with applications, Macmillan Press Ltd., (1976).
[3] H. Matsumura: Commutative algebra (second edition), Benjamin/Cummings Publishing Company, (1980).
*Department of Mathematics, Faculty of Education Kochi University 2-5-1 Akebono-cho, Kochi 780-8520, JAPAN
E-mail: junro@cc.kochi-u.ac.jp
** Department of Mathematics, Faculty of Education and Welfare Science Oita University, Oita 870-1192, JAPAN
E-mail: baba@cc.oita-u.ac.jp

