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Abstract. As a continuation of our previous research [Sci. Math. Japon. 61 (2005),
25–46.], we discuss order among power means of positive operators with a unital n-
tuple of positive linear maps.

1 Introduction. We assume that H and K are Hilbert spaces and B(H) and B(K) are
C*-algebras of all bounded linear operators on the appropriate Hilbert space. We say that

an n-tuple (Φ1, . . . , Φn) of positive linear maps Φi : B(H) → B(K) is unital if
n∑

i=1

Φi(1) = 1.

Recently F. Hansen, J. Pečarić and I. Perić in [4, 5] gave a general formulation of
Jensen’s operator inequality for unital fields of positive linear mappings and its converses.
Their main results from [4] are presented in the following two theorems [4, Theorem 1 and
Theorem 2 ].

Theorem A (Generalization of discrete Jensen’s operator inequality) Let (Φ1, . . . , Φn) be a
unital n-tuple of positive linear maps Φi : B(H) → B(K). If f : I → R is an operator
convex function, then the inequality

f

(
n∑

i=1

Φi(Ai)

)
≤

n∑
i=1

Φi (f(Ai))(1)

holds for every n-tuple (A1, . . . , An) of self-adjoint operators in B(H) with spectra in I.

The inequality (1) should be compared to Jensen’s type inequality [1, 3, 8], cf. also [2].
The following converses of (1) in a general form should be compared to [2, Theorem 2.3].
For a function f : [m, M ] → R we use the standard notation:

µf =
f(M) − f(m)

M − m
and νf =

Mf(m) − mf(M)
M − m

.

Theorem B (Generalization of converse of discrete Jensen’s operator inequality) Let (A1, . . . ,
An) be an n-tuple of self-adjoint operators in B(H) with spectra in [m, M ] and let (Φ1, . . . , Φn)
be a unital n-tuple of positive linear maps Φi : B(H) → B(K). Let f, g : [m, M ] → R and
F : U × V → R be functions such that f([m,M ]) ⊂ U and g([m,M ]) ⊂ V . If F is operator
monotone in the first variable and f is convex on [m, M ], then

F

[
n∑

i=1

Φi(f(Ai)), g

(
n∑

i=1

Φi(Ai)

)]
≤ max

m≤t≤M
F [µf t + νf , g(t)] 1.(2)

In the dual case (when f is concave) the opposite inequality holds in (2) with min instead
of max.
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In this paper, we consider a generalization of the weighted power means:

M̃ [r]
n (A,Φ, ω) :=

(
n∑

i=1

ωi Φi(Ar
i )

)1/r

if r ∈ R\{0},(3)

at these conditions: (A1, . . . , An) is an n-tuple of positive operators in B(H) with spectra
in [m, M ] for some scalars 0 < m < M , (Φ1, . . . , Φn) is an n-tuple of positive linear maps
Φi : B(H) → B(K) and (ω1, . . . , ωn) is an n-tuple of positive real numbers such that
(ω1Φ1, . . . , ωnΦn) is unital.

This construction is inspired by generalizations of Jensen’s inequality and its converses
given in Theorem A and Theorem B. Our main purpose is to discuss the operator order
among generalized power means (3), and improvements over the previous results [2, Theo-
rem 4.4 and Theorem 4.7], cf. also [6].

2 Some preliminary results. In this section we give some results whose follow from
Theorem A and Theorem B.

Using Theorem B, we obtain the following corollary, which should be compared to [2,
Theorem 2.4] for a convex case.

Corollary 1 Let (A1, . . . , An) be an n-tuple of self-adjoint operators in B(H) with spectra
in [m, M ], (Φ1, . . . , Φn) be an n-tuple of positive linear maps Φi : B(H) → B(K) and
(ω1, . . . , ωn) be an n-tuple of positive real numbers such that (ω1Φ1, . . . , ωnΦn) is unital.
Let α �= 0 be a real number. Let g : [m, M ] → R be a strictly convex differentiable function
if α > 0 or g be a strictly concave differentiable if α < 0. If f : [m, M ] → R is convex
function, then the inequality

n∑
i=1

ωiΦi(f(Ai)) ≤ αg

(
n∑

i=1

ωiΦi(Ai)

)
+ β 1(4)

holds for β = µf t0 + νf − αg(t0), where

t0 =

⎧⎪⎨⎪⎩
the unique solution of g′(t) = µf

α if αg′(m) ≤ µf ≤ αg′(M),
M if µf > αg′(M),
m if αg′(m) > µf ,

In the dual case (when f and αg are concave) the opposite inequality holds in (4) with
the same β but the opposite condition while determining t0.

Proof. We only prove the convex case. Applying Theorem B for F (u, v) = u − αv
(α �= 0) and replacing Φi(Ai) by ωiΦi(Ai), we have

n∑
i=1

ωiΦi(f(Ai)) ≤ αg

(
n∑

i=1

ωiΦi(Ai)

)
+ β1

for β = maxm≤t≤M {µf t + νf − αg(t)} . Then by the common differential calculus we de-
termine β. �

Let (A1, . . . , An) be an n-tuple of positive operators in B(H) and (ω1Φ1, . . . , ωnΦn) be
a unital n-tuple of positive linear maps Φi : B(H) → B(K). For readers’ convenience we
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put

Φ

⎛⎜⎜⎜⎝
A1 0

A2

. . .
0 An

⎞⎟⎟⎟⎠ =
n∑

i=1

ωiΦi(Ai).(5)

Then we have

Φ

⎛⎜⎜⎜⎝
Ar

1 0
Ar

2

. . .
0 Ar

n

⎞⎟⎟⎟⎠
1/r

=

(
n∑

i=1

ωiΦi(Ai)r

)1/r

and instead of observing the order among power means (3), we observe the order among
Φ(Ar)1/r.

Applying Theorem A and Corollary 1 for a function f(t) ≡ g(t) = tp we obtain inequal-
ities for different and ratio of the power function given in Lemma 2 and Lemma 5. These
results in a general form should be compared to [6, Lemma 10 and Lemma 12].

For a function f(t) = tp we use the short notation: µ := µtp and ν := νtp , i.e.

µ =
Mp − mp

M − m
and ν =

Mmp − mMp

M − m
.

Lemma 2 Let A be a positive operator in B(H) with spectra in [m, M ] for some scalars
0 < m < M , Φ : B(H) → B(K) be a unital positive linear map.

(a) If 0 < p ≤ 1, then

K(m,M, p) Φ(A)p ≤ Φ(Ap) ≤ Φ(A)p.

(b) If −1 ≤ p < 0 or 1 ≤ p ≤ 2, then

Φ(A)p ≤ Φ(Ap) ≤ K(m,M, p) Φ(A)p.

(c) If p < −1 or p > 2, then

K(m,M, p)−1Φ(A)p ≤ Φ(Ap) ≤ K(m,M, p) Φ(A)p,

where a generalized Kantorovich constant K(m,M, p) [2, §2.7] is defined as

(∗) K(m,M, p) :=
mMp − Mmp

(p − 1)(M − m)

(
p − 1

p

Mp − mp

mMp − Mmp

)p

=
ν

p − 1

(
p − 1

p

µ

ν

)p

for all p ∈ R.

Proof. Since f(t) = tp is the operator concave function for 0 < p ≤ 1, then by
Theorem A we have the right hand inequality in (a). Using the dual case of Corollary 1
for f(t) ≡ g(t) = tp, 0 < p ≤ 1 and choosing α > 0 such that β = 0, we obtain Φ(Ap) ≥
α Φ(Ai)p, when α = minm≤t≤M

{
mp+µ(t−m)

tp

}
= K(m,M, p). Then we obtain the left hand

inequality in (a). Since f(t) = tp is the operator convex function if −1 ≤ p < 0 or 1 ≤ p ≤ 2,
then by Theorem A we have the left hand inequality in (b). Since f(t) = tp is the convex
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function for p < 0 or p > 1, then again using Corollary 1, we obtain Φ(Ap) ≤ α Φ(A)p, where
α = maxm≤t≤M

{
mp+µ(t−m)

tp

}
= K(m,M, p). Then we have the right hand inequality in

(b) and (c). Finally, we prove the left hand inequality in (c). Since f(t) = tp is convex in
the case p < −1 or p > 2, then for each y ∈ [m, M ], tp ≥ yp +pyp−1(t−p) for all t ∈ [m, M ].
It follows that Ap ≥ ypI + pyp−1(A − yI). Applying the positive linear map Φ to above
inequality, we obtain

Φ(Ap) ≥ yp1 + pyp−1 (Φ(A) − y1) for each y ∈ [m, M ].

Now, applying Theorem B for functions F (u, v) = v−1/2uv−1/2 (v > 0) and f(t) ≡ g(t) = tp,
we have:

Φ(Ap) ≥ min
m≤t≤M

{
yp + pyp−1(t − y)

tp

}
Φ(A)p for each y ∈ [m, M ].

The function h(t) = yp+pyp−1(t−y)
tp is increasing for t < y and decreasing for t > y. It follows

that h attains a minimum at m or M . We choose y = y0 which is the unique solution of
yp+pyp−1(m−y)

mp = yp+pyp−1(M−y)
Mp . It follows that y0 = νp

µ(1−p) and

min
m≤t≤M

{
yp
0 + pyp−1

0 (t − y0)
tp

}
= yp−1

0

y0(1 − p) + pm

mp
= (

νp

µ(1 − p)
)p 1 − p

ν
= K(m,M, p)−1.

Then we have the left hand inequality in (c). �

The following lemma is needed to prove Lemma 5.

Lemma 3 Assume that the conditions of Lemma 2 hold.
If 0 < p ≤ 1, then

µ Φ(A) + ν1 ≤ Φ(Ap) ≤ Φ(A)p,(6)

if −1 ≤ p < 0 or 1 ≤ p ≤ 2, then

Φ(A)p ≤ Φ(Ap) ≤ µΦ(A) + ν1,(7)

while if p < −1 or p > 2, then

pyp−1Φ(A) + (1 − p)yp1 ≤ Φ(Ap) ≤ µ Φ(A) + ν1 for every y ∈ [m, M ].(8)

Proof. The right hand inequality in (6) and the left hand inequality in (7) are proven
in Lemma 2. The left hand inequality of (6) and the right hand inequalities in (7) and (8)
follow from Corollary 1 if we put f(t) = tp, g(t) = t and α = µ.

Next we prove the left hand inequality in (8). Since f(t) = tp is convex in the case
p < −1 or p > 2, then for each y ∈ [m, M ], tp ≥ pyp−1t + (1− p)yp holds for all t ∈ [m, M ].
By using a functional calculus we obtain that pyp−1Φ(A) + (1 − p)yp1 ≤ Φ(Ap) holds for
every y ∈ [m, M ]. �

Remark 4 Setting y = (µ/p)1/(p−1) the inequality (8) gives

µ Φ(A) + (1 − p) (µ/p)p/(p−1) 1 ≤ Φ(Ap) ≤ µ Φ(A) + ν1(9)

for p < −1 or p > 2.
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Furthermore, setting y = m or y = M the inequality (8) gives

pmp−1Φ(A) + (1 − p)mp1 ≤ Φ(Ap) ≤ µ Φ(A) + ν1(10)

or

pMp−1Φ(A) + (1 − p)Mp1 ≤ Φ(Ap) ≤ µ Φ(A) + ν1.(11)

We remark that the operator in LHS of (10) is positive for p > 0, since

0 < mp1 ≤ pmp−1Φ(A) + (1 − p)mp1 ≤ (pmp−1M + (1 − p)mp)1

and the operator in LHS of (11) is positive for p < 0, since

0 < Mp1 ≤ pMp−1Φ(A) + (1 − p)Mp1 ≤ (pMp−1m + (1 − p)Mp)1.

In addition, to prove next Lemma 5, we need the Löwner-Heinz theorem, which asserts
that the function f(t) = tp is operator monotone for p ∈ [0, 1], and the operator order given
in the following theorem (see [7, 9]):

Theorem C [6, Corollary 1] Let A,B be positive operators in B(H).
If A ≥ B > 0 and the spectrum Sp(B) ⊆ [m, M ] for some scalars 0 < m < M , then

Ap + C(m,M, p)1 ≥ Bp for all p ≥ 1.

But, if A ≥ B > 0 and the spectrum Sp(A) ⊆ [m, M ], 0 < m < M , then

Bp + C(m,M, p)1 ≥ Ap for all p ≤ −1,

where a constant C(m,M, p) [2, §2.7, Lemma 2.59] is defined as

(∗∗) C(m,M, p) = (p − 1)
(

1
p

Mp−mp

M−m

)p/(p−1)

+ Mmp−mMp

M−m for all p ∈ R.

Finally, in the following lemma we give some inequalities for power functions.

Lemma 5 Assume that the conditions of Lemma 2 hold.
(a) If r ≤ s ≤ −1 or 1 ≤ s ≤ −r or 0 < r ≤ s ≤ 2r, s ≥ 1, then

Φ(Ar)1/r ≤ Φ(As)1/s ≤ (µ̃ Φ(Ar) + ν̃1)1/s
.

(b) If 0 < −r < s, s ≥ 1 or 0 < 2r < s, s ≥ 1, then

m

(
s

r
m−rΦ(Ar) +

r − s

r
1
)1/s

≤ Φ(As)1/s ≤ (µ̃ Φ(Ar) + ν̃1)1/s
.

(c) If r ≤ s, −1 ≤ s < 0 or s ≤ −r, 0 < s ≤ 1 or 0 < r ≤ s ≤ 2r, s ≤ 1, then

Φ(Ar)1/r − C (ms, M s, 1/s)1 ≤ Φ(As)1/s ≤ (µ̃ Φ(Ar) + ν̃1)1/s + C(ms, M s, 1/s)1.

(d) If 0 < −r < s ≤ 1 or 0 < 2r < s ≤ 1, then

m
(

s
r m−rΦ(Ar) + r−s

r 1
)1/s − C(ms, M s, 1/s)1

≤ Φ(As)1/s ≤ (µ̃Φ(Ar) + ν̃1)1/s + C(ms, M s, 1/s)1,

where µ̃ and ν̃ are the constants µf and νf associated with the function f(t) = ts/r on the
closed interval joining mr to M r, i.e.

µ̃ =
M s − ms

M r − mr
and ν̃ =

M rms − M smr

M r − mr
.
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Proof. This lemma follows from Theorem C, the Löwner-Heinz theorem and Lemma 3.
We use the same idea from [6, Lemma 10].

Putting p = s/r in (6), (7), (10) and (11) and replacing A by Ar, we obtain the following
inequalities.

(I) If r ≤ s < 0, then

µ̃ Φ(Ar) + ν̃1 ≤ Φ(As) ≤ Φ(Ar)s/r.

(II) If 0 < s ≤ −r or 0 < r ≤ s ≤ 2r, then

Φ(Ar)s/r ≤ Φ(As) ≤ µ̃ Φ(Ar) + ν̃1.

(III) If 0 < −r < s, then by using M r ≤ Ar ≤ mr, we obtain

0 <
s

r
ms−rΦ(Ar) +

r − s

r
ms1 ≤ Φ(As) ≤ µ̃ Φ(Ar) + ν̃1

from (11). If 0 < 2r < s, then by using mr ≤ Ar ≤ M r, we obtain the same inequality
from (10).

Using the fact that the function f(t) = t1/s is operator increasing if s ≥ 1 and operator
decreasing if s ≤ −1, we obtain (a) and (b).

Using Theorem C for p = 1/s > 1 we obtain (c), since ms1 ≤ µ̃ Φ(Ar) + ν̃1 ≤ M s1 and
ms1 ≤ Φ(As) ≤ M s1. Similarly, using Theorem C for p = 1/s < −1 we obtain (d). �

Remark 6 Putting p = r/s in (6), (7), (10) and (11) and replacing A by As, we obtain
the following inequalities.

(a1) If 1 ≤ r ≤ s or −s ≤ r ≤ −1 or 2s ≤ r ≤ s < 0, r ≤ −1, then

(µ̄Φ(As) + ν̄1)1/r ≤ Φ(Ar)1/r ≤ Φ(As)1/s.

(b1) If r < −s < 0, r ≤ −1 or r < 2s < 0, r ≤ −1, then

(µ̄Φ(As) + ν̄1)1/r ≤ Φ(Ar)1/r ≤ M

(
r

s
M−sΦ(As) +

s − r

s
1
)1/r

.

(c1) If r ≤ s, 0 < r ≤ 1 or −s ≤ r, −1 ≤ r < 0 or 2s ≤ r ≤ s < 0, r ≥ −1,
then

(µ̄Φ(As) + ν̄1)1/r − C (mr, M r, 1/r)1 ≤ Φ(Ar)1/r ≤ Φ(As)1/s + C(mr, M r, 1/r)1.

(d1) If −1 ≤ r < −s < 0 or −1 ≤ r < 2s < 0, then

(µ̄Φ(As) + ν̄∗1)1/r − C(mr, M r, 1/r)1 ≤ Φ(Ar)1/r

≤ M
(

r
sM−sΦ(As) + s−r

s 1
)1/r + C(mr, M r, 1/r)1,

where µ̄ and ν̄ are the constants µf and νf associated with the function f(t) = tr/s on the
closed interval joining ms to M s, i.e.

µ̄ =
M r − mr

M s − ms
and ν̄ =

M smr − M rms

M s − ms
.
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1/2

1/2

(i)

(ii) s 1, -1 < r < 1/2, r 0,

<

=

(iv)

r s, s (-1,1), r (-1,1)
1/2 r 1 s
r -1 s -1/2,

or

or

� �i� �i

-s r < s/2, r 0, 0 < s 1,=
1/2

1/2

1

1 1

1

� �
�v
1

� �
�v
1

�
�v 1

�
�v 1

� �i i� �i i

� �v� �v
� �i i i� �i i i

� �i� �i

� �i� �i

(iv)1

2s r s, -1 r < 0.(v)1

r s 2r, 0 < s 1,

(v) r/2 < s -r, s 0, -1 r < 0,=

� �i v� �i v

r -1, -1/2 < s < 1, s 0,=(iii)

Figure 1: Regions in the (r, s)-plain

3 Main results. In this section we give the usual operator order among the generalized
power means defined by (3). Using (5) we can replace M̃

[r]
n (A,Φ, ω) by Φ(Ar)1/r.

For the sake of convenience, we denote regions in the (r, s)-plain from (i) to (v) as in
Figure 1.

3.1 Difference type inequalities. Our first result about the order among the power
means is given in the following theorem, which should be compared with [2, Theorem 4.7],
cf. also [6, Theorem 8].

Theorem 7 Let (A1, . . . , An) be an n-tuple of positive operators in B(H) with spectra in
[m, M ] for some scalars 0 < m < M , (Φ1, . . . , Φn) be an n-tuple of positive linear maps
Φi : B(H) → B(K) and (ω1, . . . , ωn) be an n-tuple of positive real numbers such that
(ω1Φ1, . . . , ωnΦn) is unital. Let r, s ∈ R, r ≤ s and rs �= 0.
If (r, s) in (i), then

0 ≤ M̃ [s]
n (A,Φ, ω) − M̃ [r]

n (A,Φ, ω) ≤ ∆̃1,

if (r, s) in (ii), then(
m

(
s

r

M r

mr
+ 1 − s

r

)1/s

− M

)
1 ≤ M̃ [s]

n (A,Φ, ω) − M̃ [r]
n (A,Φ, ω) ≤ ∆̃1,

if (r, s) in (iii), then(
m − M

(
r

s

ms

M s
+ 1 − r

s

)1/r
)

1 ≤ M̃ [s]
n (A,Φ, ω) − M̃ [r]

n (A,Φ, ω) ≤ ∆̃1,

if (r, s) in (iv), then

max{m (
s
r

Mr

mr + r−s
r

)1/s − M − C(ms, M s, 1/s),−C (mr, M r, 1/r)}1
≤ M̃

[s]
n (A,Φ, ω) − M̃

[r]
n (A,Φ, ω) ≤

(
∆̃ + C (ms, M s, 1/s)

)
1,
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if (v) or (iv)1 or (v)1, then

−C (ms, M s, 1/s)1 ≤ M̃ [s]
n (A,Φ, ω) − M̃ [r]

n (A,Φ, ω) ≤
(
∆̃ + C (ms, M s, 1/s)

)
1,

where a constant ∆̃ ≡ ∆̃(m,M, r, s) is

∆̃ = max
θ∈[0,1]

{
[θM s + (1 − θ)ms]1/s − [θM r + (1 − θ)mr]1/r

}
and a constant C(m,M, p) defined by (∗∗).

T. Yamazaki [10, 11] gave a collection of basic properties of the constant C(m,M, p),
see also [2, Lemma 2.59]. In order to prove Theorem 7, we shall need some properties of
this constant (see Figure 2):

Lemma 8 Let M > m > 0 and r ∈ R and

C(mr, M r, 1/r) :=
1 − r

r

(
r

M − m

M r − mr

)1/(1−r)

+
M rm − mrM

M r − mr

has the following property:

C(r)

r

M-m

m-M

1

L(m,M) lnS(M/m)

Figure 2: Function C(r) ≡ C(mr, M r, 1/r)

1. A function C(r) ≡ C(mr, M r, 1/r) is strictly decreasing for all r ∈ R,

2. lim
r→1

C(mr, M r, 1/r) = 0 and lim
r→0

C(mr, M r, 1/r) = L(m, M) lnS(M/m),

where L(m, M) is the logarithmic mean:

L(m, M) =
M − m

lnM − lnm
(M �= m) and L(m, m) = m,

S(h) is the Specht ratio defined for h > 0 as

(∗∗∗) S(h) =
(h − 1)h

1
h−1

e lnh
(h �= 1) and S(1) = 1,

3. lim
r→∞C(mr, M r, 1/r) = m − M and lim

r→−∞C(mr, M r, 1/r) = M − m.
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Proof.

1. We have by a differential calculation

d

dr
C(r) =

(
r

M − m

M r − mr

)1/(1−r) (
mr lnm − M r lnM

r(Mr − mr)
+

1
r(1 − r)

ln
r(M − m)
M r − mr

)
+

M rmr(M − m) ln(m/M)
(Mr − mr)2

.

Both of functions

r 
→ mr lnm − M r lnM

r(Mr − mr)
+

1
r(r − 1)

ln
M r − mr

r(M − m)

and

r 
→ M rmr(M − m) ln(m/M)
(Mr − mr)2

are negative for all r �= 0, 1. So d
drC(r) < 0 and the function C is strictly decreasing.

2. We have by L’Hospital’s theorem

lim
r→1

ln (r(M − m)/(M r − mr))
1 − r

= −1 +
M lnM − m lnm

M − m
,

so

lim
r→1

1 − r

r

(
r

M − m

M r − mr

)1/(1−r)

= 0 · e−1+(M ln M−m ln m)/(M−m) = 0.

Also,

lim
r→1

M rm − mrM

M r − mr
= lim

r→1
m

hr − h

hr − 1
= 0, h =

M

m
> 1.

Then, lim
r→1

C(mr, M r, 1/r) = 0.

Using [2, Lemma 2.59 (iv)], we have

lim
r→0

C(mr, M r, p/r) = L(mp, Mp) lnS(hp) for all p ∈ R and h = M/m,

so we obtain lim
r→0

C(mr , M r, 1/r) = L(m, M) lnS(M/m).

3. We have by L’Hospital’s theorem

lim
r→∞

ln (r(M − m)/(M r − mr))
1 − r

= lim
r→∞

M rm − mrM

M r − mr
= lnM,

so

lim
r→∞

1 − r

r

(
r

M − m

M r − mr

)1/(1−r)

= −1 · eln M = −M.

Also,

lim
r→∞

M rm − mrM

M r − mr
= lim

r→∞m
hr − h

hr − 1
= m, h =

M

m
> 1.

Then, lim
r→∞C(mr, M r, 1/r) = m − M. Similarly, we obtain lim

r→−∞C(mr, M r, 1/r) =

M − m. �
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Proof of Theorem 7. For the reader’s convenience we prove Theorem 7 by means of
the order among Φ(Ar)1/r. Using Lemma 5 we have the following inequalities, where Tr

denotes the closed interval joining mr to M r.
(a) If r ≤ s ≤ −1 or 1 ≤ s ≤ −r or 0 < r ≤ s ≤ 2r, s ≥ 1, then

0 ≤ Φ(As)1/s − Φ(Ar)1/r ≤ max
t∈Tr

{
(µ̃ t + ν̃)1/s − t1/r

}
1

holds. Setting t = θM r+(1−θ)mr for some θ ∈ [0, 1], we obtain max
t∈Tr

{
(µ̃ t + ν̃)1/s − t1/r

}
=

∆̃. Then,

0 ≤ Φ(As)1/s − Φ(Ar)1/r ≤ ∆̃1.(12)

(b) If 0 < −r < s, s ≥ 1 or 0 < 2r < s, s ≥ 1, then

mint∈Tr

{
m

(
s
rm−rt + r−s

r

)1/s − t1/r
}

1 ≤ Φ(As)1/s − Φ(Ar)1/r

≤ maxt∈Tr

{
(µ̃ t + ν̃)1/s − t1/r

}
1

holds. A function h(t) = m
(

s
rm−rt + r−s

r

)1/s − t1/r is increasing on [M r, mr] for 0 < −r <

s, s ≥ 1. Really, a function t 
→ t
1
r −1 is decreasing imply that (mr)

1
r −1 < t

1
r −1, which

imply that h′(t) = 1
r

(
m1−r

(
s
rm−rt + r−s

r

) 1
s−1 − t

1
r −1

)
≥ 1

r

(
m1−r − t

1
r −1

)
> 0. Then

min
t∈[Mr ,mr]

h(t) = h(M r) and we obtain

(
m

(
s

r

M r

mr
+

r − s

r

)1/s

− M

)
1 ≤ Φ(As)1/s − Φ(Ar)1/r ≤ ∆̃1.(13)

Similarly, h is a decreasing function on [mr, M r] for 0 < 2r < s, s ≥ 1. Then min
t∈[mr,Mr ]

h(t) =

h(M r) and we obtain (13) again.
(c) If r ≤ s, −1 ≤ s < 0 or s ≤ −r, 0 < s ≤ 1 or 0 < r ≤ s ≤ 2r, s ≤ 1, then

− C (ms, M s, 1/s)1 ≤ Φ(As)1/s − Φ(Ar)1/r ≤
(
∆̃ + C(ms, M s, 1/s)

)
1.(14)

(d) If 0 < −r < s ≤ 1 or 0 < 2r < s ≤ 1, then, we obtain(
m

(
s
r

Mr

mr + r−s
r

)1/s − M − C(ms, M s, 1/s)
)
1 ≤ Φ(As)1/s − Φ(Ar)1/r(15)

≤
(
∆̃ + C(ms, M s, 1/s)

)
1.

Next, using Remark 6, we obtain the following inequalities, where Ts denotes the closed
interval joining ms to M s.

(a1) If 1 ≤ r ≤ s or −s ≤ r ≤ −1 or 2s ≤ r ≤ s < 0, r ≤ −1, then

0 ≤ Φ(As)1/s − Φ(Ar)1/r ≤ max
t∈Ts

{
t1/s − (µ̄ t + ν̄)1/r

}
1

holds. Setting t = θM s+(1−θ)ms for some θ ∈ [0, 1], we obtain max
t∈Ts

{
t1/s − (µ̄ t + ν̄)1/r

}
=

∆̃. Then we obtain (12) in this case too.
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(b1) If r < −s < 0, r ≤ −1 or r < 2s < 0, r ≤ −1, then

mint∈Ts

{
t1/s − M

(
r
sM−st + s−r

s

)1/r
}

1 ≤ Φ(As)1/s − Φ(Ar)1/r

≤ maxt∈Ts

{
t1/s − (µ̄ t + ν̄)1/r

}
1

holds. A function h(t) = t1/s − M
(

r
sM−st + s−r

s

)1/r is decreasing on [M s, ms] for r <
2s < 0, r ≤ −1. Then min

t∈[Ms,ms]
h(t) = h(ms) and we obtain

(
m − M

(
r

s

ms

M s
+

s − r

s

)1/r
)

1 ≤ Φ(As)1/s − Φ(Ar)1/r ≤ ∆̃1.(16)

Similarly, h is a increasing function on [ms, M s] for r < −s < 0, r ≤ −1. Then min
t∈[ms,mMs]

h(t) =

h(ms) and we obtain (16) again.
(c1) If r ≤ s, 0 < r ≤ 1 or −s ≤ r, −1 ≤ r < 0 or 2s ≤ r ≤ s < 0, r ≥ −1, then

− C (mr, M r, 1/r)1 ≤ Φ(As)1/s − Φ(Ar)1/r ≤
(
∆̃ + C (mr, M r, 1/r)

)
1.(17)

(d1) If −1 ≤ r < −s < 0 or −1 ≤ r < 2s < 0, then(
m − M

(
r
s

ms

Ms + s−r
s

)1/r − C (mr, M r, 1/r)
)

1 ≤ Φ(As)1/s − Φ(Ar)1/r(18)

≤
(
∆̃ + C (mr, M r, 1/r)

)
1.

Finally, (12) holds in cases (a) and (a1). If we put r = 1 in (12) in the case (a1) and
s = −1 in the case (a), then we obtain that

Φ(Ar)1/r ≤ Φ(As)1/s

holds in the region (i). Consequently, we obtain that (12) holds in the region (i), (13) holds
in the region (ii) and (16) holds in the region (iii).

In the region (iv) inequalities (15) and (17) hold. Using Lemma 8 (1), we obtain that
∆̃ + C (ms, M s, 1/s) is a better upper bound. A lower bound is

max

{
m

(
s

r

M r

mr
+

r − s

r

)1/s

− M − C(ms, M s, 1/s),−C (mr, M r, 1/r)

}
.

In the region (v) inequalities (14) and (18) hold. Using Lemma 8 (1), we have that
∆̃ + C (ms, M s, 1/s) is a better upper bound. A lower bound is

max

{
m − M

(
r

s

ms

M s
+

s − r

s

)1/r

− C (mr, M r, 1/r) ,−C (ms, M s, 1/s)

}
= − C (ms, M s, 1/s) ,

since m < M
(

r
s

ms

Ms + s−r
s

)1/r
in this case and −C (mr, M r, 1/r) < −C (ms, M s, 1/s).

In the regions (iv)1 and (v)1 inequalities (14) and (17) hold. We have a better bounds
in LHS of (14). �

We can obtain better bounds in the regions (ii) and (iii) then appropriate bounds in
Theorem 7 under additional conditions.
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Theorem 9 Let (A1, . . . , An) be an n-tuple of positive operators in B(H) with spectra in
[m, M ] for some scalars 0 < m < M , (Φ1, . . . , Φn) be an n-tuple of positive linear maps
Φi : B(H) → B(K) and (ω1, . . . , ωn) be an n-tuple of positive real numbers such that
(ω1Φ1, . . . , ωnΦn) is unital.

Let (r, s) be in (ii) and Tr be the closed interval joining mr to M r. If Y ⊆ Tr such that
s
ry−rmr + 1 − s

r > 0 for every y ∈ Y , then

maxy∈Y min
{
y
(

s
r y−rmr + 1 − s

r

)1/s − m, y
(

s
r y−rM r + 1 − s

r

)1/s − M
}

1(19)

≤ M̃
[s]
n (A,Φ, ω) − M̃

[r]
n (A,Φ, ω).

Let (r, s) be in (iii) and Ts be the closed interval joining ms to M s. If Y ⊆ Ts such that
r
sy−sM s + 1 − r

s > 0 for every y ∈ Y , then

maxy∈Y min
{
m − y

(
r
sy−sms + 1 − r

s

)1/r
, M − y

(
r
sy−sM s + 1 − r

s

)1/r
}

1(20)

≤ M̃
[s]
n (A,Φ, ω) − M̃

[r]
n (A,Φ, ω).

Proof. In the region (ii) we use the same technique as in the proof of Theorem 7 in
the same region. If 0 < s ≤ −r or 0 < r ≤ s ≤ 2r, then we have

0 <

(
s

r
ys−rmr +

r − s

r
ys

)
1 ≤ s

r
ys−rΦ(Ar) +

r − s

r
ys1 ≤

(
s

r
ys−rM r +

r − s

r
ys

)
1.

Putting p = s/r in (8) in Lemma 3 and replacing t by tr and y by yr, we obtain

min
t∈Tr

{(s

r
ys−rt +

(
1 − s

r

)
ys

)1/s

− t1/r

}
≤ Φ(As)1/s − Φ(Ar)1/r.

A function h(t) =
(

s
rys−rt +

(
1 − s

r

)
ys

)1/s − t1/r is concave, since it is obviously that
h′′(t) < 0 for (s, r) in (ii). It follows

min
{

y
(s

r
y−rmr + 1 − s

r

)1/s

− m, y
(s

r
y−rM r + 1 − s

r

)1/s

− M

}
1 ≤ Φ(As)1/s−Φ(Ar)1/r

and we obtain (19). Similarly we can prove (20). �

Applying Theorem 9 for some special y, we obtain the following corollary.

Corollary 10 Assume that (A1, . . . , An), (Φ1, . . . , Φn), m and M as in Theorem 9.
Let (r, s) be in the region (ii) and Ir be the open interval joining mr to M r.

If min{µ̃mr + ν̃∗, µ̃M r + ν̃∗} > 0 and
(

r
s µ̃

)1/(s−r) ∈ Ir, where we denote µ̃ = Ms−ms

Mr−mr ,

ν̃∗ =
(
1 − s

r

) (
r
s µ̃

)s/(s−r), then

min
{(

µ̃mr + ν̃∗)1/s − m,
(
µ̃M r + ν̃∗)1/s − M

}
1 ≤ M̃ [s]

n (A,Φ, ω) − M̃ [r]
n (A,Φ, ω).(21)

The bound in (21) is better than the bound: m
(

s
r

Mr

mr + 1 − s
r

)1/s − M was given in Theo-
rem 7.

Further, let y0 be a solution of the equation
y
(

s
r y−rmr + 1 − s

r

)1/s−m = y
(

s
r y−rM r + 1 − s

r

)1/s−M. If y0 ∈ Ir and s
ry−r

0 mr +1− s
r >

0, then (
y0

(s

r
y−r
0 mr + 1 − s

r

)1/s

− m

)
1 ≤ M̃ [s]

n (A,Φ, ω) − M̃ [r]
n (A,Φ, ω)(22)
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and this bound in LHS is better than the lower bound in (21).
Similarly, let (r, s) be in the region (iii) and Is be the open interval joining ms to M s.

If min{µ̄ms + ν̄∗, µ̄M s + ν̄∗} > 0 and
(

s
r µ̄

)1/(r−s) ∈ Is, where we denote µ̄ = Mr−mr

Ms−ms ,

ν̄∗ =
(
1 − r

s

) (
s
r µ̄

)r/(r−s), then

min
{
m − (µ̄ms + ν̄∗)1/r

, M − (µ̄M s + ν̄∗)1/r
}

1 ≤ M̃ [s]
n (A,Φ, ω) − M̃ [r]

n (A,Φ, ω).(23)

The bound in (23) is better than the bound: m − M
(

r
s

ms

Ms + 1 − r
s

)1/r
was given in Theo-

rem 7.
Further, let y0 be a solution of the equation

m−y
(

r
sy−sms + 1 − r

s

)1/r = M−y
(

r
sy−sM s + 1 − r

s

)1/r
. If y0 ∈ Is and r

sy−s
0 M s+1− r

s >
0, then (

m − y0

(r

s
y−s
0 ms + 1 − r

s

)1/r
)

1 ≤ M̃ [s]
n (A,Φ, ω) − M̃ [r]

n (A,Φ, ω)(24)

and this bound in LHS is better than the lower bound in (23).

Proof. Putting y =
(

r
s µ̃

)1/(s−r) in (19) we obtain (21).

Next, using that h(t) = ts/r is a convex function for (r, s) in (ii) and that
(

r
s µ̃

)1/(s−r) is
in Ir , we obtain the following relation between their tangent lines

min
t∈Tr

{s

r
ms−rt +

(
1 − s

r

)
ms

}
< min

t∈Tr

{
µ̃t + ν̃∗} .

It follows

min
t∈Tr

{(s

r
ms−rt +

(
1 − s

r

)
ms

)1/s
}

< min
t∈Tr

{(
µ̃t + ν̃∗)1/s

}
for s > 0,

which gives that the bound in (21) is better than the bound m
(

s
r

Mr

mr + 1 − s
r

)1/s − M .
Further, we can prove that the bound in (24) is better than the bound in (23) by

contraposition. �

3.2 Ratio type inequalities. Our second main result about the order among the
power means is given in the following theorem, which improve [2, Theorem 4.4], cf. also [6,
Theorem 11].

Theorem 11 Assume that the conditions of Theorem 7 hold.
If (r, s) in (i), then

∆(h, r, s)−1 M̃ [s]
n (A,Φ, ω) ≤ M̃ [r]

n (A,Φ, ω) ≤ M̃ [s]
n (A,Φ, ω),

if (r, s) in (ii) or (iii), then

∆(h, r, s)−1 M̃ [s]
n (A,Φ, ω) ≤ M̃ [r]

n (A,Φ, ω) ≤ ∆(h, r, s) M̃ [s]
n (A,Φ, ω),

if (r, s) in (iv), then

∆(h, s, 1)−1∆(h, r, s)−1 M̃
[s]
n (A,Φ, ω) ≤ M̃

[r]
n (A,Φ, ω)

≤ min{∆(h, r, 1), ∆(h, s, 1)∆(h, r, s)} M̃
[s]
n (A,Φ, ω),
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if (r, s) in (v) or (iv)1 or (v)1, then

∆(h, s, 1)−1∆(h, r, s)−1 M̃ [s]
n (A,Φ, ω) ≤ M̃ [r]

n (A,Φ, ω) ≤ ∆(h, s, 1) M̃ [s]
n (A,Φ, ω),

where a generalized Specht ratio ∆(h, r, s) [2, § 2.7] is defined as

∆(h, r, s) =
{

r(hs − hr)
(s − r)(hr − 1)

}1/s {
s(hr − hs)

(r − s)(hs − 1)

}−1/r

, h =
M

m
.

In order to prove Theorem 11, we need the operator order given in the following theorem.

Theorem D [6, Corollary 3] If A,B ∈ B+(H), A ≥ B > 0 such that Sp(A) ⊆ [n, N ] and
Sp(B) ⊆ [m, M ] for some scalars 0 < n < N and 0 < m < M , then

K(n,N, p) Ap ≥ Bp > 0 for all p > 1,
K(m,M, p) Ap ≥ Bp > 0 for all p > 1,
K(n,N, p) Bp ≥ Ap > 0 for all p < −1,
K(m,M, p) Bp ≥ Ap > 0 for all p < −1.

In [2, Lemma 2.62] we gave a collection of basic properties of the generalized Specht
ratio ∆(h, r, s). We shall need some properties of the constant ∆(h, r) ≡ ∆(h, r, 1) (see
Figure 3).

Lemma 12 Let M > m > 0 and r ∈ R and

∆(h, r, 1) =
r(h − hr)

(1 − r)(hr − 1)

(
hr − h

(r − 1)(h − 1)

)−1/r

, h =
M

m
.

�(r)

r

h

1/h

S(h)

1

Figure 3: Function ∆(r) ≡ ∆(h, r, 1)

1. A function ∆(r) ≡ ∆(h, r, 1) is strictly decreasing for all r ∈ R,

2. lim
r→1

∆(h, r, 1) = 1 and lim
r→0

∆(h, r, 1) = S(h),

where S(h) is the Specht ratio defined by (∗∗∗),

3. lim
r→∞∆(h, r, 1) = 1/h and lim

r→−∞∆(h, r, 1) = h.



FIXED POINT RESULTS IN GAUGE SPACES 691

Proof.

1. We write

∆(r) = ∆1(r) · ∆2(r), ∆1(r) =
r(hr − h)

(r − 1)(hr − 1)
, ∆2(r) =

(
hr − h

(r − 1)(h − 1)

)−1/r

.

(25)

By using differential calculus we shall prove that a function ∆1 is strictly decreasing
for all r �= 0, 1. We have

d
dr∆1(r) = −1

(r−1)2(hr−1)2 ((hr − 1)(hr − h) − (r − 1)rhr(h − 1) lnh)

= − hr(h−1) ln h
(r−1)2(hr−1)2 f(r), where f(r) = (hr−1)(hr−h)

hr(h−1) ln h − (r − 1)r.(26)

Stationary points of the function f are 0, 0.5, 1 and it is a strictly decreasing function
on (−∞, 0) ∪ (0.5, 1) and strictly increasing on (0, 0.5) ∪ (1,∞). Also, f(0) = f(1) =
0. So, f(r) > 0 for all r �= 0, 1. (More exactly, f ′′′(r) = ln2 h

h−1

(
hr − h1−r

)
imply

f ′′′(r) > 0 for r > 0.5 and f ′′′(r) < 0 for r < 0.5. It follows that the function f ′′ is
strictly increasing on (0.5,∞) and strictly decreasing on (−∞, 0.5). Next, f ′′(0.5) < 0,
f ′′(0) > 0 and f ′′(1) > 0 imply that f ′′ has two roots 0 < r1 < 0.5 < r2. It follows
that f ′ is strictly increasing on (−∞, r1) ∪ (r2,∞) and strictly decreasing on (r1, r2).
Also, f ′(0) = f ′(0.5) = f ′(1) = 0. It follows that f ′(r) < 0 for r ∈ (−∞, 0) ∪ (0.5, 1)
and f ′(r) > 0 for r ∈ (0, 0.5)∪ (1,∞).) Now, using (26) we have that d

dr∆1(r) < 0 for
all r �= 0, 1 and it follows that ∆1 is strictly decreasing function.

Further, in the case of a function ∆2 in (25), we obtain

d
dr∆2(r) = −1

(r−1)r2(hr−h)

(
hr−h

(r−1)(h−1)

)−1/r

×
[
r(r − 1)hr lnh − r(hr − h) + (r − 1)(hr − h) ln

(
(r−1)(h−1)

hr−h

)]
.

By using differential calculus we can prove that a function

r 
→ r(r − 1)hr lnh − r(hr − h) + (r − 1)(hr − h) ln
(

(r − 1)(h − 1)
hr − h

)
is positive for all r �= 0, 1. So d

dr∆2(r) < 0 for all r �= 0, 1 and it follows that ∆2 is
strictly decreasing function.

2. Using [2, (2.97)], we have ∆(h, r, 1) = K(hr, 1/r) if r �= 0. Now, we have K(h, 1) = 1
by using [2, Theorem 2.54 (iii)] and lim

r→0
K(hr, 1/r) = S(h) by using [2, Theorem 2.56].

3. We have by L’Hospital’s theorem

lim
r→∞

ln ((r − 1)(h − 1)/(hr − h))
r

= lim
r→∞

(
1

r − 1
− hr lnh

hr − h

)
= − lnh.

So

lim
r→∞∆(h, r, 1) = lim

r→∞
r

r − 1
· hr − h

hr − 1
·
(

(r − 1)(h − 1)
hr − h

)1/r

= e− ln h = 1/h.

Similarly, we obtain lim
r→−∞∆(h, r, 1) = h. �
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Proof of Theorem 11. This theorem follows from Lemma 2 by putting p = s/r or
p = r/s and then using the Löwner-Heinz theorem, Theorem D and Lemma 12. We give
the proof for the sake of completeness.

Putting p = s/r in Lemma 2 and replacing A by Ar and applying the Löwner-Heinz
theorem, we obtain the following cases (a) and (b):

(a) If r ≤ s ≤ −1 or 1 ≤ s ≤ −r or 0 < r ≤ s ≤ 2r, s ≥ 1, then

Φ(Ar)1/r ≤ Φ(As)1/s ≤ ∆(h, r, s) Φ(Ar)1/r.(27)

(b) If 0 < −r < s, s ≥ 1 or 0 < 2r < s, s ≥ 1, then

∆(h, r, s)−1 Φ(Ar)1/r ≤ Φ(As)1/s ≤ ∆(h, r, s) Φ(Ar)1/r.(28)

We used equalities K (mr, M r, s/r)1/s = K (M r, mr, s/r)1/s = ∆(h, r, s) in the above
cases.
If −1 ≤ s ≤ 1, then we apply Theorem D and obtain the following cases (c) and (d):

(c) If r ≤ s, −1 ≤ s < 0 or s ≤ −r, 0 < s ≤ 1 or 0 < r ≤ s ≤ 2r, s ≤ 1, then

∆(h, s, 1)−1 Φ(Ar)1/r ≤ Φ(As)1/s ≤ ∆(h, s, 1) ∆(h, r, s) Φ(Ar)1/r.(29)

(d) If 0 < −r < s ≤ 1 or 0 < 2r < s ≤ 1, then

∆(h, s, 1)−1 ∆(h, r, s)−1 Φ(Ar)1/r ≤ Φ(As)1/s ≤ ∆(h, s, 1) ∆(h, r, s) Φ(Ar)1/r,(30)

where we used equalities K (ms, M s, 1/s) = ∆(h, 1, s)−1 = ∆(h, s, 1).
Similarly, putting p = r/s in Lemma 2 and replacing A by As and then, applying the

Löwner-Heinz theorem, we obtain the following cases (a1) and (b1):
(a1) If 1 ≤ r ≤ s or −s ≤ r ≤ −1 or 2s ≤ r ≤ s < 0, r ≤ −1, then

∆(h, r, s)−1 Φ(As)1/s ≤ Φ(Ar)1/r ≤ Φ(As)1/s.(31)

(b1) If r < −s < 0, r ≤ −1 or r < 2s < 0, r ≤ −1, then

∆(h, r, s)−1 Φ(As)1/s ≤ Φ(Ar)1/r ≤ ∆(h, r, s) Φ(As)1/s.(32)

We used equalities K (ms, M s, r/s)1/r = (Ms, ms, r/s)1/r = ∆(h, r, s)−1 in the above
cases.
If −1 ≤ s ≤ 1, then we apply Theorem D and obtain the following cases (c1) and (d1):

(c1) If r ≤ s, 0 < r ≤ 1 or −s ≤ r, −1 ≤ r < 0 or 2s ≤ r ≤ s < 0, r ≥ −1, then

∆(h, r, 1)−1 ∆(h, r, s)−1 Φ(As)1/s ≤ Φ(Ar)1/r ≤ ∆(h, r, 1) Φ(As)1/s.(33)

(d1) If −1 ≤ r < −s < 0 or −1 ≤ r < 2s < 0, then

∆(h, r, 1)−1 ∆(h, r, s)−1 Φ(As)1/s ≤ Φ(Ar)1/r ≤ ∆(h, r, 1) ∆(h, r, s) Φ(As)1/s.(34)

Finally, we choose better bounds using Lemma 12 and the same technique as in The-
orem 7. Really, in cases (a) and (a1) the inequality (27) holds and in cases (b) and (b1)
the inequality (28) holds. If we put r = 1 in (31) for 1 ≤ r ≤ s and s = −1 in (27) for
r ≤ s ≤ −1, then we obtain Φ(Ar)1/r ≤ Φ(As)1/s in the region (i). Consequently, we obtain
that (27) holds in the region (i) and (28) holds in the regions (ii) and (iii).

In the region (iv) inequalities (30) and (33) hold. Now, using Lemma 12 (1) we obtain

∆(h, s, 1)−1∆(h, r, s)−1 ≥ ∆(h, r, 1)−1∆(h, r, s)−1
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and it follows that ∆(h, s, 1)−1∆(h, r, s)−1 is a better lower bound. The upper bound is
equal

min{∆(h, r, 1), ∆(h, s, 1)∆(h, r, s)}.
In the region (v) inequalities (29) and (34) hold. Using Lemma 12 (1), we have that

∆(h, s, 1)−1 ×∆(h, r, s)−1 is a better lower bound. The upper bound is equal

min{∆(h, s, 1), ∆(h, r, 1)∆(h, r, s)} = ∆(h, s, 1),

since hold ∆(h, r, s) ≥ 1 and ∆(h, r, 1) ≥ ∆(h, s, 1). (More exactly, applying proper-
ties of the generalized Kantorovich constant [2, §2.7], we have that K(m,M, p) ≥ 1 for
p ∈ R\(0, 1) and 0 < K(m,M, p) ≤ 1 for p ∈ [0, 1]. Then we obtain that ∆(h, r, s) =
K(mr, M r, s/r)1/s ≥ 1 for r ≤ s.)

In the regions (iv)1 and (v)1 inequalities (29) and (33) hold. Analogously in the inequal-
ity (29) we have better bounds. �
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