ON FILTERS IN BE-ALGEBRAS

Biao Long Meng

Received November 30, 2009

Abstract

In this paper we first give a procedure by which we generate a filter by a subset in a transitive $B E$-algebra, and give some characterizations of Noetherian and Artinian $B E$-algebras. Next we give the construction of quotient algebra X / F of a transitive $B E$-algebra X via a filter F of X. Finally we discuss properties of Noetherian (resp. Artinian) $B E$-algebras on homomorphisms and prove that let X and Y be transitive $B E$-algebras, a mapping $f: X \rightarrow Y$ be an epimorphism. If X is Noetherian (resp. Artinian), then so does Y. Conversely suppose that Y and $\operatorname{Ker}(f)$ (as a subalgebra of X) are Noetherian (resp. Artinian), then so does X. Let X be a transitive $B E$-algebra and F a filter of X. If X is Noetherian (resp. Artinian), then so does the quotient algebra X / F.

1 Introduction

The study of $B C K / B C I$-algebras was initiated by K. Iséki in 1966 as a generalization of propositional logic (see[4, 5, 6]). There exist several generalizations of $B C K / B C I$-algebras, as such $B C H$-algebras[3], dual $B C K$-algebras[11], d-algebras[10], etc. Especially, H. S. Kim and Y. H. Kim[7] introduced the notion of $B E$-algebras which was deeply studied by S. S. Ahn and Y. H. Kim[1], S. S. Ahn and K. S. So[2],H. S. Kim and K. J. Lee[8], A. Walendziak[12], B. L. Meng[9]. In this paper we deeply study filter theory in $B E$-algebras. We first give a procedure by which we generate a filter by a subset in a transitive $B E$ algebra, and give some characterizations of Northerian and Artinian $B E$-algebras. Next we give the construction of quotient algebra X / F of a transitive $B E$-algebra X via a filter F of X. Finally we discuss properties of Noetherian (resp. Artinian) $B E$-algebras on homomorphisms and prove that let X and Y be transitive $B E$-algebras, a mapping f : $X \rightarrow Y$ be an epimorphism. If X is Noetherian (resp. Artinian), then so does Y. As consequences, we have that let F be a filter of a transitive $B E$-algebra X. If X is Noetherian (resp. Artinian), then so does the quotient algebra X / F. Conversely suppose that Y and $\operatorname{Ker}(f)$ (as a subalgebra of X) are Noetherian (resp. Artinian), then so does X. In the sequel, let \mathbb{N} denote the set of all positive integers. For any $a_{1}, \cdots, a_{n}, x \in X$, we denote $\prod_{i=1}^{n} a_{i} * x=a_{n} *\left(\cdots *\left(a_{1} * x\right) \cdots\right)$.

2 Preliminaries

Definition 2.1[7]. An algebra $(X ; *, 1)$ of type $(2,0)$ is said to be a $B E$-algebra if it satisfies the following:
(BE1) $x * x=1$,
(BE2) $x * 1=1$,
(BE3) $1 * x=x$,
(BE4) $x *(y * z)=y *(x * z)$.
2000 Mathematics Subject Classification. 06F35; 03G25; 03B52 .
Key words and phrases. BE-algebra, transitive $B E$-algebra, filter, quotient algebra, Noetherian (resp. Artinian) $B E$-algebra, homomorphism.

Lemma 2.2. If $(X ; *, 1)$ is a $B E$-algebra, then for all $x, y \in X$
(1) $x *(y * x)=1[1]$,
(2) $x *[(x * y) * y]=1[9]$.

In a $B E$-algebra, one can introduce a binary relation \leq by $x \leq y$ if and only if $x * y=1$.
Definition 2.3[1]. A $B E$-algebra X is said to be transitive if for all $x, y, z \in X$,

$$
(y * z) *[(x * y) *(x * z)]=1, \text { or equivalently, } y * z \leq(x * y) *(x * z)
$$

Proposition 2.4. If a $B E$-algebra X is transitive then for all $x, y, z \in X$,
(1) $y \leq z$ implies $x * y \leq x * z$,
(2) $y \leq z$ implies $z * x \leq y * x$,
(3) $1 \leq x$ implies $x=1$.

Proof. If $y \leq z$, then $(x * y) *(x * z)=(y * z) *[(x * y) *(x * z)]=1$, so (1) is true. Let $y \leq z$. Since $(z * x) *(y * x)=(z * x) *[(y * z) *(y * x)]=1$, (2) holds.
(3) follows from (BE3). The proof is completed.

Definition 2.5[8]. Let X be a $B E$-algebra and F a nonempty subset of X. F is said to be a filter of X if it satisfies: (F1) $1 \in I$, (F2) $x \in F$ and $x * y \in F$ imply $y \in F$.

Obviously any filter F of a $B E$-algebra X is a subalgebra, i.e., $x, y \in F \Rightarrow x * y \in F$.
Lemma 2.6[9]. Let X be a transitive $B E$-algebra and A a nonempty subset of X. Then A is a filter of X if and only if A satisfies: for any $a_{i} \in A(i=1, \cdots, n)$ and $x \in X$, $\prod_{i=1}^{n} a_{i} * x=1$ implies $x \in A$.

3 Filter generated by a set

Proposition 3.1. If X is a $B E$-algebra and $\left\{F_{\lambda} \mid \lambda \in \Lambda\right\}$ is an indexed set of filters of X where $\Lambda \neq \varnothing$, then $F=\cap\left\{F_{\lambda} \mid \lambda \in \Lambda\right\}$ is a filter of X.

Proof. Trivial.
Definition 3.2. Let X be a $B E$-algebra and A a nonempty subset of X. If B is the least filter containing A in X, then B is said to be the filter generated by A and is denoted by $(A]$. If A is a finite set of X then $(A]$ is said to be finitely generated.

Since X is always a filter of X containing any filter, it follows from Proposition 3.1 that Definition 3.2 is well defined. $\left(\left\{a_{1}, \cdots, a_{n}\right\}\right]$ is simply denoted by $\left(a_{1}, \cdots, a_{n}\right]$. For convenience, let $(\varnothing]=\{1\}$.

Proposition 3.3. Let X be a $B E$-algebra. Suppose A and B are two subsets of X. Then the followong hold:
(1) $(1]=\{1\}, \quad(X]=X$,
(2) $A \subseteq B$ implies $(A] \subseteq(B]$,
(3) if A is a filter of X, then $(A]=A$.

Proof. Trivial.

The following is a fundamental result of this paper.
Proposition 3.4. Let X be a transitive $B E$-algebra and A a nonempty subset of X. Then

$$
(A]=\left\{x \in X \mid \prod_{i=1}^{n} a_{i} * x=1 \exists a_{1}, \cdots, a_{n} \in A\right\}
$$

Proof. Denote $F=\left\{x \in X \mid \prod_{i=1}^{n} a_{i} * x=1 \exists a_{1}, \cdots, a_{n} \in A\right\}$.
Since $a * a=1$ for all $a \in A, \stackrel{i=1}{A \subseteq F} F$.
Select $a \in A$. Since $a * 1=1$ by (BE2), so $1 \in F$.
If $y * x \in F$ and $y \in F$, then there are $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{m} \in A$ such that $\prod_{i=1}^{n} a_{i} *(y * x)=$ 1, $\prod_{j=1}^{m} b_{i} * y=1$. Hence $y \leq \prod_{i=1}^{n} a_{i} * x$. By using Proposition 2.4(1) we obtain

$$
1=\prod_{j=1}^{m} b_{j} * y \leq \prod_{j=1}^{m} b_{j} *\left(\prod_{i=1}^{n} a_{i} * x\right)
$$

thus

$$
\prod_{j=1}^{m} b_{j} *\left(\prod_{i=1}^{n} a_{i} * x\right)=1
$$

This shows that $x \in F$, and so F is a filter of X.
Suppose B is any filter containing A and $x \in F$, then there are $a_{1}, \cdots, a_{n} \in A$ such that $\prod_{i=1}^{n} a_{i} * x=1$. By $A \subseteq B$ we know $a_{1}, \cdots, a_{n} \in B$. It follows from Lemma 2.6 that $x \in B$, i.e., $F \subseteq B$. Hence $F=(A]$. This completes the proof.

Definition 3.5[7]. A $B E$-algebra X is said to be self distributive if $x *(y * z)=$ $(x * y) *(x * z)$ for all $x, y, z \in X$.

Note that every self distributive $B E$-algebra is transitive, but the converse is not true in general (see[1]Proposition 3.10).

Proposition 3.6. Suppose X is a self distributive $B E$-algebras and F is a filter of X. Then
(1) the set $F_{a}=\{x \mid a * x \in F\}$ is a filter,
(2) $(\{a\} \cup F]=F_{a}$.

Proof. It is easy to see that F_{a} satisfies (F1). To verify (F2) for F_{a}, assume $x * y \in F_{a}$ and $x \in F_{a}$. Then $a *(x * y) \in F$ and $a * x \in F$. By self distributivity we have $(a * x) *(a * y) \in F$ and $a * x \in F$. Thus $a * y \in F$, and so $y \in F_{a}$. Therefore F_{a} is a filter of X. (1) holds.

Suppose B is any filter containing $\{a\} \cup F$. Assume $x \in F_{a}$, then $a * x \in F \subseteq B$, so $x \in B$. Hence $(\{a\} \cup F]=F_{a}$, (2) holds. The proof is complete.

4 Noetherian and Artinian $B E$-algebras

Definition 4.1. A $B E$-algebra X is said to be Noetherian if every filter of X is finitely generated. We say that X satisfy the ascending (resp. descending) chain condition if for every ascending sequence $F_{1} \subseteq F_{2} \subseteq \cdots$ (resp. every descending sequence $F_{1} \supseteq F_{2} \supseteq \cdots$) of filters of X there is $n \in \mathbb{N}$ such that $F_{n}=F_{k}$ for $k \geq n . X$ is said to satisfy the
maximal (resp. minimal) condition if every nonempty set of filters of X has a maximal (resp. minimal) element.

Proposition 4.2. Let X be a $B E$-algebra. Then the following conditions are equivalent:
(1) X is Noetherian,
(2) X satisfies the ascending chain condition,
(3) X satisfies the maximal condition.

Proof. (1) $\Rightarrow(2)$ Let X be Noetherian. Take any ascending sequence $F_{1} \subseteq F_{2} \subseteq \cdots$ of filters of X. Denote

$$
F=\bigcup_{i=1}^{\infty} F_{i}
$$

It is easy to verify that F is a filter of X and hence F is finiely generated. So there are $a_{i} \in F(i=1, \cdots, m)$ such that $F=\left(a_{1}, \cdots, a_{m}\right]$. This means $a_{i} \in F_{n_{i}}$ for some $n_{i} \in \mathbb{N}$. Let $k=\max \left\{n_{1}, \cdots, n_{m}\right\}$. Thus $\left\{a_{1}, \cdots, a_{m}\right\} \subseteq F_{k}$, and so $F_{k}=F_{k+1}=F_{k+2}=\cdots$, i.e., (2) is true.
$(2) \Rightarrow(3)$ Let (2) be true. If (3) is not true, then there is a nonempty set \mathbb{F} of filters of X such that \mathbb{F} has no maximal element. Select $F_{1} \in \mathbb{F}$. Since F_{1} is not maximal element of \mathbb{F}, there is $F_{2} \in \mathbb{F}$ such that $F_{1} \subset F_{2}$. Repeating the above process we obtain an infinitely ascending sequence $F_{1} \subset F_{2} \subset \cdots$, a contradiction. Therefore (3) is true.
$(3) \Rightarrow(1)$ Suppose (3) is true. Let F be any filter of X. We denote by \mathcal{F} the set of all finitely genereted filters of X which are contained in F. Obviously $\{1\} \in \mathcal{F}$, hence $\mathcal{F} \neq$ \emptyset. By (3) \mathcal{F} has a maximal element, for example, F_{0}. Then F_{0} is finitely genereted, let $F_{0}=\left(a_{1}, \cdots, a_{n}\right]$. If $F_{0} \neq F$, then there is $a \in F$ such that $F_{0} \subset\left(a_{1}, \cdots, a_{n}, a\right] \subseteq F$, which is contrary to the maximality of F_{0}. Therefore $F=F_{0}$, i.e., F is finitely generated, (1) holds. This completes the proof.

Definition 4.3. Let X be a $B E$-algebra. X is said to be Artinian if X satisfies the descending chain condition.

Proposition 4.4. Let X is a $B E$-algebra. Then X is Artinian if and only if X satisfies the minimal condition.

Proof. (\Rightarrow) It can be proved by a similar argument used in Proposition $4.2(2) \Rightarrow(3)$. (\Leftarrow) It is easy and is omitted.

5 Quotient $B E$-algebra induced by a filter

Throughout this section X always means a transitive $B E$-algebra without otherwise mentioned

Let F be a filter of X. A binary relation \sim on X can be defined as follows, for all $x, y \in X, x \sim y$ if and only if $x * y \in F$ and $y * x \in F$.

Lemma 5.1. \sim is an equivalent relation on X.
Proof Since $x * x=1 \in F, x \sim x$.
By the definition of $\sim, x \sim y$ implies $y \sim x$.
If $x \sim y$ and $y \sim z$ then $x * y \in F, y * x \in F, y * z \in F$ and $z * y \in F$. By transitivity $(x * y) *[(y * z) *(x * z)]=1$ and $(y * x) *[(z * y) *(z * x)]=1$, it follows from Lemma 2.6 that $x * z \in F$ and $z * x \in F$, i.e., $x \sim z$. Thus \sim is an equivalent relation on X.

Lemma 5.2. \sim is a congruence relation on X.
Proof If $x \sim y$ and $u \sim v$, then $x * y \in F, y * x \in F, u * v \in F$ and $v * u \in F$. By transitivity, we have $(u * v) *[(x * u) *(x * v)]=1$ and $(v * u) *[(x * v) *(x * u)]=1$, it follows from Lemma 2.6 that $(x * u) *(x * v) \in F$ and $(x * v) *(x * u) \in F$. Thus $x * u \sim x * v$. By the same argument one can prove that $x * v \sim y * v$. By Lemma 5.1 we obtain $x * u \sim y * v$. Therefore \sim is a congruence relation on X.
X is decomposed by the congruence relation \sim. The class containing x is denoted by $[x]_{F}$. Denote $X / F=\left\{[x]_{F} \mid x \in X\right\}$. We define a binary operation $*$ on X / F by $[x]_{F} *[y]_{F}:=[x * y]_{F}$. This definition is well defined by Lemma 5.2.

Lemma 5.3. $[1]_{F}=F$.
Proof. If $x \in[1]_{F}$, then $x=1 * x \in F$, so $[1]_{F} \subseteq F$. Conversely if $x \in F$, then $x * 1 \in F$ and $1 * x \in F$ since F is a subalgebra and $1 \in F$. Therefore $F \subseteq[1]_{F}$. This prove that $[1]_{F}=F$.

Proposition 5.4. $\left(X / F ; *,[1]_{F}\right)$ is a $B E$-algebra.
Proof. It is immediate.
Definition 5.5. Let $\left(X ; *_{X}, 1_{X}\right)$ and $\left(Y ; *_{Y}, 1_{Y}\right)$ be two $B E$-algebras. A mapping f : $X \rightarrow Y$ is called a homomorphism from X to Y if for all $x, y \in X, f\left(x *_{X} y\right)=f(x) *_{Y} f(y)$. The set $\operatorname{Ker}(f):=\left\{x \in X \mid f(x)=1_{Y}\right\}$ is called the kernel of f. If, in addition, the mapping f is onto then f is called an epimorphism. If f is both an epimorphism and one-to-one, then f is said to be an isomorphism, and we say that X is isomorphic to Y, written $X \cong Y$.

Definition 5.6. Let X be a transitive $B E$-algebras and F a filter of X. The natural map $\nu_{F}: X \rightarrow X / F$ is defined by $\nu_{F}(x)=[x]_{F}$ for all $x \in X$. When there is no ambiquity we write simply ν instead of ν_{F}.

Proposition 5.7. Let X be a transitive $B E$-algebras and F a filter of X. Then the natural mapping $\nu: X \rightarrow X / F$ is an epimorphism.

Proof. Trivial.
Proposition 5.8. Let X and Y be transitive $B E$-algebras, a mapping $f: X \rightarrow Y$ be an epimorphism. If X is Noetherian, then so does Y.

Proof. For any filter F of $Y, f^{-1}(F)$ is a filter of X. Therefore $f^{-1}(F)$ is finitely generated from Proposition 3.4, for instance, $f^{-1}(F)=\left(a_{1}, \cdots, a_{n}\right]$ where $a_{1}, \cdots, a_{n} \in$ $f^{-1}(F)$, hence $F=\left(f\left(a_{1}\right), \cdots, f\left(a_{n}\right)\right]$. This shows that Y is Noetherian, ending the proof.

Corollary 5.9. Let X be a transitive $B E$-algebra and F a filter of X. If X is Noetherian, then so does X / F.

Proof. Since the natural map $\nu: X \rightarrow X / F$ be an epimorphism, it follows from Proposition 5.8 that X / F is Noetherian. This completes the proof.

Proposition 5.10. Let X and Y be $B E$-algebras, a mapping $f: X \rightarrow Y$ an epimor-
phism. If X is Artinian, then so does Y.

Proof. If we are given any descending sequence $F_{1} \supseteq F_{2} \supseteq \cdots$ of filters of Y, then $f^{-1}\left(F_{1}\right) \supseteq f^{-1}\left(F_{2}\right) \supseteq \cdots$ is a descending sequence of filters of X. Since X is Artinian, there is $n \in \mathbb{N}$ such that $f^{-1}\left(F_{k}\right)=f^{-1}\left(F_{n}\right)$ for all $k \geq n$. Hence $F_{k}=F_{n}$ for all $k \geq n$. This shows that Y is Artinian, completing the proof.

Corollary 5.11. Let X be a transitive $B E$-algebra and F a filter of X. If X is Artinian, then so does X / F.

Proof. This is immediate from Proposition 5.10.

Proposition 5.12. Let X and Y be transitive $B E$-algebras. Let f be an epimorphism from X to Y. Suppose that Y and $\operatorname{Ker}(f)$ (as a subalgebra of X) are Noetherian, then so does X.

Proof. Since $X / \operatorname{Ker}(f)$ is isomorphic to Y, it is sufficient to prove that if $X / \operatorname{Ker}(f)$ and $\operatorname{Ker}(f)$ are Noetherian, then so does X. Let $\nu: X \rightarrow X / \operatorname{Ker}(f)$ be the natural mapping. We are given any ascending sequence $F_{1} \subseteq F_{2} \subseteq \cdots$ of filters of X, then $F_{1} \cap \operatorname{Ker}(f) \subseteq F_{2} \cap \operatorname{Ker}(f) \subseteq \cdots$ and $\nu\left(F_{1}\right) \subseteq \nu\left(F_{2}\right) \subseteq \cdots$ are ascending sequences of filters of $\operatorname{Ker}(f)$ and $X / \operatorname{Ker}(f)$, respectively. Therefore there exist $k_{1} \in \mathbb{N}$ and $k_{2} \in \mathbb{N}$ such that $F_{i} \cap \operatorname{Ker}(f)=F_{k_{1}} \cap \operatorname{Ker}(f)$ for all $i \geq k_{1}$ and $\nu\left(F_{i}\right)=\nu\left(F_{k_{2}}\right)$ for all $i \geq k_{2}$. Denote $k=\max \left\{k_{1}, k_{2}\right\}$. We will prove that $F_{i}=F_{k}$ for all $i \geq k$. Given any $i \geq k$. To prove that $F_{k}=F_{i}$, take any $x \in F_{i}$. Then $\nu(x) \in \nu\left(F_{i}\right)=\nu\left(F_{k}\right)$, thus there is $x_{0} \in F_{k}$ such that $\nu(x)=\nu\left(x_{0}\right)$. Hence $\nu\left(x_{0} * x\right)=\nu\left(x_{0}\right) * \nu(x)=\operatorname{Ker}(f)$, and so $x_{0} * x \in \operatorname{Ker}(f)$. Because $x_{0} * x \in F_{i}$, it follows that $x_{0} * x \in F_{i} \cap \operatorname{Ker}(f)=F_{k} \cap \operatorname{Ker}(f)$. Noticing $x_{0} \in F_{k}$ and F_{k} to be a filter of X, we have $x \in F_{k}$, i.e., $F_{k}=F_{i}$. This completes the proof.

Proposition 5.13. Let X and Y be transitive $B E$-algebras. Let f be an epimorphism from X to Y. Suppose that Y and $\operatorname{Ker}(f)$ (as a subalgebra of X) are Artinian, then so does X.

Proof. Since $X / \operatorname{Ker}(f)$ is isomorphic to Y, it is sufficient to prove that if $X / \operatorname{Ker}(f)$ and $\operatorname{Ker}(f)$ are Artinian, then so does X. Let $\nu: X \rightarrow X / \operatorname{Ker}(f)$ be the natural mapping. We are given any descending sequence $F_{1} \supseteq F_{2} \supseteq \cdots$ of filters of X, then $F_{1} \cap \operatorname{Ker}(f) \supseteq$ $F_{2} \cap \operatorname{Ker}(f) \supseteq \cdots$ and $\nu\left(F_{1}\right) \supseteq \nu\left(F_{2}\right) \supseteq \cdots$ are descending sequences of filters of $\operatorname{Ker}(f)$ and $X / \operatorname{Ker}(f)$, respectively. Therefore there exist $k_{1} \in \mathbb{N}$ and $k_{2} \in \mathbb{N}$ such that $F_{i} \cap \operatorname{Ker}(f)=$ $F_{k_{1}} \cap \operatorname{Ker}(f)$ for all $i \geq k_{1}$ and $\nu\left(F_{i}\right)=\nu\left(F_{k_{2}}\right)$ for all $i \geq k_{2}$. Denote $k=\max \left\{k_{1}, k_{2}\right\}$. We will prove that $F_{i}=F_{k}$ for all $i \geq k$. Given any $i \geq k$. To prove that $F_{k}=F_{i}$, take any $x \in F_{k}$. Then $\nu(x) \in \nu\left(F_{k}\right)=\nu\left(F_{i}\right)$, thus there is $x_{0} \in F_{i}$ such that $\nu(x)=\nu\left(x_{0}\right)$. Hence $\nu\left(x_{0} * x\right)=\nu\left(x_{0}\right) * \nu(x)=\operatorname{Ker}(f)$, and so $x_{0} * x \in \operatorname{Ker}(f)$. Because $x_{0} * x \in F_{k}$, it follows that $x_{0} * x \in F_{k} \cap \operatorname{Ker}(f)=F_{i} \cap \operatorname{Ker}(f)$. Noticing $x_{0} \in F_{i}$ and F_{i} being a filter of X, we have $x \in F_{i}$, i.e., $F_{i}=F_{k}$. This completes the proof.

As consequences of Propositions 5.12 and 5.13 , we have

Corollary 5.14. Let X be a transitive $B E$-algebra and F a filter of X. If X / F and F (as a subalgebra of X) are Noetherian (resp. Artinian), then so does X.

References

[1] S. S. Ahn and Y. H. So, On ideals and upper sets in BE-algebras, Sci. Math. Japon. Online e-2008(2008), No.2, 279-285.
[2] S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math. Soc. 46(2009), No.2, 281-287.
[3] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), No.2, part 2, 313-320.
[4] K. Iséki, On BCI-algebras, Methematics Seminar Notes, 8(1980), 125-130.
[5] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21(1976) 351-366.
[6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23(1978) 1-26.
[7] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Japon. 66(1)(2007), 113-117.
[8] H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Submitted
[9] B. L. Meng, CI-algebras, Sci. Math. Japon. Online, e-2009, 695-701.
[10] J. Negger and H. S. Kim, On d-algebras, Math. Slovaca 40(1999), No.1, 19-26.
[11] K. H. Kim and Y. H. Yon, Dual BCK-algebra and $M V$-algebra, Sci. Math. Japon., 66(2007), 247-253.
[12] A. Walendziak, On commutative BE-algebras, Sci. Math. Japon. Online e-2008, 585-588.

Biao Long MENG:

Department of Basic Courses,
Xian University of Science and Technology, Xian 710054, P.R.CHINA.
Email address: mengbl_100@yahoo.com.cn

