$C I$-ALGEBRAS

BIAO LONG MENG

Received September 21, 2009

Abstract

In this paper we introduce the notion of $C I$-algebras as a generalization of $B E$-algebras and dual $B C K / B C I / B C H$-algebras, we investigate its elementary properties. Relations of $C I$-algebras and $B E$-algebras are discussed. Finally we prove that in transitive $B E$-algebras, the notion of ideals is equivalent to one of filters.

1. Introduction

The study of $B C K / B C I$-algebras was initiated by K.Iséki in 1966 as a generalization of propositional logic (see[4, 5, 6]). There exist several generalizations of $B C K / B C I$-algebras, as such $B C H$-algebras[3], dual $B C K$-algebras[10], d-algebras[9], etc. Especially, H.S.Kim and Y.H.Kim[7] introduced the notion of $B E$-algebras which was deeply studied by S.S.Ahn and Y.H.Kim in [1], S.S.Ahn and K.S.So in [2],H.S.Kim and K.J.Lee in [8], A. Walendziak in [11]. In this paper we will introduce the notion of $C I$-algebras as a generalization of $B E$-algebras and $B C K / B C I / B C H$-algebras, and study its important properties and relations with $B E$-algebras. We prove that in transitive $B E$-algebras, the notion of ideals is equivalent to one of filters. In the sequel, let \mathbb{N} denote the set of all positive integers.

2. Preliminaries

Definition 2.1[7]. An algebra $(X ; *, 1)$ of type $(2,0)$ is said to be a $B E$-algebra if it satisfies the following:
(BE1) $x * x=1$,
(BE2) $x * 1=1$,
(BE3) $1 * x=x$,
$(\mathrm{BE} 4) x *(y * z)=y *(x * z)$.
Definition 2.2[10]. A dual $B C K$-algebra is an algebra $(X ; *, 1)$ of type $(2,0)$ satisfying (BE1), (BE2), and the following axioms:
(dBCK1) $x * y=y * x=1$ implies $x=y$,
$(\mathrm{dBCK} 2)(x * y) *((y * z) *(x * z))=1$,
$(\mathrm{dBCK} 3) x *((x * y) * y)=1$.
Lemma 2.3[10]. Let $(X ; *, 1)$ be a dual $B C K$-algebra. Then (BE3) and (BE4) hold in X.

Similarly we can define dual $B C I$-algebras as follows.
Definition 2.4. A dual $B C I$-algebra is an algebra $(X ; *, 1)$ of type $(2,0)$ satisfying the axioms (BE1), (dBCK1), (dBCK2) and (dBCK3).

[^0]Proposition 2.5. Let $(X ; *, 1)$ be a dual $B C I$-algebra and $x \in X$. If $1 * x=1$ then $x=1$.

Proof. Let $x \in X$ be such that $1 * x=1$. By (BE1) and (dBCK3) we have

$$
x * 1=x *(1 * x)=x *[(x * x) * x]=1
$$

It follows from (dBCK1) that $x=1$.
By using very similar arguments as in $B C I$-algebras one can prove the following.
Proposition 2.6. Let $(X ; *, 1)$ be a dual $B C I$-algebra and $x, y, z \in X$. Then the followings hold:
(1) if $x * y=1$, then $(y * z) *(x * z)=1$,
(2) if $x * y=1$ and $y * z=1$, then $x * z=1$,
(3) $y *(z * x)=z *(y * x)$, i.e., (BE4) holds in dual BCI-algebra X,
(4) $1 * x=x$, i.e., (BE3) holds in dual BCI-algebra X.

Lemma 2.7[11]. Any dual $B C K$-algebra is a $B E$-algebra.
The definition of dual BCH -algebras can similarly be complete.
Definition 2.8. An algebra of type (2,0) satisfying (BE1), (dBCK1) and (BE4) is said to be a dual BCH -algebra.

We easily prove the following.
Proposition 2.9. (BE3) holds in any dual BCH -algebra.

3. The notion and elementary properties of $C I$-ALGEbras

In this section we first introduce the notion of $C I$-algebras and next study some of elementary properties.

Definition 3.1. A $C I$-algebra is an algebra $(X ; *, 1)$ of type $(2,0)$ satisfying the following axioms:
(CI1) $x * x=1$,
(CI2) $1 * x=x$,
(CI3) $x *(y * z)=y *(x * z)$.
Obviously, every dual $B C K / B C I / B C H$-algebra is a $C I$-algebra. The axioms (CI1), (CI2) and (CI3) are (BE1), (BE3) and (BE4), respectively. For any $C I$-algebra X, denote $B(X)=\{x \in X \mid x * 1=1\}$. Hence a $C I$-algebra is a $B E$-algebra if and only if $X=B(X)$.

Proposition 3.2. Any $C I$-algebra X satisfies for any $x, y \in X$,

$$
y *((y * x) * x)=1
$$

Proof. By (CI3) and (CI1) we have

$$
y *((y * x) * x)=(y * x) *(y * x)=1
$$

completing the proof.

Proposition 3.3. Any $C I$-algebra of degree 2 is either a dual $B C I$-algebra or a dual $B C K$-algebra.

Proof. Let $X:=\{1, a\}$ be a $C I$-algebra where $a \neq 1$. Then its Cayley table is the following form:

$$
\begin{array}{c|cc}
* & 1 & \mathrm{a} \\
\hline 1 & 1 & \mathrm{a} \\
\mathrm{a} & x & 1
\end{array}
$$

where x is either a or 1 . When $x=a, X$ is a dual $B C I$-algebra; When $x=1, X$ is a dual $B C K$-algebra. This completes the proof.

Example 3.4. Let $X:=\{1, a, b\}$ be a set with the following Cayley table:

$*$	1	a	b
1	1	a	b
a	1	1	1
b	1	1	1

We can check that $(X ; *, 1)$ is a $C I$-algebra. It is worth to note that in this algebra, $a * b=b * a=1$, but $a \neq b$. Thus this is not a dual $B C K / B C I / B C H$-algebra, hence the class of dual $B C K / B C I / B C H$-algebras is a proper subclass of the class of $C I$-algebras

Example 3.5. Let $X:=\{1,2,3,4,5,6\}$ be a set with the following Cayley table:

$*$	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	1	4	4	4
3	1	1	1	4	4	4
4	4	5	1	1	2	3
5	4	4	4	1	1	1
6	4	4	4	1	1	1

Then $(X ; *, 1)$ is a $C I$-algebra. But it is not a $B E$-algebra because $4 * 1=5 * 1=6 * 1=$ $4 \neq 1$. Therefore the class of $B E$-algebras is a proper subclass of the class of $C I$-algebras.

Example 3.6. Let $X:=\{1, a, b, c, d\}$ be a set with the following Cayley table:

$*$	1	a	b	c	d
1	1	a	b	c	d
a	1	1	b	b	d
b	1	a	1	a	d
c	1	1	1	1	d
d	d	d	d	d	1

We can check that $(X ; *, 1)$ is a $C I$-algebra.
Proposition 3.7. Any $C I$-algebra X satisfies for any $x, y \in X$,

$$
(x * 1) *(y * 1)=(x * y) * 1
$$

Proof. By (CI3) and (CI1) we have

$$
\begin{aligned}
(x * 1) *(y * 1) & =(x * 1) *\{y *[(x * y) *(x * y)]\} \\
& =(x * 1) *\{(x * y) *[x *(y * y)]\} \\
& =(x * 1) *[(x * y) *(x * 1)] \\
& =(x * y) *[(x * 1) *(x * 1)] \\
& =(x * y) * 1,
\end{aligned}
$$

ending the proof.
By induction we easily obtain
Corollory 3.8. Let X be a $C I$-algebra and $n \in \mathbb{N}$. Then for any $y, x_{1}, \cdots, x_{n} \in X$ we have

$$
\left(x_{n} * 1\right) *\left(\cdots *\left(\left(x_{1} * 1\right) *(y * 1)\right) \cdots\right)=\left(x_{n} *\left(\cdots *\left(x_{1} * y\right) \cdots\right)\right) * 1 .
$$

4. Relations with $B E$-algebras

It is easy to see from definitions of $B E$-algebras and $C I$-algebras the following
Proposition 4.1. $B E$-algebras must be $C I$-algebras; A $C I$-algebra X is a $B E$-algebra if and only if $X=B(X)$.

Proposition 4.2. Let $\left(X ; *^{\prime}, 1\right)$ be a $B E$-algebra and $a \notin X$. We define for x, y, the $x * y$ on $X \cup a$ as follows

$$
x * y=\left\{\begin{array}{cl}
x *^{\prime} y & \text { if } x, y \in X \\
a & \text { if } x=a \text { and } y \neq a \\
a & \text { if } x \neq a \text { and } y=a \\
1 & \text { if } x=y=a
\end{array}\right.
$$

then $(X \cup\{a\} ;, *, 1)$ is a $C I$-algebra.
Proof. It is sufficient to verify (CI3). Let $x, y \in X$. Because
$a *(x * y)=a=x * a=x *(a * x)$,
$x *(y * a)=x * a=a=y * a=y *(x * a)$,
$a *(x * a)=a * a=1=x * 1=x *(a * a)$,
hence (CI3) holds for X. Verification of others are trivial. So $(X \cup\{a\} ; *, 1)$ is a $C I$-algebra. This completes the proof.
H.S.Kim and Y.H.Kim[7] introduced a self distributivity of $B E$-algebras. A $C I$-algebra X is said to be self distributive if for any $x, y, z \in X$,

$$
x *(y * z)=(x * y) *(x * z)
$$

Proposition 4.3. Any self distributive $C I$-algebra X is $B E$-algebras.
Proof. For any $x, y \in X$,

$$
x * 1=x *(y * y)=(x * y) *(x * y)=1
$$

hence X is a $B E$-algebra, ending the proof.
Proposition 4.4. A $C I$-algebra X satisfying the condition
(P) for any $x, y \in X, x *(x * y)=x * y$ is a $B E$-algebra.

Proof. Let $x=y$ in (P). Then by (CI1) we have $x * 1=x *(x * x)=x * x=1$. Hence $x * 1=1$ for any $x \in X$, and so X is a $B E$-algebra.

Proposition 4.5. A $C I$-algebra X satisfying the condition
(I) for any $x, y \in X,(x * y) * x=x$ is a $B E$-algebra.

Proof. Let $x=1$ in (I). Then by (CI2) we have $y * 1=(1 * y) * 1=y$. Hence $y * 1=1$ for any $y \in X$, hence X is a $B E$-algebra.

Definition 4.6. A $C I$-algebra X is said to be commutative if it satisfies
(C) for any $x, y \in X,(x * y) * y=(y * x) * x$.

Proposition 4.7. Any commutative $C I$-algebra X is a dual $B C K$-algebra.
Proof. Let a $C I$-algebra X be commutative. Now we prove that $X=B(X)$. If $X \neq$ $B(X)$, take any $a \in X-B(X)$. By (C)

$$
(a * 1) * 1=(1 * a) * a=a * a=1
$$

and so $a * 1=a *[(a * 1) * 1]=1$, this shows $a \in B(X)$, a contradiction. Therefore $X=B(X)$, i.e., X is a $B E$-algebra.

For any $x, y \in X$, if $x * y=y * x=1$, then by (CI2) and (CI3) we have

$$
x=1 * x=(y * x) * x=(x * y) * y=1 * y=y
$$

Hence (dBCK1) holds.
Applying (CI3), (C) we have

$$
\begin{aligned}
(x * y) *[(y * z) *(x * z)] & =(x * y) *\{x *[(y * z) * z]\} \\
& =(x * y) *\{x *[(z * y) * y]\} \\
& =(x * y) *[(z * y) *(x * y)] \\
& =(z * y) *[(x * y) *(x * y)] \\
& =(x * y) * 1=1,
\end{aligned}
$$

and so (dBCK2) holds.
Proposition 3.2 shows that (dBCK3) holds in X. Therefore X is a dual $B C K$-algebra.
By the above proof we have
Corollary 4.8. Any commutative $C I$-algebra is a $B E$-algebra.

5. Ideals and filters in $C I$-algebras

S.S.Ahn and Y.H.So[1] and H.S.Kim and Y.H.Kim[7] introduced concepts of ideals and filters in $B E$-algebras, respectively. In this section we discuss these concepts in $C I$-algebras.

Definition 5.1. Let X be a $C I$-algebra and I a nonempty subset of $X . I$ is said to be an ideal of X if it satisfies: $\forall x, a, b \in X$
(I1) $a \in I$ implies $x * a \in I$, i.e., $X * I \subseteq I$;
(I2) $a \in I$ and $b \in I$ imply $(a *(b * x)) * x \in I$.

Definition 5.2. Let X be a $C I$-algebra and I a nonempty subset of $X . I$ is said to be a subalgebra of X if $x \in I$ and $y \in I$ imply $x * y \in I$.

For any $C I$-algebra $X,\{1\}$ and X are trivial ideals(resp. subalgebras) of X. Obviously every ideal in a $C I$-algebra is a subalgebra.

Definition 5.3. A non-empty subset F of a $B E$-algebra X is said to be a filter of X if it satisfies:
(F1) $1 \in F$,
(F2) $x * y \in F$ and $x \in F$ imply $y \in F$.
Definition 5.4. A $C I$-algebra X is said to be transitive if for all $x, y, z \in X$,

$$
(y * z) *[(x * y) *(x * z)]=1
$$

In what follows we will prove that in a transitive $B E$-algebra, the notion of ideals coincides with one of filters.

Proposition 5.5. Let X be a transitive $B E$-algebra and A a nonempty subset of X. Then A is an ideal of X if and only if A is a filter of X.

Proof. Suppose A is an ideal of X. Take any $a \in I$, then $1=a * a \in A$. Hence (F1) holds. Let $x, y \in X$ be such that $x * y \in A$ and $x \in A$. Since $(x * y) * y=[1 *(x * y)] * y$, it follows from (I2) that $(x * y) * y \in A$. Denote $\alpha=(x * y) * y$ and $\beta=x * y$, by (I2) we have

$$
y=1 * y=\{[(x * y) * y] *[(x * y) * y]\} * y=[\alpha *(\beta * y)] * y \in A
$$

(F2) is true. Therefore A is a filter of X.
Conversely let A be a filter of X. Assume that $x \in X$ and $a \in A$. Since $a *(x * a)=$ $x *(a * a)=x * 1=1 \in A$ by (F1), it follows from (F2) that $x * a \in A$. Hence (I1) is true. Let $a, b \in A$ and $x \in X$. Because $a *[(a * x) * x]=(a * x) *(a * x)=1 \in A$ by (F1), and so $(a * x) * x \in A$ by (F2). Using transitivity of X we have

$$
[(a * x) * x] *\{[b *(a * x)] *(b * x)\}=1 \in A
$$

and so $[b *(a * x)] *(b * x) \in A$ by (F2). Hence $b *\{[b *(a * x)] * x\} \in A$. By $b \in A$ and (F2) we obtain $[b *(a * x)] * x \in A$, i.e. (I2) holds. Therefore A is an ideal of X.

Proposition 5.6. Let X be a transitive $B E$-algebra and A a nonempty subset of X. Then A is a filter of X if and only if A satisfies: for any $a, b \in A$ and $x \in X, a *(b * x)=1$ implies $x \in A$.

Proof. (\Leftarrow) Assume $a \in A$. Since $a *(a * 1)=1$, it follows that $1 \in A$. (F1) holds for A. Suppose $a * x \in A$ and $a \in A$. Because $a *[(a * x) * x]=1$, and so $x \in A$. (F2) is true. Therefore A is a filter of X.
(\Rightarrow) Let A be a filter of X. Assume $a, b \in A$ and $x \in X$ such that $a *(b * x)=1$. By (F1) we have $a *(b * x) \in A$. Then applying (F2) twice we obtain $x \in A$. This completes the Proof.

By induction we easily obtain
Corolary 5.7. Let X be a transitive $B E$-algebra and A a nonempty subset of X. Then A is a filter of X if and only if A satisfies: for any $a_{i} \in A(i \in \mathbb{N})$ and $x \in X$, $a_{n} *\left(\cdots *\left(a_{1} * x\right) \cdots\right)=1$ implies $x \in A$.

References

[1] S. S. Ahn and Y. H. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. Online e-2008(2008), No.2, 279-285.
[2] S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math.Soc. 46(2009), No.2, 281-287.
[3] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983),No.2, part 2, 313-320.
[4] K. Iséki, On BCI-algebras, Methematics Seminar Notes, 8(1980), 125-130.
[5] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica. 21(1976) 351-366.
[6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica. 23(1978) 1-26.
[7] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. Online e-2006(2006), 1199-1202.
[8] H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Submitted
[9] J. Negger and H. S. Kim , On d-algebras, Math Slovaca 40(1999), No.1, 19-26.
[10] K. H. Kim and Y. H. Yon, Dual $B C K$-algebra and $M V$-algebra, Sci. Math. Jpn., 66(2007), 247-253.
[11] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. Online e-2008, 585-588.

Biao Long MENG:

Department of Basic Courses,
Xian University of Science and Technology,
Xian 710054, P.R.CHINA.
Email address: mengbl_100@yahoo.com.cn

[^0]: 2000 Mathematics Subject Classification. 06F35; 03G25; 03B52.
 $K e y$ words and phrases. $C I$-algebra, $B E$-algebra, transitive $C I$-algebra, transitive $B E$-algebra, filter, ideal.

