CI-ALGEBRAS

BIAO LONG MENG

Received September 21, 2009

ABSTRACT. In this paper we introduce the notion of CI-algebras as a generalization of BE-algebras and dual BCK/BCI/BCH-algebras, we investigate its elementary properties. Relations of CI-algebras and BE-algebras are discussed. Finally we prove that in transitive BE-algebras, the notion of ideals is equivalent to one of filters.

1. INTRODUCTION

The study of BCK/BCI-algebras was initiated by K.Iséki in 1966 as a generalization of propositional logic (see[4, 5, 6]). There exist several generalizations of BCK/BCI-algebras, as such BCH-algebras[3], dual BCK-algebras[10], d-algebras[9], etc. Especially, H.S.Kim and Y.H.Kim[7] introduced the notion of BE-algebras which was deeply studied by S.S.Ahn and Y.H.Kim in [1], S.S.Ahn and K.S.So in [2],H.S.Kim and K.J.Lee in [8], A. Walendziak in [11]. In this paper we will introduce the notion of CI-algebras as a generalization of BE-algebras and BCK/BCI/BCH-algebras, and study its important properties and relations with BE-algebras. We prove that in transitive BE-algebras, the notion of ideals is equivalent to one of filters. In the sequel, let \mathbb{N} denote the set of all positive integers.

2. Preliminaries

Definition 2.1[7]. An algebra (X; *, 1) of type (2,0) is said to be a *BE*-algebra if it satisfies the following:

(BE1) x * x = 1, (BE2) x * 1 = 1, (BE3) 1 * x = x, (BE4) x * (y * z) = y * (x * z).

Definition 2.2[10]. A dual *BCK*-algebra is an algebra (X; *, 1) of type (2,0) satisfying (BE1), (BE2), and the following axioms:

(dBCK1) x * y = y * x = 1 implies x = y, (dBCK2) (x * y) * ((y * z) * (x * z)) = 1, (dBCK3) x * ((x * y) * y) = 1.

Lemma 2.3[10]. Let (X; *, 1) be a dual *BCK*-algebra. Then (BE3) and (BE4) hold in X.

Similarly we can define dual *BCI*-algebras as follows.

Definition 2.4. A dual *BCI*-algebra is an algebra (X; *, 1) of type (2,0) satisfying the axioms (BE1), (dBCK1), (dBCK2) and (dBCK3).

²⁰⁰⁰ Mathematics Subject Classification. 06F35; 03G25; 03B52.

Key words and phrases. CI-algebra, BE-algebra, transitive CI-algebra, transitive BE-algebra, filter, ideal.

Proposition 2.5. Let (X; *, 1) be a dual *BCI*-algebra and $x \in X$. If 1 * x = 1 then x = 1.

Proof. Let $x \in X$ be such that 1 * x = 1. By (BE1) and (dBCK3) we have

x * 1 = x * (1 * x) = x * [(x * x) * x] = 1.

It follows from (dBCK1) that x = 1.

By using very similar arguments as in BCI-algebras one can prove the following.

Proposition 2.6. Let (X; *, 1) be a dual *BCI*-algebra and $x, y, z \in X$. Then the followings hold:

(1) if x * y = 1, then (y * z) * (x * z) = 1,
(2) if x * y = 1 and y * z = 1, then x * z = 1,
(3) y * (z * x) = z * (y * x), i.e., (BE4) holds in dual BCI-algebra X,
(4) 1 * x = x, i.e., (BE3) holds in dual BCI-algebra X.

Lemma 2.7[11]. Any dual BCK-algebra is a BE-algebra.

The definition of dual *BCH*-algebras can similarly be complete.

Definition 2.8. An algebra of type (2,0) satisfying (BE1), (dBCK1) and (BE4) is said to be a dual *BCH*-algebra.

We easily prove the following.

Proposition 2.9. (BE3) holds in any dual *BCH*-algebra.

3. The notion and elementary properties of CI-algebras

In this section we first introduce the notion of CI-algebras and next study some of elementary properties.

Definition 3.1. A CI-algebra is an algebra (X; *, 1) of type (2,0) satisfying the following axioms:

(CI1) x * x = 1, (CI2) 1 * x = x, (CI3) x * (y * z) = y * (x * z).

Obviously, every dual BCK/BCI/BCH-algebra is a CI-algebra. The axioms (CI1), (CI2) and (CI3) are (BE1), (BE3) and (BE4), respectively. For any CI-algebra X, denote $B(X) = \{x \in X \mid x * 1 = 1\}$. Hence a CI-algebra is a BE-algebra if and only if X = B(X).

Proposition 3.2. Any *CI*-algebra X satisfies for any $x, y \in X$,

$$y * ((y * x) * x) = 1.$$

Proof. By (CI3) and (CI1) we have

$$y * ((y * x) * x) = (y * x) * (y * x) = 1,$$

completing the proof.

Proposition 3.3. Any *CI*-algebra of degree 2 is either a dual *BCI*-algebra or a dual *BCK*-algebra.

Proof. Let $X := \{1, a\}$ be a *CI*-algebra where $a \neq 1$. Then its Cayley table is the following form:

where x is either a or 1. When x = a, X is a dual *BCI*-algebra; When x = 1, X is a dual *BCK*-algebra. This completes the proof.

Example 3.4. Let $X := \{1, a, b\}$ be a set with the following Cayley table:

*	1	a	b
1	1	a	b
a	1	1	1
b	1	1	1

We can check that (X; *, 1) is a CI-algebra. It is worth to note that in this algebra, a * b = b * a = 1, but $a \neq b$. Thus this is not a dual BCK/BCI/BCH -algebra, hence the class of dual BCK/BCI/BCH -algebras is a proper subclass of the class of CI-algebras

Example 3.5. Let $X := \{1, 2, 3, 4, 5, 6\}$ be a set with the following Cayley table:

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	1	1	1	4	4	4
3	1	1	1	4	4	4
4	4	5	1	1	2	3
5	4	4	4	1	1	1
6	4	4	4	1	1	1

Then (X; *, 1) is a CI-algebra. But it is not a BE-algebra because $4*1 = 5*1 = 6*1 = 4 \neq 1$. Therefore the class of BE-algebras is a proper subclass of the class of CI-algebras.

Example 3.6. Let $X := \{1, a, b, c, d\}$ be a set with the following Cayley table:

*	1	a	b	с	\mathbf{d}
1	1	a	b	с	d
a	1	1	b	b	\mathbf{d}
b	1	a	1	a	d
с	1	1	1	1	d
d	d	d	d	d	1

We can check that (X; *, 1) is a CI-algebra.

Proposition 3.7. Any *CI*-algebra X satisfies for any $x, y \in X$,

$$(x*1)*(y*1) = (x*y)*1.$$

Proof. By (CI3) and (CI1) we have

$$\begin{array}{rcl} (x*1)*(y*1) &=& (x*1)*\{y*[(x*y)*(x*y)]\}\\ &=& (x*1)*\{(x*y)*[x*(y*y)]\}\\ &=& (x*1)*[(x*y)*(x*1)]\\ &=& (x*y)*[(x*1)*(x*1)]\\ &=& (x*y)*1, \end{array}$$

ending the proof.

By induction we easily obtain

Corollory 3.8. Let X be a CI-algebra and $n \in \mathbb{N}$. Then for any $y, x_1, \dots, x_n \in X$ we have

$$(x_n * 1) * (\dots * ((x_1 * 1) * (y * 1)) \dots) = (x_n * (\dots * (x_1 * y) \dots)) * 1$$

4. Relations with BE-algebras

It is easy to see from definitions of BE-algebras and CI-algebras the following

Proposition 4.1. *BE*-algebras must be *CI*-algebras; A *CI*-algebra X is a *BE* -algebra if and only if X = B(X).

Proposition 4.2. Let (X; *', 1) be a *BE*-algebra and $a \notin X$. We define for x, y, the x * y on $X \cup a$ as follows

$$x * y = \begin{cases} x *' y & \text{if } x, y \in X, \\ a & \text{if } x = a \text{ and } y \neq a, \\ a & \text{if } x \neq a \text{ and } y = a, \\ 1 & \text{if } x = y = a \end{cases}$$

then $(X \cup \{a\};, *, 1)$ is a CI-algebra.

Proof. It is sufficient to verify (CI3). Let $x, y \in X$. Because a * (x * y) = a = x * a = x * (a * x), x * (y * a) = x * a = a = y * a = y * (x * a), a * (x * a) = a * a = 1 = x * 1 = x * (a * a),nce (CI3) holds for X. Verification of others are trivial. So $(X \sqcup \{a\}; * 1)$

hence (CI3) holds for X. Verification of others are trivial. So $(X \cup \{a\}; *, 1)$ is a CI-algebra. This completes the proof.

H.S.Kim and Y.H.Kim[7] introduced a self distributivity of *BE*-algebras. A *CI*-algebra X is said to be self distributive if for any $x, y, z \in X$,

$$x * (y * z) = (x * y) * (x * z).$$

Proposition 4.3. Any self distributive CI-algebra X is BE-algebras.

Proof. For any $x, y \in X$,

x * 1 = x * (y * y) = (x * y) * (x * y) = 1,

hence X is a *BE*-algebra, ending the proof.

Proposition 4.4. A CI-algebra X satisfying the condition

(P) for any $x, y \in X$, x * (x * y) = x * yis a *BE*-algebra.

Proof. Let x = y in (P). Then by (CI1) we have x * 1 = x * (x * x) = x * x = 1. Hence x * 1 = 1 for any $x \in X$, and so X is a BE -algebra.

Proposition 4.5. A CI-algebra X satisfying the condition

(I) for any $x, y \in X$, (x * y) * x = xis a *BE*-algebra.

Proof. Let x = 1 in (I). Then by (CI2) we have y * 1 = (1 * y) * 1 = y. Hence y * 1 = 1 for any $y \in X$, hence X is a *BE*-algebra.

Definition 4.6. A *CI*-algebra X is said to be commutative if it satisfies (C) for any $x, y \in X$, (x * y) * y = (y * x) * x.

Proposition 4.7. Any commutative CI-algebra X is a dual BCK-algebra.

Proof. Let a CI-algebra X be commutative. Now we prove that X = B(X). If $X \neq B(X)$, take any $a \in X - B(X)$. By (C)

(a * 1) * 1 = (1 * a) * a = a * a = 1,

and so a * 1 = a * [(a * 1) * 1] = 1, this shows $a \in B(X)$, a contradiction. Therefore X = B(X), i.e., X is a *BE*-algebra.

For any $x, y \in X$, if x * y = y * x = 1, then by (CI2) and (CI3) we have

x = 1 * x = (y * x) * x = (x * y) * y = 1 * y = y.

Hence (dBCK1) holds.

Applying (CI3), (C) we have

$$\begin{aligned} (x*y)*[(y*z)*(x*z)] &= (x*y)*\{x*[(y*z)*z]\}\\ &= (x*y)*\{x*[(z*y)*y]\}\\ &= (x*y)*[(z*y)*(x*y)]\\ &= (z*y)*[(x*y)*(x*y)]\\ &= (x*y)*[(x*y)*(x*y)]\\ &= (x*y)*1 = 1, \end{aligned}$$

and so (dBCK2) holds.

Proposition 3.2 shows that (dBCK3) holds in X. Therefore X is a dual BCK-algebra.

By the above proof we have

Corollary 4.8. Any commutative CI-algebra is a BE-algebra.

5. Ideals and filters in CI-algebras

S.S.Ahn and Y.H.So[1] and H.S.Kim and Y.H.Kim[7] introduced concepts of ideals and filters in BE-algebras, respectively. In this section we discuss these concepts in CI-algebras.

Definition 5.1. Let X be a CI-algebra and I a nonempty subset of X. I is said to be an ideal of X if it satisfies: $\forall x, a, b \in X$

(I1) $a \in I$ implies $x * a \in I$, i.e., $X * I \subseteq I$;

(I2) $a \in I$ and $b \in I$ imply $(a * (b * x)) * x \in I$.

Definition 5.2. Let X be a CI-algebra and I a nonempty subset of X. I is said to be a subalgebra of X if $x \in I$ and $y \in I$ imply $x * y \in I$.

For any CI-algebra X, $\{1\}$ and X are trivial ideals(resp. subalgebras) of X. Obviously every ideal in a CI-algebra is a subalgebra.

Definition 5.3. A non-empty subset F of a BE-algebra X is said to be a filter of X if it satisfies:

(F1) $1 \in F$, (F2) $x * y \in F$ and $x \in F$ imply $y \in F$.

Definition 5.4. A CI-algebra X is said to be transitive if for all $x, y, z \in X$,

$$(y * z) * [(x * y) * (x * z)] = 1.$$

In what follows we will prove that in a transitive BE-algebra, the notion of ideals coincides with one of filters.

Proposition 5.5. Let X be a transitive *BE*-algebra and A a nonempty subset of X. Then A is an ideal of X if and only if A is a filter of X.

Proof. Suppose A is an ideal of X. Take any $a \in I$, then $1 = a * a \in A$. Hence (F1) holds. Let $x, y \in X$ be such that $x * y \in A$ and $x \in A$. Since (x * y) * y = [1 * (x * y)] * y, it follows from (I2) that $(x * y) * y \in A$. Denote $\alpha = (x * y) * y$ and $\beta = x * y$, by (I2) we have

$$y = 1 * y = \{ [(x * y) * y] * [(x * y) * y] \} * y = [\alpha * (\beta * y)] * y \in A.$$

(F2) is true. Therefore A is a filter of X.

Conversely let A be a filter of X. Assume that $x \in X$ and $a \in A$. Since $a * (x * a) = x * (a * a) = x * 1 = 1 \in A$ by (F1), it follows from (F2) that $x * a \in A$. Hence (I1) is true. Let $a, b \in A$ and $x \in X$. Because $a * [(a * x) * x] = (a * x) * (a * x) = 1 \in A$ by (F1), and so $(a * x) * x \in A$ by (F2). Using transitivity of X we have

$$[(a * x) * x] * \{[b * (a * x)] * (b * x)\} = 1 \in A,$$

and so $[b * (a * x)] * (b * x) \in A$ by (F2). Hence $b * \{[b * (a * x)] * x\} \in A$. By $b \in A$ and (F2) we obtain $[b * (a * x)] * x \in A$, i.e. (I2) holds. Therefore A is an ideal of X.

Proposition 5.6. Let X be a transitive *BE*-algebra and A a nonempty subset of X. Then A is a filter of X if and only if A satisfies: for any $a, b \in A$ and $x \in X$, a * (b * x) = 1 implies $x \in A$.

Proof. (\Leftarrow) Assume $a \in A$. Since a * (a * 1) = 1, it follows that $1 \in A$. (F1) holds for A. Suppose $a * x \in A$ and $a \in A$. Because a * [(a * x) * x] = 1, and so $x \in A$. (F2) is true. Therefore A is a filter of X.

 (\Rightarrow) Let A be a filter of X. Assume $a, b \in A$ and $x \in X$ such that a * (b * x) = 1. By (F1) we have $a * (b * x) \in A$. Then applying (F2) twice we obtain $x \in A$. This completes the Proof.

By induction we easily obtain

Corolary 5.7. Let X be a transitive *BE*-algebra and A a nonempty subset of X. Then A is a filter of X if and only if A satisfies: for any $a_i \in A$ $(i \in \mathbb{N})$ and $x \in X$, $a_n * (\cdots * (a_1 * x) \cdots) = 1$ implies $x \in A$.

CI-ALGEBRAS

References

- S. S. Ahn and Y. H. So, On ideals and upper sets in BE-algebras, Sci. Math. Jpn. Online e-2008(2008), No.2, 279-285.
- S. S. Ahn and K. S. So, On generalized upper sets in BE-algebras, Bull. Korean Math.Soc. 46(2009), No.2, 281-287.
- [3] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes, 11(1983), No.2, part 2, 313-320.
- [4] K. Iséki, On BCI-algebras, Methematics Seminar Notes, 8(1980), 125-130.
- [5] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica. 21(1976) 351-366.
- [6] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica. 23(1978) 1-26.
- [7] H. S. Kim and Y. H. Kim, On BE-algebras, Sci. Math. Jpn. Online e-2006(2006), 1199-1202.
- [8] H. S. Kim and K. J. Lee, Extended upper sets in BE-algebras, Submitted
- $[9]\,$ J. Negger and H. S. Kim , On d-algebras, Math Slovaca ${\bf 40}(1999),$ No.1, 19-26.
- [10] K. H. Kim and Y. H. Yon, Dual BCK-algebra and MV-algebra, Sci. Math. Jpn., 66(2007), 247-253.
- [11] A. Walendziak, On commutative BE-algebras, Sci. Math. Jpn. Online e-2008, 585-588.

Biao Long MENG:

Department of Basic Courses, Xian University of Science and Technology, Xian 710054, P.R.CHINA. Email address: mengbl_100@yahoo.com.cn