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Abstract. In this paper we introduce the notion of CI -algebras as a generalization of
BE-algebras and dual BCK/BCI/BCH-algebras, we investigate its elementary prop-
erties. Relations of CI-algebras and BE-algebras are discussed. Finally we prove that
in transitive BE-algebras, the notion of ideals is equivalent to one of filters.

1. Introduction

The study of BCK/BCI-algebras was initiated by K.Iséki in 1966 as a generalization of
propositional logic (see[4, 5, 6]). There exist several generalizations of BCK/BCI-algebras,
as such BCH-algebras[3], dual BCK-algebras[10], d-algebras[9], etc. Especially, H.S.Kim
and Y.H.Kim[7] introduced the notion of BE-algebras which was deeply studied by S.S.Ahn
and Y.H.Kim in [1], S.S.Ahn and K.S.So in [2],H.S.Kim and K.J.Lee in [8], A. Walendziak
in [11]. In this paper we will introduce the notion of CI-algebras as a generalization of
BE-algebras and BCK/BCI/BCH-algebras, and study its important properties and re-
lations with BE-algebras. We prove that in transitive BE-algebras, the notion of ideals is
equivalent to one of filters. In the sequel, let N denote the set of all positive integers.

2. Preliminaries

Definition 2.1[7]. An algebra (X ; ∗, 1) of type (2,0) is said to be a BE-algebra if it
satisfies the following:

(BE1) x ∗ x = 1,
(BE2) x ∗ 1 = 1,
(BE3) 1 ∗ x = x,
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z) .

Definition 2.2[10]. A dual BCK-algebra is an algebra (X ; ∗, 1) of type (2,0) satisfying
(BE1), (BE2), and the following axioms:

(dBCK1) x ∗ y = y ∗ x = 1 implies x = y,
(dBCK2) (x ∗ y) ∗ ((y ∗ z) ∗ (x ∗ z)) = 1,
(dBCK3) x ∗ ((x ∗ y) ∗ y) = 1.

Lemma 2.3[10]. Let (X ; ∗, 1) be a dual BCK-algebra. Then (BE3) and (BE4) hold
in X .

Similarly we can define dual BCI-algebras as follows.

Definition 2.4. A dual BCI-algebra is an algebra (X ; ∗, 1) of type (2,0) satisfying the
axioms (BE1), (dBCK1), (dBCK2) and (dBCK3).
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Proposition 2.5. Let (X ; ∗, 1) be a dual BCI-algebra and x ∈ X . If 1 ∗ x = 1 then
x = 1.

Proof. Let x ∈ X be such that 1 ∗ x = 1. By (BE1) and (dBCK3) we have

x ∗ 1 = x ∗ (1 ∗ x) = x ∗ [(x ∗ x) ∗ x] = 1.

It follows from (dBCK1) that x = 1.

By using very similar arguments as in BCI-algebras one can prove the following.

Proposition 2.6. Let (X ; ∗, 1) be a dual BCI-algebra and x, y, z ∈ X . Then the
followings hold:

(1) if x ∗ y = 1, then (y ∗ z) ∗ (x ∗ z) = 1,
(2) if x ∗ y = 1 and y ∗ z = 1, then x ∗ z = 1,
(3) y ∗ (z ∗ x) = z ∗ (y ∗ x), i.e., (BE4) holds in dual BCI-algebra X ,
(4) 1 ∗ x = x, i.e., (BE3) holds in dual BCI-algebra X .

Lemma 2.7[11]. Any dual BCK-algebra is a BE-algebra.

The definition of dual BCH-algebras can similarly be complete.

Definition 2.8. An algebra of type (2,0) satisfying (BE1), (dBCK1) and (BE4) is said
to be a dual BCH-algebra.

We easily prove the following.

Proposition 2.9. (BE3) holds in any dual BCH-algebra.

3. The notion and elementary properties of CI-algebras

In this section we first introduce the notion of CI-algebras and next study some of
elementary properties.

Definition 3.1. A CI-algebra is an algebra (X ; ∗, 1) of type (2,0) satisfying the fol-
lowing axioms:

(CI1) x ∗ x = 1,
(CI2) 1 ∗ x = x,
(CI3) x ∗ (y ∗ z) = y ∗ (x ∗ z).

Obviously, every dual BCK/BCI/BCH-algebra is a CI-algebra. The axioms (CI1),
(CI2) and (CI3) are (BE1), (BE3) and (BE4), respectively. For any CI-algebra X , denote
B(X) = {x ∈ X |x ∗ 1 = 1}. Hence a CI-algebra is a BE-algebra if and only if X = B(X).

Proposition 3.2. Any CI-algebra X satisfies for any x, y ∈ X ,

y ∗ ((y ∗ x) ∗ x) = 1.

Proof. By (CI3) and (CI1) we have

y ∗ ((y ∗ x) ∗ x) = (y ∗ x) ∗ (y ∗ x) = 1,

completing the proof.
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Proposition 3.3. Any CI-algebra of degree 2 is either a dual BCI-algebra or a dual
BCK-algebra.

Proof. Let X := {1, a} be a CI-algebra where a �= 1. Then its Cayley table is the
following form:

∗ 1 a
1 1 a
a x 1

where x is either a or 1. When x = a, X is a dual BCI-algebra; When x = 1, X is a dual
BCK-algebra. This completes the proof.

Example 3.4. Let X := {1, a, b} be a set with the following Cayley table:

∗ 1 a b
1 1 a b
a 1 1 1
b 1 1 1

We can check that (X ; ∗, 1) is a CI-algebra. It is worth to note that in this algebra,
a ∗ b = b ∗ a = 1, but a �= b. Thus this is not a dual BCK/BCI/BCH -algebra, hence the
class of dual BCK/BCI/BCH -algebras is a proper subclass of the class of CI-algebras

Example 3.5. Let X := {1, 2, 3, 4, 5, 6} be a set with the following Cayley table:

∗ 1 2 3 4 5 6
1 1 2 3 4 5 6
2 1 1 1 4 4 4
3 1 1 1 4 4 4
4 4 5 1 1 2 3
5 4 4 4 1 1 1
6 4 4 4 1 1 1

Then (X ; ∗, 1) is a CI-algebra. But it is not a BE-algebra because 4∗1 = 5∗1 = 6∗1 =
4 �= 1. Therefore the class of BE-algebras is a proper subclass of the class of CI-algebras.

Example 3.6. Let X := {1, a, b, c, d} be a set with the following Cayley table:

∗ 1 a b c d
1 1 a b c d
a 1 1 b b d
b 1 a 1 a d
c 1 1 1 1 d
d d d d d 1

We can check that (X ; ∗, 1) is a CI-algebra.

Proposition 3.7. Any CI-algebra X satisfies for any x, y ∈ X ,

(x ∗ 1) ∗ (y ∗ 1) = (x ∗ y) ∗ 1.

Proof. By (CI3) and (CI1) we have
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(x ∗ 1) ∗ (y ∗ 1) = (x ∗ 1) ∗ {y ∗ [(x ∗ y) ∗ (x ∗ y)]}
= (x ∗ 1) ∗ {(x ∗ y) ∗ [x ∗ (y ∗ y)]}
= (x ∗ 1) ∗ [(x ∗ y) ∗ (x ∗ 1)]
= (x ∗ y) ∗ [(x ∗ 1) ∗ (x ∗ 1)]
= (x ∗ y) ∗ 1,

ending the proof.

By induction we easily obtain

Corollory 3.8. Let X be a CI-algebra and n ∈ N. Then for any y, x1, · · · , xn ∈ X we
have

(xn ∗ 1) ∗ (· · · ∗ ((x1 ∗ 1) ∗ (y ∗ 1)) · · · ) = (xn ∗ (· · · ∗ (x1 ∗ y) · · · )) ∗ 1.

4. Relations with BE-algebras

It is easy to see from definitions of BE-algebras and CI-algebras the following

Proposition 4.1. BE-algebras must be CI-algebras; A CI-algebra X is a BE -algebra
if and only if X = B(X).

Proposition 4.2. Let (X ; ∗′, 1) be a BE-algebra and a �∈ X . We define for x, y, the
x ∗ y on X ∪ a as follows

x ∗ y =

⎧⎪⎪⎨
⎪⎪⎩

x ∗′ y if x, y ∈ X,
a if x = a and y �= a,
a if x �= a and y = a,
1 if x = y = a

then (X ∪ {a}; , ∗, 1) is a CI-algebra.

Proof. It is sufficient to verify (CI3). Let x, y ∈ X . Because
a ∗ (x ∗ y) = a = x ∗ a = x ∗ (a ∗ x),
x ∗ (y ∗ a) = x ∗ a = a = y ∗ a = y ∗ (x ∗ a),
a ∗ (x ∗ a) = a ∗ a = 1 = x ∗ 1 = x ∗ (a ∗ a),

hence (CI3) holds for X . Verification of others are trivial. So (X∪{a}; ∗, 1) is a CI-algebra.
This completes the proof.

H.S.Kim and Y.H.Kim[7] introduced a self distributivity of BE-algebras. A CI-algebra
X is said to be self distributive if for any x, y, z ∈ X ,

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

Proposition 4.3. Any self distributive CI-algebra X is BE-algebras.

Proof. For any x, y ∈ X ,

x ∗ 1 = x ∗ (y ∗ y) = (x ∗ y) ∗ (x ∗ y) = 1,

hence X is a BE-algebra, ending the proof.

Proposition 4.4. A CI-algebra X satisfying the condition
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(P) for any x, y ∈ X , x ∗ (x ∗ y) = x ∗ y
is a BE-algebra.

Proof. Let x = y in (P). Then by (CI1) we have x ∗ 1 = x ∗ (x ∗ x) = x ∗ x = 1. Hence
x ∗ 1 = 1 for any x ∈ X , and so X is a BE -algebra.

Proposition 4.5. A CI-algebra X satisfying the condition
(I) for any x, y ∈ X , (x ∗ y) ∗ x = x

is a BE-algebra.

Proof. Let x = 1 in (I). Then by (CI2) we have y ∗ 1 = (1 ∗ y) ∗ 1 = y. Hence y ∗ 1 = 1
for any y ∈ X , hence X is a BE-algebra.

Definition 4.6. A CI-algebra X is said to be commutative if it satisfies
(C) for any x, y ∈ X , (x ∗ y) ∗ y = (y ∗ x) ∗ x.

Proposition 4.7. Any commutative CI-algebra X is a dual BCK-algebra.

Proof. Let a CI-algebra X be commutative. Now we prove that X = B(X). If X �=
B(X), take any a ∈ X − B(X). By (C)

(a ∗ 1) ∗ 1 = (1 ∗ a) ∗ a = a ∗ a = 1,

and so a ∗ 1 = a ∗ [(a ∗ 1) ∗ 1] = 1, this shows a ∈ B(X), a contradiction. Therefore
X = B(X), i.e., X is a BE-algebra.

For any x, y ∈ X , if x ∗ y = y ∗ x = 1, then by (CI2) and (CI3) we have

x = 1 ∗ x = (y ∗ x) ∗ x = (x ∗ y) ∗ y = 1 ∗ y = y.

Hence (dBCK1) holds.
Applying (CI3), (C) we have

(x ∗ y) ∗ [(y ∗ z) ∗ (x ∗ z)] = (x ∗ y) ∗ {x ∗ [(y ∗ z) ∗ z]}
= (x ∗ y) ∗ {x ∗ [(z ∗ y) ∗ y]}
= (x ∗ y) ∗ [(z ∗ y) ∗ (x ∗ y)]
= (z ∗ y) ∗ [(x ∗ y) ∗ (x ∗ y)]
= (x ∗ y) ∗ 1 = 1,

and so (dBCK2) holds.
Proposition 3.2 shows that (dBCK3) holds in X . Therefore X is a dual BCK-algebra.

By the above proof we have

Corollary 4.8. Any commutative CI-algebra is a BE-algebra.

5. Ideals and filters in CI-algebras

S.S.Ahn and Y.H.So[1] and H.S.Kim and Y.H.Kim[7] introduced concepts of ideals and
filters in BE-algebras, respectively. In this section we discuss these concepts in CI-algebras.

Definition 5.1. Let X be a CI-algebra and I a nonempty subset of X . I is said to be
an ideal of X if it satisfies: ∀x, a, b ∈ X

(I1) a ∈ I implies x ∗ a ∈ I, i.e., X ∗ I ⊆ I;
(I2) a ∈ I and b ∈ I imply (a ∗ (b ∗ x)) ∗ x ∈ I.
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Definition 5.2. Let X be a CI-algebra and I a nonempty subset of X . I is said to be
a subalgebra of X if x ∈ I and y ∈ I imply x ∗ y ∈ I.

For any CI-algebra X , {1} and X are trivial ideals(resp. subalgebras) of X . Obviously
every ideal in a CI-algebra is a subalgebra.

Definition 5.3. A non-empty subset F of a BE-algebra X is said to be a filter of X if
it satisfies:

(F1) 1 ∈ F,
(F2) x ∗ y ∈ F and x ∈ F imply y ∈ F .

Definition 5.4. A CI-algebra X is said to be transitive if for all x, y, z ∈ X ,

(y ∗ z) ∗ [(x ∗ y) ∗ (x ∗ z)] = 1.

In what follows we will prove that in a transitive BE-algebra, the notion of ideals coin-
cides with one of filters.

Proposition 5.5. Let X be a transitive BE-algebra and A a nonempty subset of X .
Then A is an ideal of X if and only if A is a filter of X .

Proof. Suppose A is an ideal of X . Take any a ∈ I, then 1 = a ∗ a ∈ A. Hence (F1)
holds. Let x, y ∈ X be such that x ∗ y ∈ A and x ∈ A. Since (x ∗ y) ∗ y = [1 ∗ (x ∗ y)] ∗ y, it
follows from (I2) that (x ∗ y) ∗ y ∈ A. Denote α = (x ∗ y) ∗ y and β = x ∗ y, by (I2) we have

y = 1 ∗ y = {[(x ∗ y) ∗ y] ∗ [(x ∗ y) ∗ y]} ∗ y = [α ∗ (β ∗ y)] ∗ y ∈ A.

(F2) is true. Therefore A is a filter of X .
Conversely let A be a filter of X . Assume that x ∈ X and a ∈ A. Since a ∗ (x ∗ a) =

x ∗ (a ∗ a) = x ∗ 1 = 1 ∈ A by (F1), it follows from (F2) that x ∗ a ∈ A. Hence (I1) is true.
Let a, b ∈ A and x ∈ X . Because a ∗ [(a ∗ x) ∗ x] = (a ∗ x) ∗ (a ∗ x) = 1 ∈ A by (F1), and so
(a ∗ x) ∗ x ∈ A by (F2). Using transitivity of X we have

[(a ∗ x) ∗ x] ∗ {[b ∗ (a ∗ x)] ∗ (b ∗ x)} = 1 ∈ A,

and so [b ∗ (a ∗ x)] ∗ (b ∗ x) ∈ A by (F2). Hence b ∗ {[b ∗ (a ∗ x)] ∗ x} ∈ A. By b ∈ A and (F2)
we obtain [b ∗ (a ∗ x)] ∗ x ∈ A, i.e. (I2) holds. Therefore A is an ideal of X .

Proposition 5.6. Let X be a transitive BE-algebra and A a nonempty subset of X .
Then A is a filter of X if and only if A satisfies: for any a, b ∈ A and x ∈ X , a ∗ (b ∗ x) = 1
implies x ∈ A.

Proof. (⇐) Assume a ∈ A. Since a ∗ (a ∗ 1) = 1, it follows that 1 ∈ A. (F1) holds for
A. Suppose a ∗ x ∈ A and a ∈ A. Because a ∗ [(a ∗ x) ∗ x] = 1, and so x ∈ A. (F2) is true.
Therefore A is a filter of X .

(⇒) Let A be a filter of X . Assume a, b ∈ A and x ∈ X such that a ∗ (b ∗ x) = 1. By
(F1) we have a ∗ (b ∗ x) ∈ A. Then applying (F2) twice we obtain x ∈ A. This completes
the Proof.

By induction we easily obtain

Corolary 5.7. Let X be a transitive BE-algebra and A a nonempty subset of X .
Then A is a filter of X if and only if A satisfies: for any ai ∈ A (i ∈ N) and x ∈ X ,
an ∗ (· · · ∗ (a1 ∗ x) · · · ) = 1 implies x ∈ A.
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