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Abstract. In this paper we first give a procedure by which we generate a filter by
a subset in a transitive BE-algebra, and give some characterizations of Noetherian
and Artinian BE-algebras. Next we give the construction of quotient algebra X/F
of a transitive BE-algebra X via a filter F of X. Finally we discuss properties of
Noetherian (resp. Artinian) BE-algebras on homomorphisms and prove that let X
and Y be transitive BE-algebras, a mapping f : X → Y be an epimorphism. If X is
Noetherian (resp. Artinian), then so does Y . Conversely suppose that Y and Ker(f)
(as a subalgebra of X) are Noetherian (resp. Artinian), then so does X. Let X be a
transitive BE-algebra and F a filter of X. If X is Noetherian (resp. Artinian), then
so does the quotient algebra X/F .

1 Introduction

The study of BCK/BCI-algebras was initiated by K. Iséki in 1966 as a generalization of
propositional logic (see[4, 5, 6]). There exist several generalizations of BCK/BCI-algebras,
as such BCH-algebras[3], dual BCK-algebras[11], d-algebras[10], etc. Especially, H. S.
Kim and Y. H. Kim[7] introduced the notion of BE-algebras which was deeply studied by
S. S. Ahn and Y. H. Kim[1], S. S. Ahn and K. S. So[2],H. S. Kim and K. J. Lee[8], A.
Walendziak[12], B. L. Meng[9]. In this paper we deeply study filter theory in BE-algebras.
We first give a procedure by which we generate a filter by a subset in a transitive BE-
algebra, and give some characterizations of Northerian and Artinian BE-algebras. Next
we give the construction of quotient algebra X/F of a transitive BE-algebra X via a filter
F of X . Finally we discuss properties of Noetherian (resp. Artinian) BE-algebras on
homomorphisms and prove that let X and Y be transitive BE-algebras, a mapping f :
X → Y be an epimorphism. If X is Noetherian (resp. Artinian), then so does Y . As
consequences, we have that let F be a filter of a transitive BE-algebra X . If X is Noetherian
(resp. Artinian), then so does the quotient algebra X/F . Conversely suppose that Y and
Ker(f) (as a subalgebra of X) are Noetherian (resp. Artinian), then so does X . In the
sequel, let N denote the set of all positive integers. For any a1, · · · , an, x ∈ X , we denote
n∏

i=1

ai ∗ x = an ∗ (· · · ∗ (a1 ∗ x) · · · ).

2 Preliminaries

Definition 2.1[7]. An algebra (X ; ∗, 1) of type (2,0) is said to be a BE-algebra if it
satisfies the following:

(BE1) x ∗ x = 1,
(BE2) x ∗ 1 = 1,
(BE3) 1 ∗ x = x,
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) .
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Lemma 2.2. If (X ; ∗, 1) is a BE-algebra, then for all x, y ∈ X
(1) x ∗ (y ∗ x) = 1[1],
(2) x ∗ [(x ∗ y) ∗ y] = 1[9].

In a BE-algebra, one can introduce a binary relation ≤ by x ≤ y if and only if x∗y = 1.

Definition 2.3[1]. A BE-algebra X is said to be transitive if for all x, y, z ∈ X ,

(y ∗ z) ∗ [(x ∗ y) ∗ (x ∗ z)] = 1, or equivalently, y ∗ z ≤ (x ∗ y) ∗ (x ∗ z).

Proposition 2.4. If a BE-algebra X is transitive then for all x, y, z ∈ X ,
(1) y ≤ z implies x ∗ y ≤ x ∗ z,
(2) y ≤ z implies z ∗ x ≤ y ∗ x,
(3) 1 ≤ x implies x = 1.

Proof. If y ≤ z , then (x ∗ y) ∗ (x ∗ z) = (y ∗ z) ∗ [(x ∗ y) ∗ (x ∗ z)] = 1, so (1) is true.
Let y ≤ z. Since (z ∗ x) ∗ (y ∗ x) = (z ∗ x) ∗ [(y ∗ z) ∗ (y ∗ x)] = 1, (2) holds.
(3) follows from (BE3). The proof is completed.

Definition 2.5[8]. Let X be a BE-algebra and F a nonempty subset of X . F is said
to be a filter of X if it satisfies: (F1) 1 ∈ I, (F2) x ∈ F and x ∗ y ∈ F imply y ∈ F .

Obviously any filter F of a BE-algebra X is a subalgebra, i.e., x, y ∈ F ⇒ x ∗ y ∈ F.

Lemma 2.6[9]. Let X be a transitive BE-algebra and A a nonempty subset of X .
Then A is a filter of X if and only if A satisfies: for any ai ∈ A (i = 1, · · · , n) and x ∈ X ,
n∏

i=1

ai ∗ x = 1 implies x ∈ A.

3 Filter generated by a set

Proposition 3.1. If X is a BE-algebra and {Fλ | λ ∈ Λ} is an indexed set of filters of
X where Λ �= Ø, then F = ∩{Fλ | λ ∈ Λ} is a filter of X .

Proof. Trivial.

Definition 3.2. Let X be a BE-algebra and A a nonempty subset of X . If B is the
least filter containing A in X , then B is said to be the filter generated by A and is denoted
by (A]. If A is a finite set of X then (A] is said to be finitely generated.

Since X is always a filter of X containing any filter, it follows from Proposition 3.1 that
Definition 3.2 is well defined. ({a1, · · · , an}] is simply denoted by (a1, · · · , an]. For
convenience, let (Ø]= {1}.

Proposition 3.3. Let X be a BE-algebra. Suppose A and B are two subsets of X .
Then the followong hold:

(1) (1] = {1}, (X ] = X,
(2) A ⊆ B implies (A] ⊆ (B],
(3) if A is a filter of X , then (A] = A.

Proof. Trivial.
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The following is a fundamental result of this paper.

Proposition 3.4. Let X be a transitive BE-algebra and A a nonempty subset of X .
Then

(A] = {x ∈ X |
n∏

i=1

ai ∗ x = 1 ∃ a1, · · · , an ∈ A}.

Proof. Denote F = {x ∈ X |
n∏

i=1

ai ∗ x = 1 ∃ a1, · · · , an ∈ A}.
Since a ∗ a = 1 for all a ∈ A, A ⊆ F.
Select a ∈ A. Since a ∗ 1 = 1 by (BE2), so 1 ∈ F.

If y∗x ∈ F and y ∈ F , then there are a1, · · · , an, b1, · · · , bm ∈ A such that
n∏

i=1

ai∗(y∗x) =

1,
m∏

j=1

bi ∗ y = 1. Hence y ≤
n∏

i=1

ai ∗ x. By using Proposition 2.4(1) we obtain

1 =
m∏

j=1

bj ∗ y ≤
m∏

j=1

bj ∗ (
n∏

i=1

ai ∗ x),

thus
m∏

j=1

bj ∗ (
n∏

i=1

ai ∗ x) = 1.

This shows that x ∈ F, and so F is a filter of X .
Suppose B is any filter containing A and x ∈ F , then there are a1, · · · , an ∈ A such that

n∏
i=1

ai ∗ x = 1. By A ⊆ B we know a1, · · · , an ∈ B. It follows from Lemma 2.6 that x ∈ B,

i.e., F ⊆ B. Hence F = (A]. This completes the proof.

Definition 3.5[7]. A BE-algebra X is said to be self distributive if x ∗ (y ∗ z) =
(x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X .

Note that every self distributive BE-algebra is transitive, but the converse is not true
in general (see[1]Proposition 3.10).

Proposition 3.6. Suppose X is a self distributive BE-algebras and F is a filter of X .
Then

(1) the set Fa = {x | a ∗ x ∈ F} is a filter,
(2) ({a} ∪ F ] = Fa.

Proof. It is easy to see that Fa satisfies (F1). To verify (F2) for Fa, assume x∗y ∈ Fa and
x ∈ Fa. Then a∗ (x∗y) ∈ F and a∗x ∈ F . By self distributivity we have (a∗x)∗ (a∗y) ∈ F
and a ∗ x ∈ F . Thus a ∗ y ∈ F , and so y ∈ Fa. Therefore Fa is a filter of X . (1) holds.

Suppose B is any filter containing {a} ∪ F. Assume x ∈ Fa, then a ∗ x ∈ F ⊆ B, so
x ∈ B. Hence ({a} ∪ F ] = Fa, (2) holds. The proof is complete.

4 Noetherian and Artinian BE-algebras

Definition 4.1. A BE-algebra X is said to be Noetherian if every filter of X is finitely
generated. We say that X satisfy the ascending (resp. descending) chain condition if for
every ascending sequence F1 ⊆ F2 ⊆ · · · (resp. every descending sequence F1 ⊇ F2 ⊇ · · ·
) of filters of X there is n ∈ N such that Fn = Fk for k ≥ n. X is said to satisfy the
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maximal (resp. minimal) condition if every nonempty set of filters of X has a maximal
(resp. minimal) element.

Proposition 4.2. Let X be a BE-algebra. Then the following conditions are equivalent:
(1) X is Noetherian,
(2) X satisfies the ascending chain condition,
(3) X satisfies the maximal condition.

Proof. (1)⇒(2) Let X be Noetherian. Take any ascending sequence F1 ⊆ F2 ⊆ · · · of
filters of X . Denote

F =
∞⋃

i=1

Fi .

It is easy to verify that F is a filter of X and hence F is finiely generated. So there are
ai ∈ F (i = 1, · · · , m) such that F = (a1, · · · , am]. This means ai ∈ Fni for some ni ∈ N.
Let k = max{n1, · · · , nm} . Thus {a1, · · · , am} ⊆ Fk, and so Fk = Fk+1 = Fk+2 = · · · ,
i.e., (2) is true.

(2)⇒(3) Let (2) be true. If (3) is not true, then there is a nonempty set F of filters of
X such that F has no maximal element. Select F1 ∈ F. Since F1 is not maximal element of
F, there is F2 ∈ F such that F1 ⊂ F2. Repeating the above process we obtain an infinitely
ascending sequence F1 ⊂ F2 ⊂ · · · , a contradiction. Therefore (3) is true.

(3)⇒(1) Suppose (3) is true. Let F be any filter of X . We denote by F the set of all
finitely genereted filters of X which are contained in F . Obviously {1} ∈ F , hence F �=
Ø. By (3) F has a maximal element, for example, F0. Then F0 is finitely genereted, let
F0 = (a1, · · · , an]. If F0 �= F , then there is a ∈ F such that F0 ⊂ (a1, · · · , an, a] ⊆ F , which
is contrary to the maximality of F0. Therefore F = F0, i.e., F is finitely generated, (1)
holds. This completes the proof.

Definition 4.3. Let X be a BE-algebra. X is said to be Artinian if X satisfies the
descending chain condition.

Proposition 4.4. Let X is a BE-algebra. Then X is Artinian if and only if X satisfies
the minimal condition.

Proof. (⇒) It can be proved by a similar argument used in Proposition 4.2 (2)⇒ (3).
(⇐) It is easy and is omitted.

5 Quotient BE-algebra induced by a filter

Throughout this section X always means a transitive BE-algebra without otherwise
mentioned

Let F be a filter of X . A binary relation ∼ on X can be defined as follows, for all
x, y ∈ X , x ∼ y if and only if x ∗ y ∈ F and y ∗ x ∈ F .

Lemma 5.1. ∼ is an equivalent relation on X .

Proof Since x ∗ x = 1 ∈ F , x ∼ x.

By the definition of ∼, x ∼ y implies y ∼ x.
If x ∼ y and y ∼ z then x ∗ y ∈ F , y ∗ x ∈ F , y ∗ z ∈ F and z ∗ y ∈ F . By transitivity

(x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] = 1 and (y ∗ x) ∗ [(z ∗ y) ∗ (z ∗ x)] = 1, it follows from Lemma 2.6
that x ∗ z ∈ F and z ∗ x ∈ F , i.e., x ∼ z. Thus ∼ is an equivalent relation on X .
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Lemma 5.2. ∼ is a congruence relation on X .

Proof If x ∼ y and u ∼ v, then x ∗ y ∈ F , y ∗ x ∈ F , u ∗ v ∈ F and v ∗ u ∈ F . By
transitivity , we have (u∗v)∗ [(x∗u)∗ (x∗v)] = 1 and (v∗u)∗ [(x∗v)∗ (x∗u)] = 1, it follows
from Lemma 2.6 that (x ∗ u) ∗ (x ∗ v) ∈ F and (x ∗ v) ∗ (x ∗ u) ∈ F . Thus x ∗ u ∼ x ∗ v. By
the same argument one can prove that x ∗ v ∼ y ∗ v. By Lemma 5.1 we obtain x ∗u ∼ y ∗ v.
Therefore ∼ is a congruence relation on X .

X is decomposed by the congruence relation ∼. The class containing x is denoted
by [x]F . Denote X/F = {[x]F | x ∈ X}. We define a binary operation ∗ on X/F by
[x]F ∗ [y]F := [x ∗ y]F . This definition is well defined by Lemma 5.2.

Lemma 5.3. [1]F = F.

Proof. If x ∈ [1]F , then x = 1 ∗ x ∈ F , so [1]F ⊆ F. Conversely if x ∈ F , then x ∗ 1 ∈ F
and 1 ∗ x ∈ F since F is a subalgebra and 1 ∈ F. Therefore F ⊆ [1]F . This prove that
[1]F = F.

Proposition 5.4. (X/F ; ∗, [1]F ) is a BE-algebra.

Proof. It is immediate.

Definition 5.5. Let (X ; ∗X , 1X) and (Y ; ∗Y , 1Y ) be two BE-algebras. A mapping f :
X → Y is called a homomorphism from X to Y if for all x, y ∈ X , f(x∗X y) = f(x)∗Y f(y).
The set Ker(f) := {x ∈ X | f(x) = 1Y } is called the kernel of f . If, in addition, the
mapping f is onto then f is called an epimorphism. If f is both an epimorphism and one-
to-one, then f is said to be an isomorphism, and we say that X is isomorphic to Y , written
X ∼= Y .

Definition 5.6. Let X be a transitive BE-algebras and F a filter of X . The natural
map νF : X → X/F is defined by νF (x) = [x]F for all x ∈ X . When there is no ambiquity
we write simply ν instead of νF .

Proposition 5.7. Let X be a transitive BE-algebras and F a filter of X . Then the
natural mapping ν : X → X/F is an epimorphism.

Proof. Trivial.

Proposition 5.8. Let X and Y be transitive BE-algebras, a mapping f : X → Y be
an epimorphism. If X is Noetherian, then so does Y .

Proof. For any filter F of Y , f−1(F ) is a filter of X . Therefore f−1(F ) is finitely
generated from Proposition 3.4, for instance, f−1(F ) = (a1, · · · , an] where a1, · · · , an ∈
f−1(F ), hence F = (f(a1), · · · , f(an)]. This shows that Y is Noetherian, ending the proof.

Corollary 5.9. Let X be a transitive BE-algebra and F a filter of X . If X is Noethe-
rian, then so does X/F .

Proof. Since the natural map ν : X → X/F be an epimorphism, it follows from
Proposition 5.8 that X/F is Noetherian. This completes the proof.

Proposition 5.10. Let X and Y be BE-algebras, a mapping f : X → Y an epimor-
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phism. If X is Artinian, then so does Y .

Proof. If we are given any descending sequence F1 ⊇ F2 ⊇ · · · of filters of Y , then
f−1(F1) ⊇ f−1(F2) ⊇ · · · is a descending sequence of filters of X . Since X is Artinian,
there is n ∈ N such that f−1(Fk) = f−1(Fn) for all k ≥ n. Hence Fk = Fn for all k ≥ n.
This shows that Y is Artinian, completing the proof.

Corollary 5.11. Let X be a transitive BE-algebra and F a filter of X . If X is Artinian,
then so does X/F .

Proof. This is immediate from Proposition 5.10.

Proposition 5.12. Let X and Y be transitive BE-algebras. Let f be an epimorphism
from X to Y . Suppose that Y and Ker(f) (as a subalgebra of X) are Noetherian, then so
does X .

Proof. Since X/Ker(f) is isomorphic to Y , it is sufficient to prove that if X/Ker(f)
and Ker(f) are Noetherian, then so does X . Let ν : X → X/Ker(f) be the natural
mapping. We are given any ascending sequence F1 ⊆ F2 ⊆ · · · of filters of X , then
F1 ∩ Ker(f) ⊆ F2 ∩ Ker(f) ⊆ · · · and ν(F1) ⊆ ν(F2) ⊆ · · · are ascending sequences of
filters of Ker(f) and X/Ker(f), respectively. Therefore there exist k1 ∈ N and k2 ∈ N such
that Fi ∩ Ker(f) = Fk1 ∩ Ker(f) for all i ≥ k1 and ν(Fi) = ν(Fk2 ) for all i ≥ k2. Denote
k = max{k1, k2}. We will prove that Fi = Fk for all i ≥ k. Given any i ≥ k. To prove
that Fk = Fi, take any x ∈ Fi. Then ν(x) ∈ ν(Fi) = ν(Fk), thus there is x0 ∈ Fk such that
ν(x) = ν(x0). Hence ν(x0 ∗ x) = ν(x0) ∗ ν(x) = Ker(f), and so x0 ∗ x ∈ Ker(f). Because
x0 ∗ x ∈ Fi, it follows that x0 ∗ x ∈ Fi ∩ Ker(f) = Fk ∩ Ker(f). Noticing x0 ∈ Fk and Fk

to be a filter of X , we have x ∈ Fk, i.e., Fk = Fi. This completes the proof.

Proposition 5.13. Let X and Y be transitive BE-algebras. Let f be an epimorphism
from X to Y . Suppose that Y and Ker(f) (as a subalgebra of X) are Artinian, then so
does X .

Proof. Since X/Ker(f) is isomorphic to Y , it is sufficient to prove that if X/Ker(f)
and Ker(f) are Artinian, then so does X . Let ν : X → X/Ker(f) be the natural mapping.
We are given any descending sequence F1 ⊇ F2 ⊇ · · · of filters of X , then F1 ∩ Ker(f) ⊇
F2∩Ker(f) ⊇ · · · and ν(F1) ⊇ ν(F2) ⊇ · · · are descending sequences of filters of Ker(f) and
X/Ker(f), respectively. Therefore there exist k1 ∈ N and k2 ∈ N such that Fi ∩ Ker(f) =
Fk1 ∩ Ker(f) for all i ≥ k1 and ν(Fi) = ν(Fk2 ) for all i ≥ k2. Denote k = max{k1, k2}.
We will prove that Fi = Fk for all i ≥ k. Given any i ≥ k. To prove that Fk = Fi, take any
x ∈ Fk. Then ν(x) ∈ ν(Fk) = ν(Fi), thus there is x0 ∈ Fi such that ν(x) = ν(x0). Hence
ν(x0 ∗ x) = ν(x0) ∗ ν(x) = Ker(f), and so x0 ∗ x ∈ Ker(f). Because x0 ∗ x ∈ Fk, it follows
that x0 ∗ x ∈ Fk ∩ Ker(f) = Fi ∩ Ker(f). Noticing x0 ∈ Fi and Fi being a filter of X , we
have x ∈ Fi, i.e., Fi = Fk. This completes the proof.

As consequences of Propositions 5.12 and 5.13, we have

Corollary 5.14. Let X be a transitive BE-algebra and F a filter of X . If X/F and F
(as a subalgebra of X) are Noetherian (resp. Artinian), then so does X .
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