
Scientiae Mathematicae Japonicae Online, e-2010, 1–27 1

RIGHT-LINEAR FINITE PATH OVERLAPPING REWRITE SYSTEMS
EFFECTIVELY PRESERVE RECOGNIZABILITY∗

Toshinori TAKAI and Yuichi KAJI and Hiroyuki SEKI

Received October 12, 2001

Abstract. Right-linear finite path overlapping TRS are shown to effectively preserve
recognizability. The class of right-linear finite path overlapping TRS properly includes
the class of linear generalized semi-monadic TRS and the class of inverse left-linear
growing TRS, which are known to effectively preserve recognizability.

1 Introduction Much effort has been devoted to finding subclasses of TRSs which have
reasonable computational power and for which important problems are decidable and, if
possible, efficiently solvable. Tree automata inherit many favorable properties of finite state
automata on strings[5]. For a tree automaton A, let L(A) be the set of terms accepted by
A. A set T of terms is recognizable if there is a tree automaton A such that T = L(A).
The class of recognizable sets is closed under boolean operations (union, intersection and
complementation), and the emptiness problem is decidable for a recognizable set. If TRSs
and recognizable sets of terms can be related appropriately, then these favorable properties
of recognizable sets help us solve some problems in TRSs.

Two different directions for relating TRS and recognizable sets exist. One direction
is the study of a TRS which effectively preserves recognizability[2, 6, 7, 8, 11, 13]. For
a TRS R and a set T of terms, define (→∗

R)(T) = {t | ∃s ∈ T, s →∗
R t}. A TRS R is

said to effectively preserve recognizability if, for any tree automaton A, (→∗
R)(L(A)) is also

recognizable and a tree automaton A∗ such that (→∗
R)(L(A)) = L(A∗) can be effectively

constructed. Joinability, reachability and local confluence are decidable for a TRS which
effectively preserves recognizability[7, 8]. Since it is undecidable whether a given TRS
effectively preserves recognizability or not[6], decidable subclasses of TRSs which effectively
preserve recognizability have been investigated. Such classes include ground TRS[1], right-
linear monadic TRS[13], linear semi-monadic TRS[2] and linear generalized semi-monadic
TRS[8]. Another direction of the study for relating TRS and recognizable sets is to find a
class of TRS R such that the set (←∗

R)(L(A)) = {t | ∃s ∈ L(A), t →∗
R s} is recognizable

for any tree automaton A[4, 10, 12]. A linear growing TRS[10] has this property, and later,
the result was extended to left-linear growing TRS[12]. Obviously, if a TRS R has this
property, then R−1 = {l→ r | r → l ∈ R} preserves recognizability, and vice versa. A TRS
R is (right-)linear semi-monadic if and only if R−1 is (left-)linear growing except that the
variable restriction (l is not a variable and Var(r) ⊆ Var(l) for each l → r ∈ R) is dropped
in the definition of growing TRS[10, 12]. (See Section 3 for more details.)

In this paper, a new class of TRSs, right-linear finite path overlapping TRS is proposed
(Section 4). A TRS in the class effectively preserves recognizability (Section 5), and the
class properly includes known decidable classes of TRSs which effectively preserve recog-
nizability. Our results positively solve the conjecture in [7] that right-linear semi-monadic
term rewriting systems effectively preserve recognizability.

2000 Mathematics Subject Classification. 68Q42,68Q45.
Key words and phrases. term rewriting system, tree automaton, preserving recognizability.

∗This paper is partially based on [16].

2 T. TAKAI, Y. KAJI AND H. SEKI

2 Preliminaries We use the usual notions for terms, substitutions, etc (see [3] for de-
tails). Let F be a signature and V be an enumerable set of variables. An element in F is
called a function symbol and the arity of f ∈ F is denoted by a(f). A function symbol c
with a(c) = 0 is called a constant . The set of terms , defined in the usual way, is denoted
by T (F ,V). The set of variables occurring in t is denoted by Var(t). A term t is ground
if Var(t) = ∅. The set of ground terms is denoted by T (F). A ground term in T (F) may
also be called an F-term. A term is linear if no variable occurs more than once in the
term. A context is a term which has exactly one special constant � �∈ F . A term obtained
from a context C by replacing � with a term s is written as C[s]. A relation R on a set
T of terms is closed under contexts if s R t implies C[s] R C[t] for any context C and
for any terms s, t ∈ T . A substitution σ is a mapping from V to T (F ,V), and written
as σ = {x1 �→ t1, . . . , xn �→ tn} where ti with 1 ≤ i ≤ n is a term which substitutes for
the variable xi. The term obtained by applying a substitution σ to a term t is written as
tσ. tσ is called an instance of t and t is said to subsume tσ. A position in a term t is
defined as a sequence of positive integers as usual, and the set of all positions in a term t
is denoted by Pos(t). Let λ be the empty sequence which denotes the root position. If a
position o1 is a prefix (resp. proper prefix) of o2, then we write o1
 o2 (resp. o1 ≺ o2).
Two positions o1 and o2 are disjoint if neither o1
 o2 nor o2
 o1. A subterm of t at a
position o is denoted by t/o. t/o is said to occur at depth |o|. The depth of a term t is
max{|o| | o ∈ Pos(t)}. If a term t is obtained from a term t′ by replacing the subterms of t′

at positions o1, . . . , om (oi ∈ Pos(t′), oi and oj are disjoint if i �= j) with terms t1, . . . , tm,
respectively, then we write t = t′[oi ← ti | 1 ≤ i ≤ m].

A rewrite rule is an ordered pair of terms, written as l → r. The variable restriction
(Var(r) ⊆ Var(l) and l is not a variable) is not assumed in this paper unless stated otherwise.
A term rewriting system (TRS) is a finite set of rewrite rules. For a TRS R, let R−1 =
{r → l | l → r ∈ R}. For terms t, t′ and a TRS R, we write t →R t′ if there exist a
position o ∈ Pos(t), a substitution σ and a rewrite rule l → r ∈ R such that t/o = lσ and
t′ = t[o← rσ]. Define→∗

R (resp. ↔∗
R) to be the reflexive and transitive (resp. the reflexive,

symmetric and transitive) closure of →R. Also the positive closure of →R is denoted by
→+

R. The subscript R of →R is omitted if R is clear from the context. A redex (in R) is
an instance of l for some l → r ∈ R. A normal form (in R) is a term which has no redex as
its subterm. Let NFR denote the set of all ground normal forms in R. A rewrite rule l → r
is left-linear(resp. right-linear) if l is linear (resp. r is linear). A rewrite rule is linear if
it is left-linear and right-linear. A TRS R is left-linear (resp. right-linear, linear) if every
rule in R is left-linear (resp. right-linear, linear).

Notions such as reachability, joinability, unifiability, unifier , most general unifier , con-
fluence and local confluence are defined in the usual way. For a TRS R, two terms t1 and
t2 are R-unifiable if there exists a substitution σ such that t1σ ↔∗

R t2σ.
A tree automaton(TA)[5] is defined by a 4-tuple A = (F ,Q,Qfinal , ∆) where F is a

signature, Q is a finite set of states, Qfinal ⊆ Q is a set of final states, and ∆ is a finite set of
transition rules of the form f(q1, . . . , qn)→ q where f ∈ F , a(f) = n, and q1, . . . , qn, q ∈ Q
or of the form q′ → q where q, q′ ∈ Q. A rule with the former form is called a non-ε-rule and
a rule with the latter form is called an ε-rule. Consider the set of ground terms T (F ∪Q)
where we define a(q) = 0 for q ∈ Q. A move of a TA can be regarded as a rewrite relation
on T (F ∪ Q) by regarding transition rules in ∆ as rewrite rules on T (F ∪ Q). For terms
t and t′ in T (F ∪ Q), we write t �A t′ if and only if t →∆ t′. The reflexive and transitive
closure of �A is denoted by �∗A. For a TA A and t ∈ T (F), if t �∗A qf for a final state
qf ∈ Qfinal , then we say t is accepted by A. The set of ground terms accepted by A is
denoted by L(A). A set T of ground terms is recognizable if there is a TA A such that
T = L(A). Also let Lq(A) = {t | t �∗A q} for a state q of A. Recognizable sets inherit some

RL-FPO-TRS IS EPR-TRS 3

useful properties of regular (string) languages[5].

Lemma 2.1 The class of recognizable sets is effectively closed under union, intersection
and complementation. For a recognizable set T , the following problems are decidable. (1)
Does a given ground term t belong to T? (2) Is T empty? �

3 TRS which Preserves Recognizability For a TRS R and a set T of ground terms,
define (→∗

R)(T) = {t | ∃s ∈ T such that s →∗
R t} and (←∗

R)(T) = {t | ∃s ∈ T such that
t →∗

R s}. A TRS R is said to effectively preserve recognizability if, for any TA A, the
set (→∗

R)(L(A)) is also recognizable and we can effectively construct a TA which accepts
(→∗

R)(L(A)). In this paper, the class of TRSs which effectively preserve recognizability is
written as EPR-TRS.

Theorem 3.1 If a TRS R belongs to EPR-TRS, then the reachability relation and the
joinability relation for R are decidable[7]. It is also decidable whether R is locally confluent
or not[8]. �

Theorem 3.2 Let R be a TRS such that R−1 is an EPR-TRS and R is left-linear, then
it is decidable whether R is weakly normalizing or not.

Proof. It is easily understood that T (F) = (←∗
R)(NFR) if and only if R is weakly

normalizing. On the other hand, the set NFR of normal forms for R is recognizable since
R is left-linear. Since (←∗

R)(T) = (→∗
R−1)(T) for any set T of terms and R−1 is in EPR-

TRS, we can see that (←∗
R)(NFR) is recognizable. Note that T (F) = (←∗

R)(NFR) if
and only if (←∗

R)(NFR) = ∅ (∅ denotes the empty set). Hence, T (F) = (←∗
R)(NFR) is

decidable by Lemma 2.1. �

Theorem 3.3 For a confluent R ∈ EPR-TRS and linear terms t1 and t2 with Var(t1) ∩
Var(t2) = ∅, it is decidable whether t1 and t2 are R-unifiable or not.

Proof. Since R is confluent, t1 and t2 are R-unifiable if and only if there exists a ground
substitution σ and a term v such that t1σ →∗

R v and t2σ →∗
R v. For a term t, let I(t)

denote the set of ground instances of t, i.e., I(t) = {tσ | σ is a ground substitution}. Then
t1 and t2 are R-unifiable if and only if

(→∗
R)(I(t1)) ∩ (→∗

R)(I(t2)) �= ∅(3.1)

since Var(t1) ∩ Var(t2) = ∅. It is easy to see that I(t) is recognizable for any linear term t.
Thus (→∗

R)(I(t1)) and (→∗
R)(I(t2)) are recognizable since R ∈ EPR-TRS. By Lemma 2.1,

the condition (3.1) is decidable. �

Unfortunately it is undecidable whether a given TRS belongs to EPR-TRS or not[6].
Therefore decidable subclasses of EPR-TRS have been proposed. Among them are ground
TRS (G-TRS) by Brainerd[1], right-linear monadic TRS (RL-M-TRS) by Salomaa[13],
linear semi-monadic TRS (L-SM-TRS) by Coquidé et al.[2], and linear generalized semi-
monadic TRS (L-GSM-TRS) by Gyenizse and Vágvölgyi[8]. In [7], Gilleron and Tison
conjectured that the class of right-linear semi-monadic TRSs is also included in EPR-TRS.
Note that these papers assume the variable restriction.

Theorem 3.4 G-TRS ⊂ RL-M-TRS ⊂ EPR-TRS, and G-TRS ⊂ L-SM-TRS ⊂ L-GSM-
TRS ⊂ EPR-TRS. �

4 T. TAKAI, Y. KAJI AND H. SEKI

There is another stream of studies which relate TRSs and recognizability[10, 4, 12]. A TRS
R (without the variable restriction) is growing if all variables in Var(l) ∩ Var(r) occur at
depth 0 or 1 in l for every rewrite rule l→ r in R[10]. Nagaya and Toyama[12] showed that
for each left-linear growing TRS (LL-G-TRS) R, R−1 effectively preserves recognizability.
If a TRS R satisfies the variable restriction then R is (linear, right-linear) semi-monadic if
and only if R−1 is (linear, left-linear) growing and the left-hand side of every rewrite rule
in R is not a constant. LL-G-TRS−1 properly includes both of RL-M-TRS and L-SM-TRS,
and it is incomparable with L-GSM-TRS.

4 FPO-TRSs A new class of TRS named finite path overlapping TRS (FPO-TRS) is
proposed in this section without assuming the variable restriction. As we will show later, the
class of RL-FPO-TRS properly includes the class of RL-GSM-TRS and LL-G-TRS−1. It will
also be shown in the next section that an RL-FPO-TRS (without the variable restriction)
is an EPR-TRS. To the authors’ knowledge, the proposed class is the largest decidable
subclass of EPR-TRS. To define the class, some additional definitions are necessary. We
say that a term s sticks out of t if t is not a variable and there is a variable position γ (�= λ)
of t such that

1. for any position o with λ
 o ≺ γ, we have o ∈ Pos(s) and the function symbol of s
at o and the function symbol of t at o are the same, and

2. γ ∈ Pos(s) and s/γ is not a ground term.

When the position γ is of interest, we say that s sticks out of t at γ. If s sticks out of t at γ
and s/γ is not a variable (i.e. s/γ is a non-ground and non-variable term), then s is said to
properly stick out of t (at γ). For example, a term f(g(x), a) sticks out of f(g(y), b) at the
position 1 ·1, and f(g(g(x)), a) properly sticks out of f(g(y), b) at the position 1 ·1. A finite
path overlapping term rewriting system (FPO-TRS) is a TRS R such that the following
sticking-out graph of R does not have a cycle of weight one or more.

Definition 4.1 The sticking-out graph of a TRS R is a directed graph G = (V, E) where
V = R (i.e. the vertices are the rewrite rules in R) and E is defined as follows. Let v1 and
v2 be (possibly identical) vertices which correspond to rewrite rules l1 → r1 and l2 → r2,
respectively. Replace each variable in Var(ri) \ Var(li) with a fresh constant, say �, for
i = 1, 2.

1. If r2 properly sticks out of a subterm of l1, then E contains an edge from v2 to v1

with weight one.

2. If a subterm of r2 properly sticks out of l1, then E contains an edge from v2 to v1

with weight one.

3. If a subterm of l1 sticks out of r2, then E contains an edge from v2 to v1 with weight
zero.

4. If l1 sticks out of a subterm of r2, then E contains an edge from v2 to v1 with weight
zero.

�

An RL-TRS (right-linear TRS) being FPO is written as RL-FPO-TRS. The four cases
are illustrated in Fig. 1.

RL-FPO-TRS IS EPR-TRS 5

r2

l1

l1

r2

l1

r2

r2

l1

21 3 4

Figure 1: The sticking-out relations of rewrite rules.

p
1

p
21

0

Figure 2: The sticking-out graph of R1.

Example 4.1 Let R1 = { p1: f(x, a) → f(h(y), x), p2: g(y) → f(g(y), b) }. Fig. 2 shows
the sticking-out graph of R1. The right-hand side of p2 properly sticks out of the left-hand
side of p1 at the position 1, and hence there is an edge of weight one from p2 to p1. The
sticking-out graph also has a self-looping edge of weight zero at p2 since the left-hand side
g(y) of p2 sticks out of f(g(y), b)/1 = g(y). Since the variable y in p1 is replaced with a
constant �, the right-hand side of p1 does not stick out of its left-hand side. There is no
other edge since there is no other sticking-out relation between subterms of these rewrite
rules. The sticking-out graph has a cycle of weight zero, but does not have a cycle of weight
one or more, and hence R is finite path overlapping.

Let R2 = {f (x) → g(f(g(x)))}. The subterm f(g(x)) of the right-hand side of the
(unique) rewrite rule properly sticks out of its left-hand side, as in Condition 2 of the
definition of sticking-out graph. The sticking-out graph of R2 consists of one vertex and
one cycle with weight one. Therefore, R2 is not finite path overlapping. Note that R2 �∈
EPR-TRS since (→∗

R2
)({f(a)}) = {gn(f(gn(a))) | n ≥ 0} is not recognizable. �

Remark that the sticking-out graph is effectively constructible for a given TRSR, and hence
it is decidable whether a given TRS R is finite path overlapping or not (in O(m2n2) time
where m is the maximum size of a term in R and n is the number of rules in R).

Although a generalized semi-monadic TRS (GSM-TRS) was originally defined with the
variable restriction in [8], we define GSM-TRS without the variable restriction to treat
growing TRS, GSM-TRS and FPO-TRS in a uniform way.

A TRS R is generalized semi-monadic if the following condition holds for any pair of
(possibly the same) rewrite rules l1 → r1 and l2 → r2 in R[8]. For i = 1, 2, each variable
in Var(ri) \ Var(li) is replaced with a fresh constant. For any positions α ∈ Pos(l1) and
β ∈ Pos(r2) such that α = λ or β = λ and for any term l3 which subsumes l1/α, if r2/β
and l3 are unifiable, then

1. l1/α is a variable, or

2. for any γ ∈ Pos(l3) such that l1/α · γ is a variable, (l3/γ)σ is a variable or a ground
term where σ is the most general unifier of r2/β and l3.

Lemma 4.1 A TRS R is in GSM-TRS if and only if the sticking-out graph of R has
no edge with weight one. If a TRS R is generalized semi-monadic, then R is finite path
overlapping.

6 T. TAKAI, Y. KAJI AND H. SEKI

Proof. We show the only if part by contradiction. If part can be shown in a similar way.
Assume that R is a GSM-TRS and contains rules l1 → r1 and l2 → r2 (each variable in
Var(ri) \ Var(li) has been replaced with a constant � for i = 1, 2) which satisfy condition 1
of the definition of sticking-out graph. In this case, there is a position α ∈ Pos(l1) such that
r2 properly sticks out of l1/α. Let γ be the variable position of l1/α at which r2 properly
sticks out of l1/α, then l1/α · γ is a variable and r2/γ is a non-ground and non-variable
term. Let l3 be the term which satisfies the following conditions. (1) For a position o with
λ
 o ≺ γ, l3 and l1/α have the same symbol at o, (2) a variable, say xo, occurs at a position
o which is disjoint to γ and is written as o′ · i with o′ ≺ γ and (3) a variable xγ occurs at
γ. It is easily understood that l3 subsumes l1/α and that l3 and r2 are unifiable by an mgu
σ which in particular replaces xγ by r2/γ. Now we have (l3/γ)σ = r2/γ, which is neither
a variable nor a ground term by assumption. This concludes that R is not a GSM-TRS.
In a similar way, we can show that if any pair of rules in R satisfy the condition 2 of the
definition of sticking-out graph, then R is not a GSM-TRS. �

Theorem 4.2 The class of RL-FPO-TRS properly includes the class of RL-GSM-TRS.

Proof. The class of RL-FPO-TRS includes the class of RL-GSM-TRS by Lemma 4.1.
TRS R1 in Example 4.1 is RL-FPO but not GSM. If we take l1 = f(x, a), r2 = f(g(y), b),
α = β = λ and l3 = f(x, z), then r2 and l3 are unifiable by an mgu σ = {x �→ g(y), z �→ b}.
Let γ = 1, then l1/α · γ = l1/1 is a variable x while (l3/γ)σ = g(y) is neither a variable nor
a ground term. Therefore R1 is not a GSM-TRS. �

5 Construction of tree automata In this section, we will show that every RL-FPO-
TRS R belongs to EPR-TRS by constructing a TA A∗ such that L(A∗) = (→∗

R)(L(A)) for
a given TA A.

To deal with non-left-linear TRS, we need to construct a kind of product automata
whose states are Cartesian products of sets of terms. To represent such a Cartesian product
and a usual first-order term in a uniform way, we introduce a packed state. Intuitively, a
packed state is an extension of a first-order term such that a finite set of terms, rather than
a single term, occurs at a subterm position. For a signature F and a finite set Q, the set of
packed states , denoted PF ,Q, is defined as follows:

1. If q ∈ Q, then {q} ∈ PF ,Q.

2. If f ∈ F and p1, . . . , pa(f) ∈ PF ,Q, then {f (p1, . . . , pa(f))} ∈ PF ,Q.

3. If p1, p2 ∈ PF ,Q, then p1 ∪ p2 ∈ PF ,Q.

For the readability, a packed state {t1, . . . , tn} is written as 〈t1, . . . , tn〉. For example, let
F = {f, g} with a(f) = 2 and a(g) = 1 and Q = {q1, q2}. For example, we can easily verify
that 〈f(〈q1〉, 〈q2〉), g(〈g(〈q1〉), 〈q2〉〉)〉 belongs to PF ,Q.

Procedure 5.1 (Tree automata Construction)

Input: a TA A = (F ,Q,Qfinal , ∆) and an RL-TRS R

Output: a TA A∗ such that L(A∗) = (→∗
R)(L(A))

Step 1. Add a new state qany to Q and add a transition rule f(qany , . . . , qany)→ qany to ∆
for each f in F . Obviously, t �∗A qany for any t ∈ T (F). Let A0 = (F ,Q0,Q0

final , ∆0)
be a “packed” version of A where Q0 = {〈q〉 | q ∈ Q} ⊆ PF ,Q, Q0

final = {〈q〉 | q ∈

RL-FPO-TRS IS EPR-TRS 7

Qfinal}, and ∆0 = {f (〈q1〉, . . . , 〈qn〉) → 〈q〉 | f(q1, . . . , qn) → q ∈ ∆} ∪ {〈q′〉 → 〈q〉 |
q′ → q ∈ ∆}.

Step 2. Let k = 0. This k is used as a loop counter.

Step 3. Let Qk+1 = Qk and ∆k+1 = ∆k.

Step 4. The set of transition rules is modified in this step. Let l → r be a rewrite rule in
R. Assume l has m variables x1, . . . , xm and xi (1 ≤ i ≤ m) occurs for γi times at
positions oij (1 ≤ j ≤ γi) in l. Also assume xi occurs at oi in r for xi ∈ Var(r). If
there are states pij , p ∈ Qk with 1 ≤ i ≤ m, 1 ≤ j ≤ γi,

l[oij ← pij | 1 ≤ i ≤ m, 1 ≤ j ≤ γi] �∗k p(5.1)

and
Lpi1(Ak) ∩ · · · ∩ Lpiγi

(Ak) �= ∅(5.2)

for 1 ≤ i ≤ m, then add

pi =
⋃

1≤j≤γi

pij (1 ≤ i ≤ m)(5.3)

to Qk+1 as new states and let ρ = {xi �→ pi | 1 ≤ i ≤ m} ∪ {x �→ 〈qany〉 | x ∈
Var(r) \ Var(l)}. If r is a variable, then let trρ = rρ. Otherwise, let trρ = 〈rρ〉. Do
the following (a) through (c).

(a) Add trρ → p to ∆k+1.

(b) Let p = 〈t1, . . . , tn〉. Add trρ → 〈ti〉 to ∆k+1 for 1 ≤ i ≤ n. A transition rule
defined in (a) or (b) is called a rewriting transition rule of degree k + 1 and if
a move of the TA is caused by such a rule, then the move is called a proper
rewriting move of degree k + 1.

(c) Execute ADDTRANS(trρ). In ADDTRANS(trρ), new states and transition
rules are defined so that rρ �∗k+1 trρ.

Simultaneously execute this Step 4 for every rewrite rule and every tuple of states
that satisfy conditions (5.1) and (5.2).

Step 5. Continue the loop until ∆k+1 = ∆k. If ∆k+1 �= ∆k, then k = k + 1 and go to
Step 3.

Step 6. Output Ak as A∗. �

Procedure 5.2 [ADDTRANS] This procedure takes a packed state p as an input. If p
has already been defined as a state, then the procedure performs nothing. Otherwise, the
procedure first defines p as a new state of Qk+1 and also defines transition rules as follows.
It is required that if p = 〈t1, . . . , tn〉 (n ≥ 2), then each 〈ti〉 has been defined as a state.

Case 1. If p = 〈c〉 with c a constant, then define c→ 〈c〉 as a transition rule.

Case 2. If p = 〈f(p1, . . . , pa(f))〉 with f ∈ F , then define f(p′1, . . . , p
′
a(f))→ p as a transition

rule where p′i = pi if pi is a state, otherwise p′i = 〈pi〉 for 1 ≤ i ≤ a(f) and execute
ADDTRANS(p′i) for 1 ≤ i ≤ a(f).

Case 3. If p = 〈t1, . . . , tn〉 (n ≥ 2), then do the following (i) through (iii).

8 T. TAKAI, Y. KAJI AND H. SEKI

new rule
(b) a new rule defined in (iii)(a) a new rule defined in (ii)

new rule

1p’’=<t , ... , p’

1=<t , ... , p0p

f(p
21

, ... , p
2a(f)

) p2

f(p
11

, ... , p
1a(f)

) p1

f(p
n1

, ... , p
na(f)

) pn

f(p
1

, ... , p
a(f)

) p

n, ... ,t >

n, ... ,t >

’ ’

Figure 3: The new rules introduced by ADDTRANS.

(i) Define new ε-rules p→ 〈ti〉 for 1 ≤ i ≤ n.

(ii) For each transition rule of the form p′ → p0 (p′, p0 ∈ Qk, p0 ⊆ p), define a new
ε-rule p′′ → p and execute ADDTRANS(p′′) where p′′ is the state defined as
p′′ = (p \ p0)∪ p′ (see Fig. 3(a)). In this case, if p′ → p0 is a rewriting transition
rule of degree k′, then we call the new rule a non-proper rewriting transition rule
of degree k′. If a move of the TA is caused by this new rule, then the move is
also called a non-proper rewriting move of degree k′.

(iii) If there are states p1, . . . , pn and a function symbol f such that p =
⋃

1≤i≤n pi and
f(pi1, . . . , pia(f))→ pi ∈ ∆k for 1 ≤ i ≤ n, then define new rules f(p′1, . . . , p

′
a(f))

→ p and f(p′1, . . . , p
′
a(f)) → 〈ti〉 for 1 ≤ i ≤ n and execute ADDTRANS(p′j)

where p′j =
⋃

1≤i≤n pij for 1 ≤ j ≤ a(f) (see Fig. 3(b)). �

Example 5.1 Let A = (F ,Q,Qfinal , ∆) be a TA where F = {f, g, h, c} with a(f) = 2,
a(g) = a(h) = 1 and a(c) = 0, Q = { q0, q1, q′0, q′1, q′2, qf}, Qfinal = {qf} and ∆ consists of
the following transition rules:

c→ q0, h(q0)→ q1, h(q1)→ q0,
c→ q′0, h(q′0)→ q′1, h(q′1)→ q′2, h(q′2)→ q′0,
f(q0, q

′
0)→ qf .

It can be easily verified that L(A) = {f (h2m(c), h3n(c)) | m, n ≥ 0}. Let R = {f (x, x) →
g(x), g(x) → x}. R is an RL-FPO-TRS. We apply Procedure 5.1 to A and R. Consider
the rewrite rule f(x, x)→ g(x) in Step 4 for A0(k = 0). Since a move f(〈q0〉, 〈q′0〉) �0 〈qf 〉
is possible, new transition rules

〈g(〈q0, q
′
0〉)〉 → 〈qf 〉(5.4)

g(〈q0, q
′
0〉) → 〈g(〈q0, q

′
0〉)〉(5.5)

c → 〈q0, q
′
0〉(5.6)

h(〈q1, q
′
2〉) → 〈q0, q

′
0〉

h(〈q0, q
′
1〉) → 〈q1, q

′
2〉

h(〈q1, q
′
0〉) → 〈q0, q

′
1〉

h(〈q0, q
′
2〉) → 〈q1, q

′
0〉

h(〈q1, q
′
1〉) → 〈q0, q

′
2〉

h(〈q0, q
′
0〉) → 〈q1, q

′
1〉

RL-FPO-TRS IS EPR-TRS 9

are added to ∆1 where ADDTRANS is recursively executed for the underlined subterms.
The transition rule (5.4) is defined in Step 4 and (5.5) is added in Case 2 of ADDTRANS.
When ADDTRANS(〈q0, q

′
0〉) is executed, the Case 3(iii) is applied to the input and the

rule (5.6) is added by using the rules c → q0 and c → q′0. The others are also added in
Case 3(iii) of ADDTRANS(〈q0, q

′
0〉) and in its recursive execution. Next, consider the

rewrite rule g(x)→ x in Step 4 for A1 (k = 1). Since

g(〈q0, q
′
0〉) �1 〈g(〈q0, q

′
0〉)〉 �1 〈qf 〉,

〈q0, q
′
0〉 → 〈qf 〉 is added to ∆2. Thus we obtain

h(h(h(h(h(h(c)))))) �∗2 〈q0, q
′
0〉 �2 〈qf 〉

and hence h(h(h(h(h(h(c)))))) ∈ L(A2). We can verify that A3 = A2 (= A∗) and L(A∗) =
(→∗

R)(L(A)) = {g(h6n(c)) | n ≥ 0} ∪ {h6n(c) | n ≥ 0} ∪ L(A). �

5.1 Soundness

Lemma 5.1 For any k ≥ 0 and a state q ∈ Qfinal , Lq(Ak) ⊆ (→∗
R)(Lq(A0)). �

In order to prove Lemma 5.1, we need a kind of translation between TRSs which translates a
non-left-linear TRS R to a left-linear conditional TRS which simulates R in the sense stated
in Lemma 7.1. This translation is called linearization. We will postpone the definition and
properties of linearization and the proof of Lemma 5.1 to Section 7.

5.2 Completeness First we prove two technical lemmas concerning packed states.

Lemma 5.2 For a positive integer n and states pi, 〈ti〉 (1 ≤ i ≤ n) in Qk, if there is a state
〈t1, . . . , tn〉 in Qk and pi �∗k 〈ti〉 for 1 ≤ i ≤ n, then p �∗k 〈t1, . . . , tn〉 where p =

⋃
1≤i≤n pi.

Proof. If n = 1, then the lemma holds obviously. Consider the case n ≥ 2. Assume that
for each 1 ≤ i ≤ n, pi = pi0 �k pi1 �k · · · �k pili = 〈ti〉 for some li ≥ 0 and 〈t1, . . . , tn〉 ∈ Qk.
If li = 0 for every 1 ≤ i ≤ n, the lemma holds obviously. Assume that li ≥ 1 for a particular
i. Then pili−1 → 〈ti〉 ∈ ∆k. Since 〈t1, . . . , tn〉 ∈ Qk, ADDTRANS(〈t1, . . . , tn〉) has
been executed in Procedure 5.1 and a new ε-rule p′ → 〈t1, . . . , tn〉 is defined in Case 3(ii)
where p′ = (〈t1, . . . , tn〉 \ 〈ti〉)∪ pili−1 = 〈t1, . . . , ti−1, ti+1, . . . , tn〉 ∪ pili−1 . Hence, the move
〈t1, . . . , ti−1, ti+1, . . . , tn〉 ∪ pili−1 � 〈t1, . . . , tn〉 is possible and ADDTRANS(〈t1, . . . , ti−1,
ti+1, . . . , tn〉 ∪ pili−1) is recursively executed. Repeating the above argument, we have p(=⋃

1≤i≤n pi) �∗ 〈t1, . . . , tn〉. �

Lemma 5.3 For an F-term s, and states 〈ti〉 ∈ Qk with 1 ≤ i ≤ n, if s �∗k 〈ti〉 for
1 ≤ i ≤ n and 〈t1, . . . , tn〉 ∈ Qk, then s �∗k 〈t1, . . . , tn〉.

Proof. The lemma is shown by induction on the depth of the term s. If s = c with
a(c) = 0, then the sequence s �∗k 〈ti〉 can be written as

c �k pi �∗k 〈ti〉 (1 ≤ i ≤ n)(5.7)

for some pi ∈ Qk. Since pi �∗k 〈ti〉 for 1 ≤ i ≤ n, we obtain p �∗k 〈t1, . . . , tn〉 where
p =

⋃
1≤i≤n pi by Lemma 5.2. Since c → pi ∈ ∆k and p ∈ Qk, the transition rule c → p is

defined by Case 3(iii) of ADDTRANS(p). Therefore c �k p �∗k 〈t1, . . . , tn〉.
Assume that the lemma holds for every term with depth l − 1 or less, and consider a

term s = f(s1, . . . , sa(f)) with depth l. The sequence s �∗k 〈ti〉 can be written as

s �∗k f(pi1, . . . , pia(f)) �k pi �∗k 〈ti〉 (1 ≤ i ≤ n)(5.8)

10 T. TAKAI, Y. KAJI AND H. SEKI

where pij (1 ≤ j ≤ a(f)) and pi are states. This implies sj �∗k pij for 1 ≤ i ≤ n and
1 ≤ j ≤ a(f), and therefore sj �∗k

⋃
1≤i≤n pij for 1 ≤ j ≤ a(f) by the induction hypothesis.

Hence, the sequence
s �∗k f(

⋃
1≤i≤n

pi1, . . . ,
⋃

1≤i≤n

pia(f))(5.9)

is possible. On the other hand, since all the moves in the sequence pi �∗k 〈ti〉 for 1 ≤ i ≤ n
of (5.8) are ε-moves, transition rules are defined so that the sequence

p �∗k 〈t1, . . . , tn〉(5.10)

where p =
⋃

1≤i≤n pi is possible by means of Lemma 5.2. Furthermore, by the move
f(pi1, . . . , pia(f)) �k pi with 1 ≤ i ≤ n of (5.8) and by Case 3(iii) of ADDTRANS(p), the
transition rule

f(
⋃

1≤i≤n

pi1, . . . ,
⋃

1≤i≤n

pia(f))→ p(5.11)

is defined. Summarizing (5.9),(5.10) and (5.11), we obtain s �∗k 〈t1, . . . , tn〉. �

The next lemma establishes the completeness of Procedure 5.1.

Lemma 5.4 For a term s ∈ (→∗
R)(L(A)), there is an integer k such that s ∈ L(Ak).

Proof. It suffices to show that for a state p ∈ Q0, if s′ →∗
R s and s′ ∈ Lp(A0), then there is

an integer k such that s ∈ Lp(Ak), or equivalently, s �∗k p. The claim is shown by induction
on the length of the derivation s′ →∗

R s. For the basis s′ = s, the claim holds obviously. If
s′ →+

R s, then there is a term u such that s′ →∗
R u→R s. By induction hypothesis applied

to s′ →∗
R u, we have an integer k′ such that u �∗k′ p. Moreover, since u →R s there is a

rewrite rule l → r ∈ R, a substitution σ, and a position o ∈ Pos(u) such that u/o = lσ and
s = u[o← rσ]. Hence, there is a state p′ ∈ Qk′ such that u = u[o← lσ] �∗k′ u[o← p′] �∗k′ p
and we have

lσ �∗k′ p′.(5.12)

Now, let us show that rσ �∗k′+1 p′. Assume that l has m variables x1, . . . , xm and the
variable xi has γi occurrences in l at oij ∈ Pos(l). By (5.12) there are states pij for
1 ≤ i ≤ m and 1 ≤ j ≤ γi such that

xiσ �∗k′ pij(5.13)

and
l[oij ← pij | 1 ≤ i ≤ m, 1 ≤ j ≤ γi] �∗k′ p′.(5.14)

The sequence (5.13) means that xiσ ∈ Lpi1(Ak′) ∩ · · · ∩ Lpiγi
(Ak′) and we have

Lpi1(Ak′) ∩ · · · ∩ Lpiγi
(Ak′) �= ∅(5.15)

for 1 ≤ i ≤ m. By (5.14) and (5.15), a substitution ρ = {xi �→ pi | 1 ≤ i ≤ m} ∪ {x �→
〈qany〉 | x ∈ Var(r) \ Var(l)} is defined in Step 4 of Procedure 5.1. By Lemma 5.3, each pi

in the co-domain of ρ satisfies

Lpi1(Ak′+1) ∩ · · · ∩ Lpiγi
(Ak′+1) ⊆ Lpi(Ak′+1)(5.16)

for 1 ≤ i ≤ m and transition rules are defined by ADDTRANS to satisfy that

rρ �∗k′+1 p′.(5.17)

RL-FPO-TRS IS EPR-TRS 11

By (5.13) and (5.16), we have

xiσ �∗k′+1 pi (1 ≤ i ≤ m).(5.18)

Summarizing (5.17) and (5.18), we have rσ �∗k′+1 p′, and the lemma holds since s = u[o←
rσ] �∗k′+1 u[o← p′] �∗k′ p. �

By Lemma 5.1 and Lemma 5.4, we obtain the following theorem, which states the
partial correctness of Procedure 5.1.

Theorem 5.5 For an RL-TRS R, if Procedure 5.1 halts then L(A∗) = (→∗
R)(L(A)). �

5.3 Termination of Procedure 5.1 We show that if an RL-FPO-TRS is given to Pro-
cedure 5.1, then there is an upper-bound limit on the number of states which are newly
defined. Once the set of states saturates, then the set of transition rules also saturates and
the procedure halts. First, as a measure of the size of a state, we introduce the concept of
the layer of a packed state. Intuitively, the number of layers of a packed state is the number
of right-hand sides of rewrite rules which are used for defining the state. For a packed state
p ∈ Qk, define the number of layers of p, denoted layer(p), as follows:

(1) if p ∈ Q0 or p = 〈t〉 with t a ground subterm of a rewrite rule in R, then layer(p) = 0,

(2) if p = p1 ∪ p2, then layer(p) = max{layer(p1), layer(p2)}, and

(3) if p = 〈rσ/o〉 with l → r ∈ R, o ∈ Pos(r), r/o is not a variable, Var(r/o) =
{x1, . . . , xn} and σ = {xi �→ pi | 1 ≤ i ≤ n}, then layer(p) = 1 + max{layer(pi) |
1 ≤ i ≤ n}.

Remark that layer(p) is not defined for all packed states, but all packed states introduced in
Procedure 5.1 are of the form (1), (2) or (3). Also remark that layer(p) is not always uniquely
determined by this definition. If different values are defined as layer(p), then we choose the
minimum among the values as layer(p). We note that in (3) above if xi ∈ Var(r) \ Var(l),
then pi = 〈qany 〉 and layer(pi) = 0. This means that variables which occurs only in the
right-hand side are ignored for defining the number of layers.

Example 5.2 Consider the states of the TAs in Example 5.1. Let l → r = f(x, x) →
g(x) ∈ R, o = λ and σ = {x �→ 〈q0, q

′
0〉} in the above definition (3). Then, p = 〈rσ/o〉 =

〈g(〈q0, q
′
0〉)〉 and layer(p) = layer(〈q0, q

′
0〉) + 1 = max{layer(〈q0〉), layer(〈q′0〉)}+ 1 = 1. �

Lemma 5.6 For any non-negative integer j, the number of packed states which have j or
less layers is finite.

Proof. The lemma will be shown by induction on j. For the base case, the number of the
states that have 0 layer is finite, since the number of the states of Q0 and the number of
the states that are made from ground subterms of the right-hand sides of a given TRS are
finite.

Assume that the number of states that have n− 1 or less layers is finite and show it is
also true for the case that j = n. In Procedure 5.1, there are four cases when a new state
which has n layers is added.

1. In Step 4 of Procedure 5.1, a state which is defined as pi =
⋃

1≤j≤γi
pij in (5.3) is

added.

2. In Step 4(c) of Procedure 5.1, a new state trρ is added.

3. In Case 2 of Procedure 5.2, a new state p′i is added.

12 T. TAKAI, Y. KAJI AND H. SEKI

4. In Case 3(ii) of Procedure 5.2, a new state p′′ = (p′ \ p0) ∪ p′ is added.

5. In Case 3(iii) of Procedure 5.2, a new state p′j =
⋃

1≤i≤n pij is added.

From the inductive hypothesis and the definition (3) of the number of layers, there exists
a number k′ such that case 2 does not take place at any loop counter k′′ for k′′ ≥ k′ in
Procedure 5.1. Let Q̃k′ = {t | t ∈ p, p ∈ Qk′}. (Note that a packed state itself is a set.)
A new state which is added in case 1, 3, 4, or 5 is a subset of Q̃k′ . Since Qk′ is finite, the
number of subsets of Q̃k′ is also finite. Hence the lemma holds. �

In the following, it is shown that if R is an RL-FPO-TRS, then layer(p) ≤ |R| for any
state p defined by Procedure 5.1 where |R| is the number of rewrite rules in R. An outline
of the proof is as follows. First we associate each rule in R with a non-negative integer
called a rank. If R is finite path overlapping, then the rank is well-defined and is less than
|R|. Next, it is shown that if a rewrite rule with rank j is used in Step 4 of Procedure 5.1,
then layer(p) ≤ j + 1 for any state p defined in the same step. The rank of a rule in R is
defined based on the sticking-out graph G = (V, E) of R. Let v be the vertex of G which
corresponds to a rewrite rule l → r in R. The rank of l → r is the maximum weight of a
path to v from any vertex in V . If R is finite path overlapping, then the rank of any rewrite
rule is a non-negative integer less than |R|. For R1 in Example 4.1, the ranks of p1 and p2

are one and zero, respectively, since there is an edge with weight one from p2 to p1.

Lemma 5.7 Let l → r be a rewrite rule and ρ = {xi �→ pi | 1 ≤ i ≤ m} ∪ {x �→ 〈qany〉 |
x ∈ Var(r) \ Var(l)} be a substitution which are used in Step 4 of Procedure 5.1. If the rank
of l → r is j or less, then layer(pi) ≤ j for each 1 ≤ i ≤ m. �

Before presenting a proof of the lemma, we first see how the number of layers of the state
changes by a move of the TA. A transition rule of the TA is either an ε-rule or a non-ε-rule.
An ε-rule is either an ε-rule of the original TA A0 or a rule defined in Step 4(a) or (b) of
Procedure 5.1, or a rule defined in Case 3(i) or (ii) of ADDTRANS procedure. If an ε-rule
of the original automaton is used at a move, then the number of layer does not change at
the move. A non-ε-rule is either a non-ε-rule of A0, or a rule defined in Cases 1, 2 or 3(iii)
of ADDTRANS. In all cases, the maximum number of layers in a state is increased by
one or not changed by a move (Lemma 5.8). Hence, if the number of layers decreases at a
move, then the rule is an ε-rule defined in Step 4(a) or (b) of Procedure 5.1 or in Case 3(ii)
of ADDTRANS.

Lemma 5.8 For a non-ε-rule f(p1, . . . , pa(f)) → p ∈ ∆k (a(f) ≥ 1), let m = max{
layer(pj) | 1 ≤ j ≤ a(f)}. Then, m ≤ layer(p) ≤ m + 1.

Proof. By induction on k. A non-ε-rule is introduced either Step 1 of Procedure 5.1, or
Case 1, Case 2, or Case 3(iii) of ADDTRANS. If f(p1, . . . , pa(f)) → p is introduced in
Step 1, then max{layer(pi) | 1 ≤ i ≤ a(f)} = 0 and layer(p) = 0. Thus the lemma holds.
If c → 〈c〉 is introduced in Case 1 of ADDTRANS, then the lemma holds vacuously.
Assume that f(p1, . . . , pa(f)) → p = 〈f(p1, . . . , pa(f))〉 is introduced in Case 2. Then there
exists a rewrite rule l → r and a Qk-substitution ρ which satisfies (5.1) and (5.2) such that
(r/o)ρ = f(p1, . . . , pa(f)) for some o ∈ Pos(r). Let m = max{layer(pj) | 1 ≤ j ≤ a(f)}.
By definition of layer(·), layer(p) = m. Assume that f(p1, . . . , pa(f)) → p is introduced in
Case 3(iii). Let

m = max{layer(pj) | 1 ≤ j ≤ a(f)}
= max{layer(pij) | 1 ≤ i ≤ n, 1 ≤ j ≤ a(f)}.

RL-FPO-TRS IS EPR-TRS 13

o11 o11 o11 o11

j+1 j+1 j+1 j+1

number of layers

o o′ o λ o′ λ

1(a) 1(b) 2(a) 2(b)

� � � �

Figure 4: The number of layers of a state of Ak in the sequence (5.1).

There are two cases for each 1 ≤ i ≤ n. If layer(pij) = m for some j (1 ≤ j ≤ a(f)),
then m ≤ layer(〈ti〉) ≤ m + 1 by the inductive hypothesis. If layer(pij) < m for each j
(1 ≤ j ≤ a(f)), then layer(〈ti〉) ≤ m by the inductive hypothesis. Hence, m ≤ layer(p) =
max{layer(〈ti〉) | 1 ≤ i ≤ n} ≤ m + 1. �

Proof of Lemma 5.7 The proof is by induction on the loop variable k of Procedure 5.1.
When k = 0, every state belongs to Q0 and layer(pi) = 0 for 1 ≤ i ≤ n, and the lemma holds
for any j. Assume that the lemma holds for k ≤ n− 1, and consider the case with k = n.
The inductive part is shown by contradiction. Without loss of generality, let p1 be a state
such that layer(p1) ≥ j+1. Since p1 =

⋃
1≤l≤γ1

p1l, layer(p1) = max{layer(p1l) | 1 ≤ l ≤ γ1}
by the definition of layer(·). We can assume p11 is the state such that layer(p11) ≥ j + 1
without loss of generality. Let us consider the sequence (5.1) in Step 4 of Procedure 5.1 and
observe how the number of layers of the state changes as the head of Ak moves from o11 to
the root in the sequence (5.1) of moves. There are four different cases:

1. A rewriting move is caused at a certain position. Let o be the innermost position
among such positions. There are two different subcases:

(a) The number of layers does not increase at any o′ with o ≺ o′ ≺ o11.

(b) There is a position o′ with o ≺ o′ ≺ o11 such that the number of layers increases
at o′.

2. There are no rewriting moves in the sequence. There are two subcases:

(a) The number of layers does not increase at any o′ with λ ≺ o′ ≺ o11.

(b) There is a position o′ with λ ≺ o′ ≺ o11 such that the number of layers increases
at o′.

These four cases are illustrated in Fig. 4.
Assume that the number of layers changes as in case 1(a) above. In this case we can

derive a contradiction as follows. First we assume a rewriting move at position o is proper
and let l′ → r′ be the rewrite rule used for defining this transition rule in Step 4 of Pro-
cedure 5.1. Then, the state just before this rewriting move occurs at o can be written as
〈r′ρ′〉. Remark that layer(〈r′ρ′〉) = layer(p11) ≥ j + 1 since the number of layers does not
change at any o′ (o ≺ o′ ≺ o11). This implies that the Qk-substitution ρ′ replaces a variable
in r′ with a state which has j or more layers (see the definition (3) of the number of layers).
Therefore, by using the inductive hypothesis, the rule l′ → r′ must have rank j or more. On
the other hand, the fact that the number of layers does not increase at o′ with o ≺ o′ ≺ o11

implies that r′ properly sticks out of l/o as follows.

14 T. TAKAI, Y. KAJI AND H. SEKI

Consider the moves of the TA from the position o11 to o. Since o is the inner most
position among the positions where rewriting moves are caused, all moves at o′ (o ≺ o′
 o11)
are defined by ADDTRANS. By the construction of transition rules in ADDTRANS,
it follows that the function symbol of l at the position o · o′′ is the same as the function
symbol of r′ at o for every o such that o · o′′ ≺ o11. Furthermore, it can be easily shown
that when the head visits the position o · o′′(o · o′′
 o11) of l, the state 〈r′ρ′/o′′〉 is attached
to that head. Thereby, at the variable position o11, 〈r′ρ′/o′′〉 was attached where o′′ is such
that o · o′′ = o11, and this is the state p11. Intuitively saying, the head goes up l along
the path from o11 to o by changing the state from p11 to 〈f(. . . , p11, . . .)〉 where f is the
scanned symbol. This implies that r′ properly sticks out of l/o by Case 1 of the definition
of the sticking-out graph (Definition 4.1). We have observed that the rank of l′ → r′ is j or
more, and thus the rank of l→ r must be defined to be j + 1 or more, a contradiction.

Next consider the case that the first rewriting transition rule used at o is defined in
Case 3(ii) of ADDTRANS and let the rule be p′′ → p such that p′′ = (p \ p0) ∪ p′ and
p0 ⊆ p for some rewriting transition rule p′ → p0. The rewriting transition rule p′ → p0

is either proper or non-proper. Assume p′ → p0 is proper, then p′ can be written as 〈r′ρ′〉
for some rewrite rule l′ → r′ and some Qk-substitution ρ′. From the fact that there is no
rewriting move from o11 to o we can see that for every position o′′ with o · o′′
 o11 when
the head visits the position o · o′′ in l, a packed state which has r′ρ′/o′′ as an element is
attached to that head. Moreover from the construction of a non-ε-rule whose right-hand
side has more than one element (Case 3(iii) of ADDTRANS), the function symbol at o ·o′′
(o·o′′ ≺ o11) in l coincides with the one in r′ at o′′. This implies that r′ properly sticks out of
l/o by Case 1 of the definition of sticking-out graph (Definition 4.1). By using this fact, we
can derive a contradiction in the same way as in the case when the rule used at o is proper.
Even if p′ → p0 is non-proper, it is easy to see that there is a proper rewriting transition
rule whose left-hand side is included in p′′ and again a contradiction can be derived.

For other Cases 1(b), 2(a) and 2(b), we can derive a contradiction in a similar way
(See the appendix). Thereby, it cannot happen that layer(p1) ≥ j + 1 and the induction
completes. �

For an RL-FPO-TRS R, the rank of every rule is less than |R| and hence the number
of layers of any packed state is |R| or less by Lemma 5.7. By Lemma 5.6, the number of
packed states is finite and the following theorem holds.

Theorem 5.9 Procedure 5.1 halts for an RL-FPO-TRS. �

In general, the running time of Procedure 5.1 is exponential to both of the size of a TRS R
and the size of a TA A.

Corollary 5.10 LL-G-TRS−1 ⊂ RL-GSM-TRS ⊂ RL-FPO-TRS ⊂ EPR-TRS.

Proof. LL-G-TRS−1 ⊂ RL-GSM-TRS can easily be shown by definition. RL-GSM-TRS
⊂ RL-FPO-TRS is by Theorem 4.2. RL-FPO-TRS ⊂ EPR-TRS is by Theorems 5.5 and
5.9. �

Corollary 5.10 implies that the conjecture in [7] is true, which says that right-linear
semi-monadic term rewriting systems effectively preserve recognizability.

6 Decidable Approximations In this section, we investigate decidable approximations
of TRS along the lines of [4, 10, 12]. A TRS R′ is an approximation of a TRS R if
→∗

R ⊆ →∗
R′ and NFR = NFR′ . An approximation mapping α is a mapping from TRSs to

TRSs such that α(R) is an approximation of R for any TRS R. For a class C of TRSs, a C

RL-FPO-TRS IS EPR-TRS 15

approximation mapping is an approximation mapping such that α(R) ∈ C for every TRS
R.

In 1996, Jacquemard[10] introduced a linear growing approximation mapping. Later
Nagaya and Toyama[12] introduced a better approximation called a left-linear growing
approximation mapping and presented decidable results on them. An RL-FPO−1-TRS
approximation mapping α is such that for a TRS R, α replaces some variables in the right-
hand side r2 of a rewrite rule l2 → r2 in R−1 with a new variable which is not in Var(l2),
so that r2 cannot contribute to an edge in the sticking-out graph of α(R−1). For example,
replacing variable x with x′ in the right-hand side of the rule in R2 of Example 4.1 yields an
RL-FPO−1-TRS approximation of R−1

2 . The following results are a generalization of [12].
Let α be an approximation mapping and Ω be a fresh constant. A redex at a position

o in t ∈ T (F) is α-needed if there exists no s ∈ NFR such that t[o ← Ω] →∗
α(R) s and s

contains no Ω. This definition is due to [4]. If R is orthogonal, then every α-needed redex
is a needed redex in the sense of Huet and Lévy [9]. Let CBN-NFα = {R | every term
t �∈ NFR has an α-needed redex }. By Theorems 15 and 29 in [4] and Lemma 2.1 of this
paper, the following theorem holds.

Theorem 6.1 Let R be a left-linear TRS and α be an EPR−1-TRS approximation map-
ping. Then the following problems are decidable. (1) Is a given redex in a given term
α-needed? (2) Is R in CBN-NFα? �

Corollary 6.2 Let R be an orthogonal TRS in EPR−1-TRS which satisfies the variable
restriction such that l is not a variable and Var(r) ⊆ Var(l) for every l→ r ∈ R. (1) Every
term t �∈ NFR has a needed redex. (2) It is decidable whether a given redex in a given term
is needed. �

To conclude this section, we provide an orthogonal TRS R in FPO−1-TRS such that there
exists no left-linear growing approximation mapping β which satisfies R ∈ CBN-NFβ .

Example 6.1 LetR = {g(h(x))→ f(x, x, x)}∪R′ be an orthogonal TRS whereR′ consists
of the following five rewrite rules:

f(a, b, x)→ a, f(b, x, a)→ a, f(x, a, b)→ a,
f(a, a, a)→ a, f(b, b, b)→ b.

It can be easily verified that R is in FPO−1-TRS. Every term t �∈ NFR has a needed redex
in R by Corollary 5.10 and Corollary 6.2(1). On the other hand, a left-linear growing
approximation mapping β should be β(R) = {g(h(y))→ f(x, x, x)} ∪ R′ for some variable
y �= x. Consider a term t = f(g(h(a)), g(h(a)), g(h(a))). Obviously, g(h(a)) →∗

β(R) a and
g(h(a))→∗

β(R) b. Hence, t has no β-needed redex. Thus, R �∈ CBN-NFβ. �

7 Linearization In this section, we prove the soundness lemma, Lemma 5.1, of Pro-
cedure 5.1. The procedure can accept some left-non-linear TRSs as an input. Dealing
with non-linear terms is beyond the capability of TAs in general. Here we introduce a
linearization of a non-left-linear TRS in order to deal with non-left-linear TRSs by TAs,

For an RL-TRS R, let nR be the smallest integer such that, for every rewrite rule
l→ r ∈ R, no variable occurs more than nR times in l. Let ∧R = {∧i | 2 ≤ i ≤ nR} be the
set of new function symbols where the arity of ∧i is i. Note that if nR ≤ 1, then ∧R = ∅
by definition. If the subscript i of the function symbol ∧i is clear from the context, then
we may write ∧ instead of ∧i. Also we may write ∧ instead of ∧R. A term in T (F ∪ ∧) is
called a ∧-term.

16 T. TAKAI, Y. KAJI AND H. SEKI

Definition 7.1 For an RL-TRS R, α is a TRS which is defined as α = {∧n(x, . . . , x) →
x | ∧n ∈ ∧R, n ≥ 2}. �

Example 7.1 Let R be {f (x, x) → g(x)}, then α = {∧2(x, x) → x}. For a term s =
g(∧(∧(a, a), a)), s→∗

α g(a). �

Definition 7.2 For an RL-TRS R, a rewrite step →Rα is the smallest relation on ∧-terms
containing the rewrite relation →R on F -terms and closed under contexts on ∧-terms. �

Definition 7.3 For a right-linear rewrite rule l → r, the conditional linearization of l → r
is a conditional rewrite rule defined as follows and written as ∧L(l → r): (1) Let Var(l) =
{x1, . . . , xn}. Assume xi occurs at oij (1 ≤ j ≤ γj) in l and if xi occurs in r then it
occurs at oi. (2) Introduce new variables xij and yi for 1 ≤ i ≤ n and 1 ≤ j ≤ γj . (3)
Define ∧L(l → r) = l[oij ← xij | 1 ≤ i ≤ n, 1 ≤ j ≤ γj] → r[oi ← ∧(xi1, . . . , xiγi) |
for i such that xi occurs in r] with the condition (xij = yi (1 ≤ i ≤ n, 1 ≤ j ≤ γi)). For an
RL-TRS R, define ∧(R) = {∧L(l → r) | l→ r ∈ R}. �

Definition 7.4 For an RL-TRS R, a rewrite step→∧(R) is defined as follows: (1)→∧(R) =
{(s, t) | (s, t) ∈ →∧(R),i for some i}. (2) →∧(R),0 = ∅. (3) →∧(R),i+1 = {(C[lσ], C[rσ]) |
C is a context, l → r(x1 = y1, . . . , xn = yn) is a conditional rewrite rule in ∧(R), σ is a
substitution such that yiσ ∈ T (F) for 1 ≤ i ≤ n and xiσ (→∧(R),i ∪ →α)∗ yiσ } where the
relation (→∧(R),i ∪ →α)∗ is the reflexive and transitive closure of →∧(R),i ∪ →α. We say
s→∧(R),i t is a rewrite step of degree i. �

Definition 7.5 For two ∧-terms s, t and an RL-TRS R, (1) s →α,∧(R) t if s →∗
α · →∧(R)

· →∗
α t, (2) s→α,Rα t if s→∗

α · →Rα · →∗
α t. �

In Definition 7.4, the reason why the domain of yiσ for 1 ≤ i ≤ n is restricted to T (F) is that
if this condition is not assumed, then it may occur that, for two F -terms s and t, s �→∗

R t
but s →∗

∧(R) t. For example, let R = {f (x1, x1, x2, x2) → g(x1, x2), g(x, x) → c′′} ∪ R′

where R′ = {a → c, a → c′, b → c, d → c′, e → c′, e → c} and consider two F -terms
f(a, b, d, e) and c′′. The conditional linearization of R is ∧(R) = {f (x11, x12, x21, x22) →
g(∧(x11, x12),∧(x21, x22)) (x11 = y1, x12 = y1, x21 = y2, x22 = y2), g(x1, x2) → c′′ (x1 =
y, x2 = y)} ∪ R′. If we ignore the condition that the domain of yiσ is restricted to T (F),
then f(a, b, d, e) →∧(R) g(∧(a, b),∧(d, e)) →∗

∧(R) g(∧(c′, c),∧(c′, c)) →∧(R) c′′ holds. On
the other hand, we can see that f(a, b, d, e) �→∗

R c′′.

Definition 7.6 For an RL-TRS R, →α,R∪∧(R) = →α,Rα ∪ →α,∧(R). �

For two terms s, t, if s→1 · · · →n t holds where→i is either →α or →Rα or →∧(R),di
, then

s→α,R∪∧(R) t and we say that max{di | for i such that →i = →∧(R),di
} is the maximum

degree of the sequence s→1 · · · →n t.

Example 7.2 Let R1 = {f (x)→ g(x), h(x, x)→ h′(x)}, then we obtain ∧(R1) = {f (x)→
g(x), h(x1, x2) → h′(∧(x1, x2)) (x1 = y, x2 = y)}. For a ground term h(f(a), g(a)),
h(f(a), g(a)) →α,∧(R1) h′(∧(f(a), g(a))) →∗

α,∧(R1)
h′(g(a)). �

Lemma 7.1 For a ∧-term s, an F-term t and an RL-TRS R, s →∗
α,R∪∧(R) t implies

s→∗
α,Rα

t.

Proof. The proof is shown by induction on the number of maximum degree of the rewrite
sequence s→∗

α,R∪∧(R) t. For the basis, the lemma holds obviously. Assume the lemma holds

RL-FPO-TRS IS EPR-TRS 17

for every sequence whose maximum degree of rewrite steps is n− 1 or less and consider the
case when the maximum degree is n. The inductive part is shown by another induction
on the number of rewrite steps of degree n by →∧(R). Assume the lemma holds for every
sequence whose rewrite steps of degree n by →∧(R) is n′ − 1 or less and consider the case
for n′. A sequence which has n′ rewrite steps of degree n by →∧(R) can be written as:

s →∗
α,R∪∧(R) s′

= s′[o← lσ]
→∧(R) s′[o← rσ]

= t′

→∗
α,R∪∧(R) t(7.1)

where s′, t′ are ∧-terms, s′[o ← lσ] →∧(R) s′[o ← rσ] is the first rewrite step of degree n
by →∧(R), l → r is a rewrite rule in ∧(R), σ is a substitution and o is a position in s′.
Remark that the sequence s′[o← rσ] →∗

α,R∪∧(R) t contains n′− 1 rewrite steps of degree n
by →∧(R). We assume the following:

1. ∧L(l′ → r′) = l → r where l′ → r′ ∈ R.

2. l′ has m variables x1, . . . xm.

3. For 1 ≤ i ≤ m, xi occurs at positions oij (1 ≤ i ≤ γi) in l′ and if xi occurs in r′ then
it occurs at oi.

4. For 1 ≤ i ≤ m and 1 ≤ i ≤ γi, l/oij = xij , which is a new variable for defining l → r
from l′ → r′ in Definition 7.3.

5. σ = {xij �→ tij | 1 ≤ i ≤ m, 1 ≤ j ≤ γi}.

In the following, we define an F -term tk for each xk (1 ≤ k ≤ m).
If xk does not occur in r′, then from the definition of →∧(R) there exists an F -term tk

such that tkj →∗
α,∧(R) tk for 1 ≤ j ≤ γk where the degree of each rewrite step →∧(R) is less

than or equal to n− 1. By the inductive hypothesis for n, we obtain

tkj →∗
α,Rα

tk (1 ≤ j ≤ γk).(7.2)

If xk occurs in r′, then rσ/ok = ∧(tk1, . . . , tkγk
). Consider how the subterm ∧(tk1, . . . ,

tkγk
) of t = s′[o← rσ] is rewritten in the rewrite sequence (7.1). Since t′ is rewritten to a

term t in T (F) (i.e., all the ∧ symbols disappear during the rewriting), there are two cases.

1. The subterms tk1, . . . , tkγk
of ∧(tk1, . . . , tkγk

) are rewritten to an identical term tk in
T (F), i.e. tkj →∗

α,R∪∧(R) tk for 1 ≤ j ≤ γk. By applying the inductive hypothesis
for n′ (when n′ ≥ 2) or the inductive hypothesis for n (when n′ = 1) to these rewrite
sequences, we obtain the relations

tkj →∗
α,Rα

tk (1 ≤ j ≤ γk).(7.3)

2. The term ∧(tk1, . . . , tkγk
) is rewritten to ∧(t′k1, . . . , t

′
kγk

) and disappear in the subse-
quent rewrite steps, i.e.,

t′ = s′[o← rσ[ok ← ∧(tk1, . . . , tkγk
)]]

→∗
α,R∪∧(R) t′′

18 T. TAKAI, Y. KAJI AND H. SEKI

= t′′[o′ ← l′′σ′′]
= t′′[o′ ← l′′σ′′[o′1 ← ∧(t′k1, . . . , t

′
kγk

)]](7.4)
→α,R∪∧(R) t′′[o′ ← r′′σ′′](7.5)
→∗

α,R∪∧(R) t

where t′′ is a ∧-term, o′ is a position in t′′, l′′ → r′′ ∈ ∧(R), σ′′ is a substitution, o′1 is
a position in l′′σ′′ and there is a variable position o′′1 in l′′ such that o′′1 ≤ o′1 and the
variable l′′/o′′1 does not occur in r′′. The rewrite rule l′′ → r′′ must be in ∧(R) since
the co-domain of σ′′ contains function symbols in ∧. The position of the subterm
∧(tk1, . . . , tkγk

) in t′ is o · ok. By the rewrite step (7.5) and the definition of →∧(R),
there is an F -term tk ∈ T (F) such that t′kj →∗

α,∧(R) tk which has only rewrite steps
by →∧(R) of degree n − 1 or less for 1 ≤ j ≤ γk by Definition 7.4. By the inductive
hypothesis for n, we obtain

t′kj →∗
α,Rα

tk.(7.6)

Also from the sequence (7.4), it follows that

tkj →∗
α,R∪∧(R) t′kj (1 ≤ j ≤ γk).(7.7)

From (7.6) and (7.7), we obtain the sequences

tkj →∗
α,R∪∧(R) tk (1 ≤ j ≤ γk)(7.8)

where the numbers of rewrite steps of degree n by →∧(R) are less than or equal to
n′ − 1. By the inductive hypothesis,

tkj →∗
α,Rα

tk (1 ≤ j ≤ γk).(7.9)

It follows from (7.2), (7.3) and (7.9) that

s′ = s′[o← lσ]
= s′[o← l[oij ← tij | 1 ≤ i ≤ m, 1 ≤ j ≤ γi]]

→∗
α,Rα

s′[o← l′σ′](7.10)

where σ′ = {xi �→ ti | 1 ≤ i ≤ m}. Since l′ → r′ ∈ R and ti ∈ T (F) (1 ≤ i ≤ m), we obtain

s′[o← l′σ′]→Rα s′[o← r′σ′](7.11)

by Definition 7.2. Since s′[o ← rσ] →∗
α,R∪∧(R) t and there is no function symbol ∧ in the

left-hand side of any rewrite rule in R∪ ∧(R),

s′[o← r′σ′]→∗
α,R∪∧(R) t,(7.12)

which contains n′−1 or less rewrite steps of degree n by→∧(R). By the relations (7.10),(7.11)
and (7.12), we obtain s→∗

α,R∪∧(R) t where the number of rewrite steps of degree n by→∧(R)

is less than or equal to n′ − 1. By the inductive hypothesis, we obtain s →∗
α,Rα

t and the
lemma holds. �

RL-FPO-TRS IS EPR-TRS 19

7.1 Proof of the soundness lemma Before proving the soundness of Procedure 5.1,
we need some notions concerning with the TA constructed in the procedure.

A state q inQk is singleton if |q| = 1. A transition rule in ∆k is singleton if its right-hand
side is a singleton state. A move caused by a singleton transition rule is called a singleton
move. For a TA Ak and a state q ∈ Qk, let Ak− (q) (resp. Ak•(q)) be the TA obtained from
Ak(q) by removing every rewriting transition rules (resp. non-singleton transition rules).
For an F -term s and a state q ∈ Qk, if s �∗k q without any rewriting moves (resp. non-
singleton moves), then we write s �∗k− q (resp. s �∗k• q). Remark that if s �∗k• q, then the
move does not contain any non-proper rewriting moves since every non-proper rewriting
transition rule is non-sigleton (see Case 3(ii) of ADDTRANS).

For a set ∧ and a TAA = (F ,Q,Qfinal , ∆), the extended TA ∧(A) for T (F∪∧) is defined
as ∧(A) = (F ∪ ∧,Q,Qfinal , ∆ ∪ ∆∧) where ∆∧ = {∧n(q1, . . . , qn) → q,∧n(q1, . . . , qn) →
〈t〉 | ∧n ∈ ∧, q1, . . . , qn ∈ Q, q1∪· · ·∪qn = q ∈ Q, t ∈ q}. A move caused by a transition rule
in ∆∧ is called a ∧-move. For a TA Ak in the procedure, we write �∧,k instead of �∧(Ak).
The TAs A∧,k− , A∧,k• and the relations �∧,k− ,�∧,k• are similarly defined and we will use
their combinations, e.g. �∧,k−,• .

Lemma 7.2 Let r ∈ T (F ,V) be a linear term with m variables x1, . . . , xm at o1, . . . , om,
respectively, s be a ∧-term and ρ be a substitution {xi �→ qi | 1 ≤ i ≤ m} where qi ∈ Qk (1 ≤
i ≤ m). If r is a variable, then let trρ = rρ. Otherwise, let trρ = 〈rρ〉. If trρ ∈ Qk and
s �∗∧,k− trρ, then the sequence can be written as s �∗∧,k− s[oi ← qi | 1 ≤ i ≤ m] �∗∧,k− trρ. �

The next lemma states that if a ∧-term s is accepted by a state q then there is a ∧-term
s′ such that s′ is accepted by q only with singleton moves and s′ can be rewritten to s by
rewrite rule ∧i(x, . . . , x)→ x (i ≥ 2).

Lemma 7.3 For a ∧-term s and a state q ∈ Qk, if s �∗∧,k q, then there is a ∧-term s′ such
that s′ �∗∧,k• q and s′ →∗

α s.

Proof. The proof is shown by induction on the number of non-singleton rewriting moves
in the sequence β: s �∗∧,k q. For the base case, the lemma holds obviously. Assume the
lemma holds for every sequence which has at most n− 1 non-singleton rewriting moves and
consider the case for n. In this case, β can be written as

s �∗∧,k• s[o← t] �k s[o← p] �∗∧,k q(7.13)

where o is in Pos(s), t → p is a non-singleton transition rule and the move s[o ← t] �k

s[o ← p] is the first non-singleton rewriting move in β. Assume p = 〈t1, . . . , tm〉 (m ≥ 2).
There are three cases (1),(2) and (3) for the transition rule t→ p:

(1) If t is of the form f(p1, . . . , pa(f)) where f ∈ F and pi ∈ Qk for 1 ≤ i ≤ a(f), transition
rules t→ 〈ti〉 for 1 ≤ i ≤ m are also defined in Case 3(iii) of ADDTRANS.

(2) If t → p is a proper rewriting transition rule, then t → 〈ti〉 for 1 ≤ i ≤ m are also
defined in Step 4(b) of Procedure 5.1.

Let s′′ = s[o← ∧m(s/o, . . . , s/o)], then in both cases (1) and (2), we have

s′′ �∗∧,k• s[o← ∧m(t, . . . , t)]
�∗k• s[o← ∧m(〈t1〉, . . . , 〈tm〉)]
�∧ s[o←

⋃
1≤i≤m

〈ti〉]

= s[o← p]
�∗∧,k q.(7.14)

20 T. TAKAI, Y. KAJI AND H. SEKI

(3) If t ∈ Qk and the transition rule t → p is defined in Case 3(ii) of ADDTRANS,
there are two cases: Assume that the transition rule t→ p is defined from a transition
rule p′ → p0 such that t = (p \ p0) ∪ p′.

(3a) If p′ → p0 is a singleton transition rule, i.e. |p0| = 1, or p′ → p0 is not a rewriting
transition rule, then it is easy to see that there is a singleton transition rule q′ → q0

such that t = (p \ q0) ∪ q′. (Especially, q′ = p′ and q0 = p0 in the former case.)
Assume q′ = 〈t′1, . . . , t′m′〉 and q0 = 〈t1〉 without loss of generality. Let s′′ = s[o ←
∧m(∧m′(s/o, . . . , s/o), s/o, . . . , s/o)], then we have

s′′ �∗∧,k• s[o← ∧m(∧m′ (t, . . . , t), t, . . . , t)]

�∗∧,k• s[o← ∧m(∧m′ (〈t′1〉, . . . , 〈t′m′〉), 〈t2〉, . . . , 〈tm〉)]
(by Case 3(i) of ADDTRANS)

�∧ s[o← ∧m(
⋃

1≤i≤m′
〈t′i〉, 〈t2〉, . . . , 〈tm〉)]

= s[o← ∧m(q′, 〈t2〉, . . . , 〈tm〉)]
�∧,k• s[o← ∧m(q0, 〈t2〉, . . . , 〈tm〉)]

= s[o← ∧m(〈t1〉, 〈t2〉, . . . , 〈tm〉)]
�∧ s[o←

⋃
1≤i≤m

〈ti〉]

= s[o← p]
�∗∧,k q.(7.15)

Since there are at most n−1 non-singleton rewriting moves in both (7.14) and (7.15),
by the inductive hypothesis, there is a term s′ such that s′ �∗∧,k• q and s′ →∗

α s′′.
Obviously, s′′ →∗

α s and the lemma holds.

(3b) If p′ → p0 is a rewriting transition rule and |p0| ≥ 2, then there are two cases: Assume
p′ = 〈t′1, . . . , t′m′〉 and p \ p0 = 〈tj1 , . . . , tjm′′ 〉 where m′′ = |p| − |p0|.

(i) If |p′| = 1 (i.e., p′ = 〈t′1〉), then for s′′′ = s[o← ∧m′′+1(s/o, . . . , s/o)] we have

s′′′ �∗∧,k• s[o← ∧m′′+1(〈t′1〉, 〈tj1 〉 . . . , 〈tjm′′ 〉)]
�k s[o← ∧m′′+1(p0, 〈tj1〉 . . . , 〈tjm′′ 〉)]

�∧ s[o←
⋃

1≤i≤m′′
〈tji 〉 ∪ p0]

= s[o← p]
�∗∧,k q.(7.16)

(ii) If |p′| > 1, then let

s′′′ = s[o← ∧m′′+1(∧m′ (s/o, . . . , s/o), s/o, . . . , s/o)].

We have

s′′′ �∗∧,k• s[o← ∧m′′+1(∧m′(〈t′1〉, . . . , 〈t′m′〉), 〈tj1〉, . . . , 〈tjm′′ 〉)]

�∧ s[o← ∧m′′+1(
⋃

1≤i≤m′
〈t′i〉, 〈tj1〉, . . . , 〈tjm′′ 〉)]

RL-FPO-TRS IS EPR-TRS 21

= s[o← ∧m′′+1(p′, 〈tj1〉, . . . , 〈tjm′′ 〉)]
�k s[o← ∧m′′+1(p0, 〈tj1〉, . . . , 〈tjm′′ 〉)]
�∧ s[o←

⋃
1≤i≤m′′

〈tji〉 ∪ p0]

= s[o← p]
�∗∧,k q.(7.17)

In both cases (i) and (ii) of (3b), s′′′ →∗
α s holds. If p′ → p0 is a proper rewriting transition

rule, then both sequences of moves (7.16) and (7.17) are of the form in case (2) in this
proof. Otherwise, repeating the same discussion of this case (3), we can finally obtain a
proper rewriting transition rule and a sequence of of the form in case (2). Therefore, we
can show that there is a term s′′ for s′′′ in the moves such that s′′ �∗∧,k q which has at most
n−1 non-singleton rewriting moves and s′′ →∗

α s′′′. Thus the lemma holds by the inductive
hypothesis. �

Definition 7.7 For a ∧-term s and an RL-TRS R, Eα,∧(R)(s) is true if and only if there
is an F -term s′ such that s→∗

α,∧(R) s′. �

Example 7.3 Consider the TRS R1 in Example 7.2. Let a term s = h′(∧(f(a), g(a))),
then Eα,∧(R1)(s) is true. On the other hand, let s′ = h′(∧(f(a), g(c))), then Eα,∧(R1)(s

′) is
false. �

Lemma 7.4 For ∧-terms s, s′ and an RL-TRS R such that Eα,∧(R)(s) is true, if s′ is a
subterm of s or s→∗

α s′, then Eα,∧(R)(s′). �

Lemma 7.5 For a ∧-term s and an RL-TRS R such that Eα,∧(R)(s) is true, and for a state
q ∈ Qk, if s �∗∧,k q, then there exists a ∧-term u′ such that Eα,∧(R)(u′) is true, u′ →∗

α,∧(R) s

and u′ �∗∧,k−,• q.

Proof. By Lemma 7.3, there is a ∧-term sα such that sα →∗
α s and

sα �∗∧,k• q.(7.18)

The proof is shown by induction on the maximum degree of rewriting moves in the sequence
(7.18). For the basis, let u′ = sα and the lemma holds. Assume the lemma holds for every
sequence where the maximum degree of rewriting moves is k−1 or less and consider the case
for k (≥ 1). The inductive part is shown by another induction on the number of rewriting
moves of degree k in the sequence (7.18). Assume the lemma holds for every sequences
which has n − 1 rewriting moves of degree k and consider the case for n. The sequence
(7.18) which has n rewriting moves of degree k can be written as

sα �∗∧,k• sα[o← q′] �k• sα[o← q′′] �∗∧,k• q

where o is a position in s and the move sα[o← q′] �k• sα[o← q′′] is the first rewriting move
of degree k. Remark that the transition rule used in this move is a proper rewriting move
since every singleton rewriting transition rule is proper. Also note that sα[o← q′′] �∗∧,k• q
contains only n−1 rewriting moves of degree k. By the definition of TAs, sα/o �∗∧,k• q′ �k•

q′′. There is no rewriting move of degree k in sα/o �∗∧,k• q′. By the inductive hypothesis on
k, there is a term v such that Eα,∧(R)(v) is true, v →∗

α,∧(R) sα/o and v �∗∧,k−,• q′.
For the sequence β: v �∗∧,k−,• q′ �k• q′′, without loss of generality, assume that

22 T. TAKAI, Y. KAJI AND H. SEKI

1. q′ → q′′ used in the last move in β is defined for a rewrite rule l→ r ∈ R,

2. l has m variables x1, . . . , xm,

3. the variable xi has γi positions in l at oij ∈ Pos(l) (1 ≤ j ≤ γi), and

4. if the variable xi occurs in r, then it occurs at oi ∈ Pos(r).

Let l′ → r′ be ∧L(l → r). Since the last move q′ �k• q′′ is a rewriting move of degree k,
and since it is defined for the rule l → r at Step 4 of Procedure 5.1, there are states pij

(1 ≤ i ≤ m, 1 ≤ j ≤ γi) and q′′0 in Qk−1 such that

l[oij ← pij | 1 ≤ i ≤ m, 1 ≤ j ≤ γi] �∗k−1 q′′0 ,(7.19)

Lpi1(Ak−1) ∩ · · · ∩ Lpiγi
(Ak−1) �= ∅(7.20)

where q′′ = q′′0 or q′′ = 〈t〉 for some t ∈ q′′0 . Furthermore, for the substitution ρ = {xi �→ pi |
for i such that xi occurs in r } where pi =

⋃
1≤j≤γi

pij , if r ∈ V then q′ = rρ else q′ = 〈rρ〉.
By Lemma 7.2, we can write the sequence v �∗∧,k−,• q′ as

v �∗∧,k−,• v[oi ← pi | for i such that xi occurs in r] �∗∧,k−,• q′.(7.21)

Define substitutions σ and σ′ as σ = {xi �→ ui | 1 ≤ i ≤ m} and σ′ = {xij �→ uij | 1 ≤ i ≤
m, 1 ≤ j ≤ γi} where ui and uij with 1 ≤ i ≤ m and 1 ≤ j ≤ γi are defined as follows:

1. If xi occurs in r, then let ui = v/oi. By (7.21) we have ui �∗∧,k−,• pi. If γi > 1,
then the sequence can be written as ui �∗∧,k−,• ∧(pi1, . . . , piγi) �∧ pi. In this case, let
uij = ui/j for 1 ≤ i ≤ m, 1 ≤ j ≤ γi. If γi = 1, then let ui1 = ui. Remark that
rσ = r′σ′. Also, uij �∗∧,k−,• pij holds for 1 ≤ j ≤ γi since ui �∗∧,k−,• pi. By the fact
that Eα,∧(R)(v) is true and by Lemma 7.4,

Eα,∧(R)(ui) is true.(7.22)

2. If xi does not occur in r, then ui is chosen to satisfy ui ∈ Lpi1(Ak−1)∩· · ·∩Lpiγi
(Ak−1),

that is ui �∗k−1 pij (1 ≤ j ≤ γi). Such ui exists by (7.20) and can be found effectively.
By the inductive hypothesis on k, there are terms uij for 1 ≤ j ≤ γi such that
uij →∗

α,∧(R) ui and
uij �∗∧,k−,• pij .(7.23)

In either case 1 or 2, we have

uij �∗∧,k−,• pij (1 ≤ j ≤ γi).(7.24)

Let v′ = l′σ′, then by (7.19) and (7.24), we have

v′ = l′σ′

�∗∧,k−,• l′[oij ← pij | 1 ≤ i ≤ m, 1 ≤ j ≤ γi]

�∗k−1 q′′0 .

In either case q′′ = q′′0 or q′′ = 〈t〉 for some t ∈ q′′0 , we have v′ �∗∧,k−1 q′′. On the other
hand, by (7.22), (7.23) and the fact that (→∧(R),i ∪ →α)∗ ⊆ →∗

α,∧(R) for any i,

v′ = l′σ′ →∧(R) r′σ′ = rσ = v.(7.25)

RL-FPO-TRS IS EPR-TRS 23

That is, v′ →∧(R) v. By the definition of TAs and the discussions above, we obtain

sα[o← v′]→α,∧(R) sα[o← v]→∗
α,∧(R) sα[o← sα/o] = sα(7.26)

and sα[o← v′] �∗∧,k−1 sα[o← q′′] �∗∧,k• q where s[o← q′′] �∗∧,k• q contains n− 1 rewriting
moves of degree k. By the inductive hypothesis on the number of rewriting moves of degree
k (when n > 1) or on the maximum degree of rewriting moves (when n = 1), there is a
∧-term u′ such that Eα,∧(R)(u′) is true,

u′ →∗
α,∧(R) sα[o← v′],(7.27)

and
u′ �∗∧,k−,• q.(7.28)

By (7.26), (7.27) and the fact that sα →∗
α s, we obtain

u′ →∗
α,∧(R) s.(7.29)

By (7.28) and (7.29), the lemma holds. �

Lemma 7.6 For an F-term s, an RL-TRS R and a state q ∈ Qk, if s �∗k q, then there
exists an F-term u such that u→∗

R s and u �∗k− q.

Proof. Suppose s �∗k q for an F -term s ∈ T (F) and q ∈ Qk with |q| = 1. By Lemma 7.5
and the fact that Eα,∧(R)(s), there is a ∧-term u′ such that Eα,∧(R)(u′) is true, u′ →∗

α,∧(R) s

and u′ �∗∧,k−,• q. By Lemma 7.1 and the fact s ∈ T (F), we obtain u′ →∗
α,Rα

s. In the
following, we construct from u′ an F -term u such that u →∗

R s and u �∗k− q by replacing
every subterm of the form ∧m(t1, . . . , tm) where ti ∈ T (F) (1 ≤ i ≤ m) with some term in
{ti | 1 ≤ i ≤ m} from the leaves to the root. Assume u′/o = ∧m(t1, . . . , tm) and ti ∈ T (F)
for 1 ≤ i ≤ m. Since ti ∈ T (F) for 1 ≤ i ≤ m and all moves in the sequence u′ �∗∧,k−,• q
are singleton, we have

u′ �∗k−,• u′[o← ∧m(〈t′1〉, . . . , 〈t′m〉)]
�∧ u′[o← 〈t′1, . . . , t′m〉]
�∗∧,k−,• q(7.30)

where 〈t′i〉 ∈ Qk. Let t → 〈t′〉 ∈ ∆k be the transition rule which is used to consume the
state 〈t′1, . . . , t′m〉 in v in the subsequence of (7.30) from u′[o← 〈t′1, . . . , t′m〉] to q. There are
two cases for t: (1) t = 〈t′1, . . . , t′m〉 and t′ ∈ t and (2) t is of the form f(p1, . . . , pa(f)) where
f ∈ F , pi ∈ Qk with 1 ≤ i ≤ a(f) and 〈t′1, . . . , t′m〉 = p1 without loss of generality. For case
(1), the subsequence of (7.30) from u′[o← 〈t′1, . . . , t′m〉] to q can be written as:

u′[o← 〈t′1, . . . , t′m〉] �k−,•

u′[o← 〈t′n〉] �∗∧,k−,• q(7.31)

for some n (1 ≤ n ≤ m). Let u′′ = u′[o← tn], then we have u′′ �∗k−,• u′[o← 〈t′n〉] �∗∧,k−,• q

by (7.30) and (7.31). For case (2), the subsequence of (7.30) from u′[o← 〈t′1, . . . , t′m〉] to q
can be written as:

u′[o← 〈t′1, . . . , t′m〉] �∗k−,• u′[o′ ← f(〈t′1, . . . , t′m〉, . . . , pa(f))]
= u′[o′ ← f(p1, . . . , pa(f))]

�∧,k−,• u′[o′ ← 〈t′〉]
�∗∧,k−,• q(7.32)

24 T. TAKAI, Y. KAJI AND H. SEKI

where o = o′ · 1. From Step 3(iii) of ADDTRANS, there is a transition rule of the form
f(〈t′′1〉, . . . , 〈t′′a(f)〉)→ 〈t′〉 where t′′i ∈ pi for 1 ≤ i ≤ a(f). Let n′ (1 ≤ n′ ≤ m) be an integer

such that t′′1 = t′n′ and assume that u′ = u′[o′ ← f(to
′

1 , . . . , to
′

a(f))]. Then, by the transition
rules defined in Step 3(i) of ADDTRANS and (7.32), we have

to
′

i �∗k−,• pi �k−,• 〈t′′i 〉 (2 ≤ i ≤ a(f)).(7.33)

Let u′′ = u′[o← tn′]. By (7.30) and (7.33), we have

u′′ = u′[o′ ← f(tn′ , . . . , to
′

a(f))]

�∗k−,• u′[o′ ← f(〈t′n′〉, . . . , 〈t′′a(f)〉)]
= u′[o′ ← f(〈t′′1 〉, . . . , 〈t′′a(f)〉)]
�k−,• u′[o′ ← 〈t′〉]
�∗k−,• q.

On the other hand, consider the rewrite sequence u′ →∗
α,Rα

s. From the fact that no
left-hand side has function symbols in ∧ and s, ti ∈ T (F) with 1 ≤ i ≤ m, and from the
definition of →α,Rα , there is an F -term t0 such that u′ →∗

R u′[o ← ∧m(t0, . . . , t0)] →α

u′[o ← t0] →∗
α,Rα

s where t0 ∈ T (F). From this rewrite sequence, for both cases (1) and
(2), we obtain u′′ →∗

R u′[o ← t0] →∗
α,Rα

s. Repeating the discussions above for every
subterm with a function symbol in ∧, we can obtain an F -term u such that u →∗

R s and
u �∗k− q. �

To show Lemma 5.1, it is sufficient to show that for a term s ∈ T (F) and a state q ∈ Q0,
if s �∗k q, then there exists a term u ∈ T (F) such that u →∗

R s and u �∗k− q. The claim
holds from Lemma 7.6.

8 Conclusion A new class of TRS named finite path overlapping TRS (RL-FPO-TRS)
is proposed. It is shown that an RL-FPO-TRS effectively preserves recognizability, and
that the class properly includes known decidable classes of TRSs which effectively preserve
recognizability. The result provides a positive answer for the conjecture in [7] that a right-
linear semi-monadic TRS effectively preserves recognizability.

RL-FPO-TRS does not include simple EPR-TRSs such that R = {f (x) → f(f(x))}.
To construct a TA A∗ which accepts (→∗

R)(L(A)) for a given TA A, we might need an
operation which “merges” equivalent states of a TA though such a construction of a TA
may make the proofs quite complicated.

Acknowledgment The authors would like to express their thanks to Dr. Hitoshi Ohsaki
for his carefully reading the manuscript and giving invaluable comments. They also would
like to thank Dr. Yoshiki Kinoshita for his helpful comments and encouragements.

References

[1] Brainerd, W.S.: “Tree generating regular systems,” Information and Control, 14, pp. 217–231,
1969.

[2] Coquidé, J.L., Dauchet, M., Gilleron, R. and Vágvölgyi, S.: “Bottom-up tree pushdown au-
tomata: classification and connection with rewrite systems,” Theoretical Computer Science,
127, pp. 69–98, 1994.

[3] Dershowitz, N. and Jouannaud, J.-P.: “Rewrite Systems,”Handbook of Theoretical Computer
Science, Vol. B, Formal Models and Semantics, pp. 243–320, Elsevier Science Publishers, 1990.

RL-FPO-TRS IS EPR-TRS 25

[4] Durand, I. and Middeldorp, A.: “Decidable call by need computations in term rewriting
(extended abstract),” Proc. of CADE-14, North Queensland, Australia, LNAI 1249, pp. 4–
18, 1997.

[5] Gécseq, F. and Steinby, M.: Tree Automata, Académiai Kiadó, 1984.

[6] Gilleron, R.: “Decision problems for term rewriting systems and recognizable tree languages,”
Proc. of STACS’91, Hamburg, Germany, LNCS 480, pp. 148–159, 1991.

[7] Gilleron, R. and Tison, S.: “Regular tree languages and rewrite systems,” Fundamenta Infor-
maticae, 24, pp. 157–175, 1995.

[8] Gyenizse, P. and Vágvölgyi, S.: “Linear generalized semi-monadic rewrite systems effectively
preserve recognizability,” Theoretical Computer Science, 194, pp. 87–122, 1998.

[9] Huet, G. and Lévy, J.-J.: “Computations in Orthogonal Rewriting Systems,” Chapters I and
II, in Computational Logic, Essays in Honor of Alan Robinson, MIT Press, pp. 396–443, 1991.

[10] Jacquemard, F.: “Decidable approximations of term rewriting systems,” Proc. of RTA96, New
Brunswick, NJ, LNCS 1103, pp. 362–376, 1996.

[11] Kaji, Y., Fujiwara, T. and Kasami, T.: “Solving a unification problem under constrained
substitutions using tree automata,” J. of Symbolic Computation, 23, 1, pp. 79–117, 1997.

[12] Nagaya, T. and Toyama, Y.: “Decidability for left-linear growing term rewriting systems,”
Proc. of RTA99, Trento, Italy, LNCS 1631, pp. 256–270, 1999.

[13] Salomaa, K.: “Deterministic tree pushdown automata and monadic tree rewriting systems,”
J. Comput. System Sci., 37, pp. 367–394, 1988.

[14] Takai, T., Kaji, Y., Tanaka, T. and Seki, H.: “A procedure for solving an order-sorted uni-
fication problem – extension for left-nonlinear system,” Technical Report of NAIST , NAIST-
IS-TR98011, 1998. available at http://www.aist-nara.ac.jp/

[15] Takai, T., Kaji, Y. and Seki, H.: “A sufficient condition for the termination of the procedure for
solving an order-sorted unification problem,” Technical Report of NAIST , NAIST-IS-TR99010,
1999. available at http://www.aist-nara.ac.jp/

[16] Takai, T., Kaji, Y. and Seki, H.: “Right-linear finite path overlapping rewrite systems effec-
tively preserve recognizability,” Proc. RTA2000, Norwich, U.K., LNCS 1833, pp. 246–260,
2000.

APPENDIX: Proof of Lemma 5.7 We have observed in the proof of Lemma 5.7 in
Section 5.3 that the number of layers in a state cannot varies as in Case 1(a). In this
appendix, we prove that similar discussions hold for other cases and the proof completes.

Case 1(b) In this case, the number of layers in the associated state is increased to j + 2
or more at o′ before the first rewriting move at o (see Fig. 4 1(b)). The overview of the
discussion in this case is as follows: We first show that there is a rewrite rule l′ → r′ which
corresponds to the first rewriting move, and also show that the rank of the rewrite rule is
j + 1 or more. By using the property that the number of layers is increased before the first
rewriting move, a subterm of l sticks out of r′, which implies that the rank of l → r must
be j + 1 or more by 3 of the definition of the sticking-out graph, a contradiction.

Let o be the position where the first rewriting move occurs and p be the state just before
the rewriting move. Since the number of layers is j + 2 or more just before the rewriting
move, p has j + 2 or more layers. By the definition of the layers, p as the set contains an
element r′ρ′ such that 〈r′ρ′〉 has j + 2 or more layers where l′ → r′ and ρ′ are the rewrite
rule and the Qk-substitution which were used to introduce 〈r′ρ′〉 at Step 4 of Procedure 5.1.
The rank of the rule l′ → r′ must be j + 1 or more, otherwise 〈r′ρ′〉 cannot have j + 2 or
more layers by the inductive hypothesis. In the following, we show that l/o sticks out of r′.

26 T. TAKAI, Y. KAJI AND H. SEKI

Consider the moves of the TA from the position o11 to o. Let o′ be the position where
the number of layers is increased first time before the first rewriting move. Since o is the
first rewriting move position, all moves under o are defined by ADDTRANS. It follows
that the function symbol of l at the position o · o′′ is the same as the function symbol of r′

at o′′ for every o′′ such that o ·o′′ ≺ o′. Furthermore, since the number of layers is increased
at o′, o′′′ such that o′ = o · o′′′ is a variable position of r′. This implies that l/o sticks out of
r′. We have observed that the rank of l′ → r′ is j + 1 or more, and thus the rank of l → r
must be j + 1 or more by 3 of the definition of the sticking-out graph, a contradiction.

Case 2(a) In this case, the initial state p11 of the TA has j + 1 or layers, and the number
of layers is not changed at all in the sequence (5.1) (see Fig. 4 2(a)). That is, the last state p
at the root position has the same number of layers as the initial state p11 has. The overview
of the discussion in this case is as follows: We first show that there is a rewrite rule l′ → r′

such that the last state p is written as an instance of a subterm of r′, and also show that
the rank of the rewrite rule is j or more. By the assumption that there is no rewriting move
in (5.1), the subterm of r′ is shown to properly stick out of l, which implies that the rank of
l→ r must be j +1 or more by 2 of the definition of the sticking-out graph, a contradiction.

Let p be the last state which is used in the sequence (5.1) of Step 4 of Procedure 5.1
at the root position of l. Since the number of layers in the last state is j + 1 or more, p
has j + 1 or more layers. It cannot happen that p has belonged to Q0 since it implies that
p has only one layer. Thereby there is a rewrite rule, say l′ → r′ and a position o0 such
that r′ρ′/o0 ∈ p where ρ′ is Qk-substitution which was introduced when l′ → r′ was used
at Step 4 of Procedure 5.1.

The rank of the rule l′ → r′ must be j or more and r′/o0 is a non-ground subterm of
r′ with size more than one, otherwise 〈r′ρ′/o0〉 cannot have j + 1 or more layers by the
inductive hypothesis. In the following, we show that r′/o0 properly sticks out of l.

In this case, all moves at positions between the root and o11 are defined by AD-
DTRANS. Similarly to Case 1(a), it follows that the function symbol of l at position
o′′ is the same as the function symbol of r′/o0 · o′′ for every o′′ such that o′′ ≺ o11. Further-
more, it can be easily shown that when the head visits position o′′ (o′′
 o11) of l, the state
〈r′ρ′/o0 · o′′〉 is attached to that head. Thereby, at the variable position o11, the state p11

which contains r′ρ′/o0 · o11 as an element was attached. This implies that r′/o0 properly
sticks out of l. We have observed that the rank of l′ → r′ is j or more, and thus the rank of
l→ r must be j +1 or more by 2 of the definition of the sticking-out graph, a contradiction.

Case 2(b) In this case, the last state p of the TA at the root position has j + 2 or more
layers, and the number of layers has been increased in the sequence (5.1) (see Fig. 4 2(b)).
The overview of the discussion in this case is as follows: We first show that there is a rewrite
rule l′ → r′ such that the last state p at the root position is written as an instance of a
subterm of r′, and also show that the rank of the rewrite rule is j + 1 or more. By the
assumption that the number of layers have been increased in the sequence (5.1), l sticks out
of the subterm of r′, which implies that the rank of l → r must be j + 1 or more by 4 of
the definition of the sticking-out graph, a contradiction.

Let p be the last state in the sequence (5.1) of Step 4 of Procedure 5.1 at the root position
of l. By assumption, p has j + 2 or more layers. It cannot happen that p has belonged to
Q0 since it implies that p has only one layer. Assume |p| = 1. For the case |p| > 1, the
same discussion can apply. There is a rewrite rule, say l′ → r′ and a position o0 such that
p has r′ρ′/o0 as an element and layer(〈r′ρ′/o0〉) ≥ j + 2 where ρ′ is Qk-substitution which
was introduced when l′ → r′ was used at Step 4 of Procedure 5.1. Furthermore, the rank
of the rule l′ → r′ must be j + 1 or more and r′/o0 is a non-ground subterm of r′ with

RL-FPO-TRS IS EPR-TRS 27

size more than one, otherwise 〈r′ρ′/o0〉 cannot have j + 2 or more layers by the inductive
hypothesis. In the following, we show that l sticks out of r′/o0.

In this case, all moves at positions between the root and o11 are defined by AD-
DTRANS. Let o′ be the position where the number of layers is increased first time. It
follows that the function symbol of l at the position o′′ is the same as the function symbol
of r′/o0 at o′′ for every o′′ such that o′′ ≺ o′. Furthermore, since the number of layers is
increased at o′, o′ is a variable position of r′/o0. This implies that l sticks out of r′/o0. We
have observed that the rank of l′ → r′ is j + 1 or more, and thus the rank of l→ r must be
j + 1 or more by 4 of the definition of the sticking-out graph, a contradiction.

Toshinori Takai
Research Center for Verification and Semantics
National Institute of Advanced Industrial Science and Technology
5th floor, Mitsui Sumitomo Kaijo Senri Bldg.,
1-2-14 Shin-Senri Nishi, Toyonaka, Osaka, 560-0083 Japan
e-mail: t-takai@aist.go.jp

Hiroyuki Seki
Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan
seki@is.naist.jp

Yuichi Kaji
Graduate School of Information Science
Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan
kaji@is.naist.jp

