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ON SOME MAPS CONCERNING gp-CLOSED SETS AND RELATED
GROUPS
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Abstract. In the present paper we first introduce three classes of maps called approxi-
mately s.M-precontinuity, approximately s.M-preclosedness and contra-preirresoluteness.
We obtain their basic properties and their relationships with other types of mappings
between topological spaces. Finally, we construct and investigate some groups of some
mappings corresponding to a topological space. We show some group structures for a
subspace of the digital line and the digital plane.

1 Introduction The concept of closedness of subsets is fundamental with respect to
the investigation of general topological spaces. In 1970, Levine [26] initiated the study of
generalized closed sets (briefly, the so-called g-closed sets) and he generalized the concept of
closedness (cf. [26, Definition 2.1]). Moreover, he introduced and investigated the concept of
T1/2-spaces which is properly placed between T0-spaces and T1-spaces ; a topological space is
called T1/2 if every g-closed set is closed; every closed set is g-closed (cf. [26, Definition 5.1,
Theorem 5.3, Corollary 5.6]). In 1977, Dunham [12, Theorem 2.5] proved that a topological
space is T1/2 if and only if every singleton is open or closed (cf. [13, Theorem 3.7], [27,
Theorem 3.9]). The digital line, so-called Khalimsky line [21], is a typical and geometric
example of T1/2-spaces; the concept was published in Russia by E. Khalimsky in 1970
[21] (cf. [22, p.7, line −6], the end of Section 2 below). In 1990, Khalimsky, Kopperman
and Meyer [22] developed the work of [21] and studied a finite analog of the Jordan curve
theorem motivated by a problem in computer graphics (cf. [23], [24]).

The notion of a generalized preclosed set (briefly, gp-closed set) was introduced by Noiri et
al.[36, Definition 2] (cf. [29, Definition 2.11], [10], [3]). One of the aims of the present paper
is to introduce and investigate two classes of maps called approximately s.M-precontinuous
maps (Definition 3.2) and approximately s.M-preclosed maps (Definition 3.3) by using gp-
closed sets and studying some of their basic properties (cf. Section 3). This definition
enables us to obtain conditions under which inverse maps and maps preserve gp-closed sets
(Theorem 3.8, Theorem 3.9). The class of approximately s.M-precontinuous maps is a gen-
eralization of the class of strongly M -precontinuous maps introduced by Abd El-Monsef et
al. [2] (cf. Definition 2.3(ii), Remark 3.6 below). Reilly and Vamanamurthy [39] introduced
the notion of preirresoluteness of maps and several generalizations of preirresoluteness have
been developed recently (cf. [6], [15], [35], [38], [28]). In Section 3 of the present paper, we
present the notion of a new related class of preirresoluteness [39] called contra-preirresolute
(Definition 2.3(iv)); we define this last class of map by requirement that the inverse image
of each preopen set in the codomain is preclosed in the domain. This notion is a stronger
form of approximately s.M -precontinuity (Remark 3.6). The final purpose of the present
paper is to construct some groups corresponding to a topological space using preirresolute
bijections and contra-preirresolute bijections (Definition 4.2, Theorem 4.3) and subgroups
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corresponding to a subspace of the topological space (Definition 5.1, Theorem 5.7). In
Section 6, we try to study examples of groups corresponding to a subspace of the digital
line. The digital plane is the topological product of two copies of the digital lines (eg., [24,
Definition 4], [23, p.907], [11], [18], [17], [7], [9], [41], [42]; cf. Section 6 of the present paper);
the digital plane or the rectungular portion of the plane as its subspace is a mathematical
model of the computer screen. We also investigate characterizations of some preirresolute
functions on digital planes (Theorem 6.8), an example of subgroups (Theorem 6.10) and
properties of some functions on the digital planes (Theorem 6.12, Corollary 6.15).

2 Preliminalies Throughout the present paper, (X, τ), (Y, σ) and (Z, η) represent nonempty
topological spaces on which no separation axioms are assumed unless otherwise mentioned
and Z denotes the set of all integers. For a subset of a topological space, the closure and
interior of A are denoted by Cl(A) and Int(A), respectively. We first need the following
definition.

Definition 2.1 (i) A subset A of a topological space (X, τ) is said to be
(a) preopen [30] if A ⊆ Int(Cl(A)) holds in (X, τ),
(b) semi-open [25] if there exists an open set O such that O ⊆ A ⊆ Cl(O) or equivalently

if A ⊆ Cl(Int(A)) holds in (X, τ),
(c) α-open [32] if A ⊆ Int(Cl(Int(A))) holds in (X, τ).
(ii) A subset F of (X, τ) is said to be preclosed (resp. semi-closed, α-closed) if X \ F is

preopen (resp. semi-open, α-open) in (X, τ).

(Notation) (1) The collection of all preopen (resp. semi-open, α-open) subsets in (X, τ) is
denoted by PO(X, τ) (resp. SO(X, τ), τα).

(2) The collection of all preclosed (resp. semi-closed) subsets in (X, τ) is denoted by
PC(X, τ) (resp. SC(X, τ)).

Remark 2.2 (i) The intersection of all preclosed subsets containing A is called the preclo-
sure [16, Definition 2.1] of A and is denoted by pCl(A). It is well known [16, Lemmas 2.2,
2.3] that for a point x ∈ X and a subset A of (X, τ), x ∈ pCl(A) if and only if A∩V �= ∅ for
every V ∈ PO(X, τ) containing x; a subset F is preclosed in (X, τ) if and only if F = pCl(F )
holds; if A ⊆ B then pCl(A) ⊆ pCl(B) holds; pCl(pCl(A)) = pCl(A) holds for every subset
A of (X, τ); pCl(A) is preclosed in (X, τ) for every subset A of (X, τ).

(ii) pCl(A) = A ∪Cl(Int(A)) holds for every subset A of (X, τ) ([5, Theorem 1.5 (e)]).
(iii) The preinterior [1] of A is the union of all preopen subsets of (X, τ) contained in

A and is denoted by pInt(A). It is well known that pInt(A) is preopen in (X, τ) for every
subset A of (X, τ). We observe that pInt(A) = A ∩ Int(Cl(A)) holds for every subset A of
(X, τ).

We need the following definition on some maps between topological spaces.

Definition 2.3 A map f : (X, τ)→ (Y, σ) is said to be:
(i) precontinuous provided that for every V ∈ σ, f−1(V ) ∈ PO(X, τ) (Mashhour, Abd

El-Monsef and El-Deeb [30]),
(ii) strongly M -precontinuous (shortly, s.M -precontinuous) provided that for every V ∈

PO(Y, σ), f−1(V ) is open in (X, τ) (Abd El-Monsef, Mahmoud and Nasef [2], e.g., [33]),
(iii) preirresolute provided that for every V ∈ PO(Y, σ), f−1(V ) ∈ PO(X, τ) (Reilly

and Vamanamurthy [39]),
(iv) contra-preirresolute provided that for every V ∈ PO(Y, σ), f−1(V ) ∈ PC(X, τ),
(v) perfectly preirresolute provided that for every V ∈ PO(Y, σ), f−1(V ) ∈ PC(X, τ) ∩

PO(X, τ),
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(vi) M -preopen (resp. M -preclosed) provided that for every U ∈ PO(X, τ) (resp. U ∈
PC(X, τ)), f(U) ∈ PO(Y, σ) (resp. f(U) ∈ PC(Y, σ)) (Mashhour, Abd El-Monsef, Hasanein
and Noiri [31]),

(vii) strongly M -preclosed (shortly, s.M -preclosed) provided that for every F ∈ PC(X, τ),
f(F ) is closed in (Y, σ),

(viii) contra-M -preopen provided that for every U ∈ PO(X, τ), f(U) ∈ PC(Y, σ) (Baker
[6, Defnition 3.7]),

(ix) contra-M -preclosed provided that for every U ∈ PC(X, τ), f(U) ∈ PO(Y, σ).

In order to investigate the relationships (cf. Remark 3.7 below) of the above mentioned
concepts and new one of Definitions 3.2, 3.3 below, we use partially the concept of the
Khalimsky line or the so called digital line due to Khalimsky and digital planes ([21]; cf.
[22], [23], [24], [10, Example 4.6], [11], [18], [7], [17], [42], [41], [9]): the digital line is the
set of the integers, Z, equiped with the topology κ having {{2m − 1, 2m, 2m + 1}|m ∈ Z}
as a subbase. This topological space is denoted by (Z, κ). Thus, a set U is open in (Z, κ) if
and only if whenever x ∈ U is an even integer, then x− 1, x + 1 ∈ U . Especially, {2m + 1}
is open and {2s} is closed in (Z, κ), where m and s are integers. It is well known that
κ = PO(Z, κ) (eg., [17, Theorem 2.1 (i)]).

3 Approximately s.M -precontinuity and approximately s.M -preclosedness First
we introduce a weak form of a strongly M -precontinuous function (cf. Definition 2.3 (ii)),
called approximately s.M -precontinuous (Definition 3.2 below); secondly we introduce a
weak form of a strongly M -preclosed function (cf. Definition 2.3 (vii)), called approxi-
mately s.M -preclosed (Definition 3.3 below). We need the following concepts of generalized
preclosed sets and generalized open sets.

Definition 3.1 ([36, Definition 2]) A subset A of (X, τ) is called generalized preclosed
(briefly, gp-closed) if pCl(A) ⊆ U whenever A ⊆ U and U ∈ τ . A subset B is called gp-open
if its complement X \ B is gp-closed in (X, τ). Let GPC(X, τ) (resp. GPO(X, τ)) denote
the family of all gp-closed sets (resp. gp-open sets) of (X, τ).

It is shown that GPO(X, τ) = {B|F ⊆ pInt(B) holds whenever F ⊆ B and F is closed in
(X, τ)} holds.

Definition 3.2 A map f : (X, τ) → (Y, σ) is said to be approximately s.M -precontinuous
(shortly, ap-s.M-precontinuous) if pCl(A) ⊆ f−1(V ) holds whenever V ∈ PO(Y, σ), A ∈
GPC(X, τ) and A ⊆ f−1(V ).

Definition 3.3 A map f : (X, τ) → (Y, σ) is said to be approximately s.M -preclosed
(shortly, ap-s.M-preclosed) if f(U) ⊆ pInt(B) holds whenever U ∈ PC(X, τ), B ∈ GPO(Y, σ),
and f(U) ⊆ B.

Theorem 3.4 Let f : (X, τ)→ (Y, σ) be a function.
(i-1) Every s.M -precontinuous map (cf. Definition 2.3 (ii)) is ap-s.M-precontinuous.
(i-2) Every contra-preirresolute map (cf. Definition 2.3 (iv)) is ap-s.M-precontinuous.
(ii-1) Every s.M -preclosed map (cf. Definition 2.3 (vii)) is ap-s.M-preclosed.
(ii-2) Every contra-M -preclosed map (cf. Definition 2.3 (ix)) is ap-s.M-preclosed.

Proof. (i-1) Suppose that f : (X, τ) → (Y, σ) is a s.M -precontinuous map. Let V ∈
PO(Y, σ), A ∈ GPC(X, τ) and A ⊆ f−1(V ). By Definition 2.3(ii) and Definition 3.1,
f−1(V ) ∈ τ and so pCl(A) ⊆ f−1(V ). Thus, f is ap-s.M -precontinuous. (i-2) Suppose
that f : (X, τ) → (Y, σ) is a contra-preirresolute map. Let V ∈ PO(Y, σ), A ∈ GPC(X, τ)
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and A ⊆ f−1(V ). It follows from assumption that pCl(A) ⊂ f−1(V ) = pCl(f−1(V ))
and so f is ap-s.M -precontinuous. (ii-1) Suppose that f : (X, τ) → (Y, σ) is a s.M -
preclosed map. Let U ∈ PC(X, τ), B ∈ GPO(Y, σ) and f(U) ⊆ B. By Definition 2.3(vii)
and Definition 3.2, f(U) is closed in (Y, σ) and so f(U) ⊆ pInt(B). Thus, f is ap-s.M -
preclosed. (ii-2) Suppose that f : (X, τ) → (Y, σ) is a contra-M -preclosed map. Let
U ∈ PC(X, τ), B ∈ GPO(Y, σ) and f(U) ⊆ B. It follows from assumption that f(U) =
pInt(f(U)) ⊆ pInt(B) and so f is ap-s.M -preclosed. � Under certain conditions, the
converses of Theorem 3.4 (i-2) and (ii-2) are true. We observe the following property:

(∗) If PO(X, τ) = PC(X, τ) holds for a topological space (X, τ), then GPC(X, τ) =
GPO(X, τ) = P (X)(=the power set of X).

Theorem 3.5 For a map f : (X, τ)→ (Y, σ), the following properties hold:
(i) Suppose that PO(X, τ) = PC(X, τ). A map f is ap-s.M-precontinuous if and only

if f is contra-preirresolute.
(ii) Suppose that PO(Y, σ) = PC(Y, σ). A map f is ap-s.M-preclosed if and only if f

is contra-M -preclosed (cf. Definition 2.3 (viii)).

Proof. (i) (Necessity) Assume f is ap-s.M -precontinuous. Let V ∈ PO(Y, σ). Put
A := f−1(V ). Then, by (∗) for the set A,A ∈ GPC(X, τ) and A ⊆ f−1(V ). Then, by ap-
s.M -precontinuity of f , it is obtained that pCl(A) ⊆ f−1(V ). Therefore, pCl(f−1(V )) =
f−1(V ), i.e., f−1(V ) ∈ PC(X, τ). Namely, f is contra-preirresolute. (Sufficiency) It is
obtained by Theorem 3.4 (i-2) without using the assumption that PO(X, τ) = PC(X, τ).
(ii) (Necessity) Assume f is ap-s.M -preclosed. Let U ∈ PC(X, τ). Put B = f(U). By (∗)
for the set B and (Y, σ), it is obtained that B ∈ GPO(Y, σ). Since f is ap-s.M -preclosed,
f(U) ⊆ pInt(B) = pInt(f(U)), i.e., f(U) ∈ PO(Y, σ). Namely, f is contra-M -preclosed.
(Sufficiency) It is obtained by Theorem 3.4 (ii-2). �

Remark 3.6 The relationships between classes of mappings in Definition 2.3 and Defini-
tions 3.2, 3.3 are shown in the following diagram (cf. Theorem 3.4 and the definitions); the
converses are not true in general by Remark 3.7 below. The symbol,A �→ B, means that A
does not necessarily imply B. Some concepts are independent to each other (cf. Remark 3.7
(ix), (xiii) and (xiv) below).

· preirresolute(∗) �→ ·M -preclosed
(cf. Definition 2.3(iii)) �← (cf. Definition 2.3(vi))

�↓ ↑ �↓ ↑
· strongly M -precontinuous �→ · strongly M -preclosed

(cf. Definition 2.3(ii)) �← (cf. Definition 2.3(vii))
↓ �↑ ↓ �↑

• ap-s.M -precontinuous �→ • ap-s.M -preclosed
(cf. Definition 3.2) (cf. Definition 3.3)

�↓ ↑ �↓ ↑
· contra-preirresolute �→ · contra-M -preclosed
(cf. Definition 2.3(iv)) �← (cf. Definition 2.3(ix))

�↓ ↑ �↙
· perfectly preirresolute (cf. Definition 2.3(v))

�↑ ↓
· preirresolute(∗)

Remark 3.7 (i) The converse of Theorem 3.4 (i-1) is not true in general. Namely, the
concept of ap. s.M -precontinuity is strictly weaker than one of s.M -precontinuity. Let
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(X, τ) and (Y, σ) be the following topological spaces: X := {a, b, c}, Y := {a, b, c}, τ :=
{∅, {a}, {a, b}, X}, σ := {∅, {a, b}, Y }. Let f : (X, τ) → (Y, σ) be a map defined by f(a) =
f(b) = a and f(c) = b. Then, f is not s.M -precontinuous. Indeed, there exists a subset {b} ∈
PO(Y, σ) and f−1({b}) = {c} �∈ τ , because PO(Y, σ) = {∅, {a}, {b}, {a, b}, {b, c}, {a, c}, Y }.
It is shown that this map f is ap-s.M -precontinuous. Indeed, PC(X, τ) = {∅, {b}, {c}, {b, c}, X} ⊆
GPC(X, τ) = PC(X, τ) ∪ {{a, c}}. Let V ∈ PO(Y, σ) and A ∈ GPC(X, τ) such that
A ⊆ f−1(V ). Put GPCV := {A ∈ GPC(X, τ)|A ⊆ f−1(V )} for each V ∈ PO(Y, σ).
Then, for V = {a}, f−1(V ) = {a, b} and GPCV = {{b}, ∅}; for V = {b}, f−1(V ) = {c}
and GPCV = {{c}, ∅}; for V = {a, b}, f−1(V ) = X and GPCV = GPC(X, τ); for
V = {b, c}, f−1(V ) = {c} and GPCV = {{c}, ∅}; for V = {a, c}, f−1(V ) = {a, b} and
GPCV = {{b}, ∅}; for V = ∅, f−1(V ) = ∅ and GPCV = {∅}; for V = Y, f−1(V ) = X
and GPCV = GPC(X, τ). Thus, we show that pCl(A) ⊆ f−1(V ) holds, whenever V ∈
PO(Y, σ), A ∈ GPCV and A ⊂ f−1(V ). Therefore, f is ap-s.M -precontinuous.

(ii) The converse of Theorem 3.4(i-2) is not true in general. The ap-s.M -precontinuous
map f of (i) above is not contra-preirresolute. Indeed, there exists a set V := {a} ∈
PO(Y, σ) such that f−1(V ) = {a, b} �∈ PC(X, τ).

(iii) Every perfectly preirresolute map is contra-preirresolute (cf. Definition 2.3 (v),
(iv)). The following example shows that the converse of the above implication is not true
in general. Let (X, τ) be a topological space, where X := {a, b, c} and τ := {∅, {a}, X}.
Let f : (X, τ) → (X, τ) be a map defined by f(a) = b, f(b) = f(c) = a. Then, for each
set U ∈ PO(X, τ) = {∅, {a}, {a, b}, {a, c}, X}, f−1(U) ∈ PC(X, τ) = {∅, {b}, {c}, {b, c}, X}
and f−1({a}) = {b, c} �∈ PO(X, τ) ∩ PC(X, τ).

(iv) Every stongly M -precontinuous map is preirresolute (cf. Definition 2.3 (ii), (iii)).
The following example shows that the converse of the above implication is not true in
general. Let (X, τ) be the same topological space of (iii) above and f : (X, τ)→ (X, τ) be
the identity map. Then, for a subset {a, b} ∈ PO(X, τ), f−1({a, b}) = {a, b} �∈ τ , i.e., f is
not s.M -precontonuous. Obviously, f is preirresolute.

(v) The concept of ap-s.M -preclosedness is strictly weaker than one of s.M -preclosedness,
i.e., the converse of Theorem 3.4 (ii-1) is not true in general. Let (X, τ) and (Y, σ) be the
same topological spaces of (i) above and f : (X, τ) → (Y, σ) the same map of (i) above
also. Then, f is not s.M -preclosed (cf. Definition 2.3 (vii)). Indeed, there exists a subset
{b} ∈ PC(X, τ) and f({b}) = {a} is not closed in (Y, σ). It is shown that this map f is
ap-s.M -preclosed (cf. Definition 3.3). For subsets U ∈ PC(X, τ) and B ∈ GPO(Y, σ) such
that f(U) ⊆ B, we have that f(U) ⊆ B = pInt(B), because PO(Y, σ) = GPO(Y, σ) holds.

(vi) The converse of Theorem 3.4 (ii-2) is not true in general. Let (X, τ) and (Y, σ)
be topological spaces of (v) above. Let f : (X, τ) → (Y, σ) be a defined map by f(x) = x
for every x ∈ X . Then, f is ap-s.M -preclosed, because GPO(Y, σ) = PO(Y, σ) holds. The
map f is not contra-M -preclosed. Indeed, there exists a subset U := {c} ∈ PC(X, τ) such
that f(U) = {c} �∈ PO(Y, σ).

(vii) Every stongly M -preclosed map is M -preclosed (cf. Definition 2.3 (vi), (vii)). The
following example shows that the converse of the above implication is not true in general.
Let (X, τ) be the same topological space of (iii) above and f : (X, τ) → (X, τ) be the
identity map. Then, for a subset {b} ∈ PC(X, τ), f({b}) = {b} is not closed in (X, τ), i.e.,
f is not s.M -preclosed. The identity map f is M -preclosed.

(viii) There exist a map f and a topological space (X, τ) such that
f : (X, τ)→ (X, τ) is ap-s.M -precontinuous; f is not ap-s.M -preclosed;
Indeed, let X := {a, b, c} and τ := {∅, {a}, X}. Define f : (X, τ) → (X, τ) by f(x) := c for
every x ∈ X . For the topological space (X, τ), we have PO(X, τ)={∅, {a}, {a, b}, {a, c}, X};
GPC(X, τ) = P (X) \ {{a}}. We put GPCV := {A ∈ GPC(X, τ)|A ⊆ f−1(V )} for
each V ∈ PO(X, τ). Then, for each V ∈ {∅, {a}, {a, b}}, GPCV = {∅}; for each V ∈
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{{a, c}, X}, GPCV = GPC(X, τ). For each V ∈ PO(X, τ) above and each A ∈ GPCV ,
we show that pCl(A) ⊆ f−1(V ) holds. Thus, f is ap-s.M -precontinuous. It is shown that
f is not ap-s.M -preclosed, because there exists a subset U := {b} ∈ PC(X, τ) and subset
B := {b} ∈ GPO(X, τ) such f(U) = {b} ⊆ B = {b} and f(U) �⊂ pInt(B) = ∅.

(ix) The concepts of preirresoluteness and M -preclosedness are independent to each
other. Let (X, τ) be a topological space, where X := {a, b, c} and τ := {∅, {a}, X} (cf.
(viii) above). The following map f : (X, τ)→ (X, τ) is preirresolute; it is not M -preclosed:
f(a) = f(b) := a and f(c) := c. Indeed, PC(X, τ) = {∅, {c}, {b}, {b, c}, X} and so it is
obvious that f is preirresolute. The map f is not M -preclosed, because there exists a subset
{b} ∈ PC(X, τ) such that f({b}) = {a} �∈ PC(X, τ). The following map g : (X, τ)→ (X, τ)
is not preirresolute; it is M -preclosed: g(a) = g(b) := b and g(c) := c.

(x) It is obvious that a map f : (X, τ)→ (Y, σ) is contra-preirresolute if and only if for
every V ∈ PC(Y, σ), f−1(V ) ∈ PO(X, τ).

(xi) For a perfectly contra-preirresolute map f : (X, τ)→ (Y, σ), we have the following
decomposition of the map: f is perfectly contra-preirresolute if and only if f is preirresolute
and contra-preirresolute.

(xii) The following map f : (X, τ) → (X, τ) is preirresolute; f is not perfectly preir-
resolute. Let X := {a, b} be the Sierpinski space with the topology τ := {∅, {a}, X} and
f : (X, τ)→ (X, τ) be the identity map.

(xiii) The concepts of s.M -precontinuity and s.M -preclosedness are independent to each
other.
(xiii-1) Let (Z, κ) be the digital line (cf. Section 2). Let f : (Z, κ) → (Z, κ) be a map
defined by f(2m) = f(2m + 1) := 2m for every m ∈ Z. Then, f is s.M -preclosed. Indeed,
for a subset F ∈ PC(Z, κ), f(F ) is expressible as f(F ) =

⋃{{2mi}|2mi ∈ Z, i ∈ ΛF },
where ΛF ⊂ Z is an index set determined by the set F . By using [41, Lemma 2.6 (ii)]
and a fact that any singleton {2m} is closed, where m ∈ Z, it is shown that Cl(f(F )) =⋃{Cl({2mi})|2mi ∈ Z, i ∈ ΛF} =

⋃{{2mi}|2mi ∈ Z, i ∈ ΛF } = f(F ) and so f(F )
is closed in (Z, κ). The map f is not s. M -precontinuous, because there exists a subset
U := {−1, 0, 1} ∈ PO(Z, κ) such that f−1(U) = {0, 1} �∈ κ.
(xiii-2) The following map f : (X, τ)→ (X, τ) is s.M -precontinuous; f is not s.M -preclosed.
Let (X, τ) be the Sierpinski topological space of (xii) above and f be a map defined by f(a) =
f(b) := a. Then, f is s.M -precontinuous, because f−1(U) ∈ τ for any U ∈ PO(X, τ) = τ .
Since a singleton {b} is preclosed in (X, τ) and f({b}) = {a} is not closed in (X, τ), f is
not s.M -preclosed.

(xiv) The concepts of contra M -preclosedness and contra preirresoluteness are indepen-
dent to each other.
(xiv-1) The following map f : (X, τ) → (X, τ) is contra preirresolute; f is not contra
M -preclosed. Let (X, τ) be the Sierpinski topological space of (xii) above and f be a map
defined by f(a) = f(b) := b. Then, f is contra preirresolute, because f−1(U) = ∅ or
X ∈ PC(X, τ) for any U ∈ PO(X, τ) = τ . Since a singleton {b} is preclosed in (X, τ) and
f({b}) = {b} �∈ PO(X, τ) = τ , f is not contra M -preclosed.
(xiv-2) The following map f : (Z, κ)→ (Z, κ) is contra M -preclosed; f is not contra preir-
resolute. Define f as follows: f(x) := 4m + 1 if x ∈ {4m, 4m + 1, 4m + 2}; f(x) := 4m + 3
if x = 4m + 3, where m ∈ Z. By the definition of f , for a subset B of (Z, κ), f(B) is
expressible as f(B) =

⋃{{2s + 1}|s ∈ ΛB}, where ΛB ⊂ Z is an index set determined
by the set B. Thus, if B ∈ PC(Z, κ), then f(B) ∈ κ = PO(Z, κ), i.e., f is contra
M -preclosed. There exists a subset U := {4m + 1, 4m + 3} ∈ κ = PO(Z, κ) such that
f−1(U) = {4m+1, 4m+2, 4m+3, 4m+4} �∈ PC(Z, κ). Thus, f is not contra preirresolute.
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In [3], Abd El-Monsef and one of the present author discussed the preirresolute maps and
M -preclosed maps. We strengthen this result slightly by replacing M -preclosed requirement
with ap-preclosed.

Theorem 3.8 If a map f : (X, τ)→ (Y, σ) is preirresolute and ap-s.M-preclosed, then for
every subset A ∈ GPC(Y, σ) (resp. GPO(Y, σ)), f−1(A) ∈ GPC(X, τ) (resp. GPO(X, τ))
holds.

Proof. Let A ∈ GPC(Y, σ). Suppose that f−1(A) ⊆ V , where V ∈ τ . Then, f(X \ V ) ⊆
Y \ A and Y \ A ∈ GPO(Y, σ) and X \ V ∈ PC(X, τ). Since f is ap-s.M -preclosed,
f(X \ V ) ⊆ pInt(Y \ A) and so X \ V ⊆ f−1(pInt(Y \ A)) = X \ f−1(pCl(A)), i.e.,
f−1(pCl(A)) ⊆ V . Since f is preirresolute, f−1(pCl(A)) ∈ PC(X, τ). Therefore, we
have pCl(f−1(A)) ⊆ pCl(f−1(pCl(A))) =f−1(pCl(A)) ⊆ V . Namely, we have f−1(A) ∈
GPC(X, τ). It is obvious that inverse images of gp-open sets are gp-open by definition and
the above result. �

The following theorem is replacing the precontinuous requirement in [3] with ap-s.M -
precontinuity.

Theorem 3.9 If a map f : (X, τ)→ (Y, σ) is M -preclosed and ap-s.M-precontinous, then
for every subset F ∈ GPC(X, τ), f(F ) ∈ GPC(Y, σ) holds.

Proof. Let F ∈ GPC(X, τ). Suppose that f(F ) ⊆ U , where U ∈ σ. Then, F ⊆ f−1(U), F ∈
GPC(X, τ) and U ∈ σ ⊆ PO(Y, σ). Since f is ap-s.M -precontinuous, pCl(F ) ⊆ f−1(U)
and so f(pCl(F )) ⊆ U . Since f is M -preclosed, f(pCl(F )) ∈ PC(Y, σ). Therefore, we have
pCl(f(F )) ⊆ pCl(f(pCl(F ))) = f(pCl(F )) ⊆ U and so f(F ) ∈ GPC(Y, σ). �

Remark 3.10 (cf. Definition 3.1) In the concept of ap-s.M -precontinuity (Definition 3.2),
it is not meaningful to replace GPC(X, τ) by PGC(X, τ) ([29, Definition 2.11 (i)]), because
PGC(X, τ) = PC(X, τ)[29, Theorem 2.27 (ii)] holds for any topological space (X, τ). We
recall the following concept ([29, Definition 2.11 (i)]): a subset A of (X, τ) is called a pre
generalized closed set (shortly, pg-closed set), if pCl(A) ⊆ U holds whenever A ⊂ U and
U ∈ PO(X, τ). Let PGC(X, τ) denote the family of all pg-closed sets of (X, τ). By [29,
Theorem 2.27 (ii)], it was shown that PGC(X, τ) = PC(X, τ) holds in general; it was
proved by preparing characterizations of pre-T1/2 spaces. In the present remark, we have
an alternative proof of PGC(X, τ) = PC(X, τ) as follows; we have obviously PC(X, τ) ⊆
PGC(X, τ) holds. We prove that PGC(X, τ) ⊆ PC(X, τ) holds. Let A ∈ PGC(X, τ) and
x ∈ pCl(A). If {x} is open, then {x} ∈ PO(X, τ) and {x} ∩ A �= ∅, i.e., x ∈ A. If {x} is
not open, then Int({x}) = ∅ and so Cl(Int({x})) = ∅ ⊆ {x}, i.e., {x} is preclosed in (X, τ)
and X \ {x} ∈ PO(X, τ). For this point x, suppose x �∈ A. Since A ⊆ X \ {x}, we have
pCl(A) ⊆ X \ {x}; x ∈ X \ {x} and this is a contradiction. Thus, we have x ∈ A. For
the both cases, we have that x ∈ A holds for a point x ∈ pCl(A), i.e., pCl(A) = A and so
A ∈ PC(X, τ).

4 Groups of pre.c-homeomorphisms and contra-pre.c-homeomorphisms The
purpose of this section is to construct some groups corresponding to a topological space (cf.
Definition 4.2, Theorem 4.3, Definition 5.1, Theorem 5.7) and investigate their fundamental
properties (cf. Theorems 4.3, 4.4, 5.7). First, we observe that the composition of two contra-
preirresolute maps need not be contra-preirresolute. Indeed, let X = {a, b} be the Sierpinski
space and τ = {∅, {a}, X} and σ = {∅, {b}, X}. The identity maps f : (X, τ)→ (X, σ) and
g : (X, σ) → (X, τ) are both contra-preirresolute but their composition g ◦ f : (X, τ) →



656 ARAFA A. NASEF AND H. MAKI

(X, τ) is not contra-preirresolute. However, the composition of two preirresolute maps is
preirresolute and the composition of a preirresolute map and a contra-preirresolute map is
contra-preirresolute. To construct the groups, we need the following theorem.

Theorem 4.1 Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, η) be two maps; 1X : (X, τ) →
(X, τ) be the identity map on (X, τ). Then, for the composite g ◦ f : (X, τ) → (Z, η) we
have the following properties:

(i) (i-1) If f and g are preirresolute, then g ◦ f is preirresolute.
(i-2) The identity map 1X : (X, τ)→ (X, τ) is preirresolute.
(i-3) If f and g are contra-preirresolute, then g ◦ f is preirresolute.
(ii) (ii-1) If f is contra-preirresolute and g is preirresolute, then g◦f is contra-preirresolute.
(ii-2) If f is preirresolute and g is contra-preirresolute, then g ◦f is contra-preirresolute.
(iii)(iii-1) If f is preirresolute and g is perfectly preirresolute, then g ◦ f is perfectly

preirresolute.
(iii-2) If f is perfectly preirresolute and g is preirresolute, then g ◦ f is perfectly preir-

resolute.
(iii-3) If f is contra-preirresolute and g is perfectly preirresolute, then g ◦ f is perfectly

preirresolute.
(iii-4) If f is perfectly preirresolute and g is contra-preirresolute, then g ◦ f is perfectly

preirresolute.
(iii-5) If f and g are perfectly preirresolute, then g ◦ f is perfectly preirresolute.
(iv) (iv-1) If f is M-preclosed and g is ap-s.M-preclosed, then g ◦ f is ap-s.M-preclosed.
(iv-2) If f is ap-s.M-preclosed and g is M -preopen, preirresolute and ap-s.M-preclosed,

then g ◦ f is ap-s.M-preclosed.
(v) If f is ap-s.M-precontinuous and g is preirresolute, then g◦f is ap-s.M-precontinuous.

Proof. (i)-(iii) The proofs are obvious. (iv) (iv-1) Suppose that B ∈ PC(X, τ) and
A ∈ GPO(Z, η) for which (g ◦ f)(B) ⊆ A. Then, it follows from assumptions that f(B) ∈
PC(Y, σ) and g(f(B)) ⊆ pInt(A). This implies that g ◦ f is ap-s.M -preclosed. (iv-2)
Suppose that B ∈ PC(X, τ) and A ∈ GPO(Z, η) for which (g ◦ f)(B) ⊆ A. Then, we
have that f(B) ⊆ g−1(A) and, by Theorem 3.8 for the map g and the subset A, g−1(A) ∈
GPO(X, τ). Since f is ap-s.M -preclosed, f(B) ⊆ pInt(g−1(A)) holds. Thus, we have
that (g ◦ f)(B) ⊆ g(pInt(g−1(A))) ⊆ pInt(gg−1(A)) ⊆ pInt(A). This implies that g ◦ f
is ap-s.M -preclosed. (v) Suppose that F ∈ GPC(X, τ) and U ∈ PO(Z, η) for which
F ⊆ (g ◦ f)−1(U) = f−1(g−1(U)). Then, g−1(U) ∈ PO(Y, σ) and pCl(F ) ⊆ f−1(g−1(U)).
Hence g ◦ f is ap-s.M -precontinuous. �

We shall construct some families of maps from a topological space onto itself; we construct
a new group of maps.

Definition 4.2 A map f : (X, τ)→ (Y, σ) is said to be :
(i) a pre.c-homeomorphism, if f is bijective preirresolute and f−1 is also preirresolute

(cf. Definition 2.3 (iii));
(ii) a contra-pre.c-homeomorphism, if f is bijective contra-preirresolute and f−1 is also

contra-preirresolute (cf. Definition 2.3 (iv));
(iii) a perfectly pre.c-homeorphism, if f is bijective perfectly preirresolute and f−1 is

also perfectly preirresolute (cf. Definition 2.3 (v));
(iv) a pre-homeomorphism, if f is bijective precontinuous and f−1 is also precontinuous

(cf. Definition 2.3 (i)).

We use the following notation on familes of two maps above:
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pch(X ; τ) := {f |f : (X, τ)→ (X, τ) is a pre.c-homeomorphism};
contpch(X ; τ) := {f |f : (X, τ)→ (X, τ) is a contra-pre.c-homeomorphism}.

For the homeomorphisms group h(X ; τ), we have h(X ; τ) ⊆ pch(X ; τ) (cf. Theorem 4.3
(iii) below). Indeed, we recall h(X ; τ) := {a|a : (X, τ)→ (X, τ) is a homeomorphism}. For
every homeomorphism f : (X, τ)→ (Y, σ), every subset F ∈ PC(Y, σ) and for every subset
V ∈ PC(X, τ), it is shown that f−1(F ) ∈ PC(X, τ) and f(V ) ∈ PC(Y, σ) hold; f and
f−1 are preirresolute. Thus, we have that f ∈ pch(X ; τ) holds for every f ∈ h(X ; τ) and
hence h(X ; τ) ⊆ pch(X ; τ). Let (X, τ) be a topological space, where X := {a, b, c} and
τ := {∅, {a}, {b}, {a, b}, {a, c}, X}. Then, it is shown that h(X ; τ) = {1X} = pch(X ; τ) and
contpch(X ; τ) = {hb}, where 1X : (X ; τ) → (X ; τ) is the identity map and hb : (X ; τ) →
(X ; τ) is a map defined by hb(b) := {b}, hb(a) := c, hb(c) := a. These properties show that
pch(X, τ) and pch(X ; τ) ∪ contpch(X, τ) = {1X , hb} form groups under the composition of
maps.

Theorem 4.3 Let (X, τ) be a topological space.
(i) The union of two families pch(X ; τ) and contpch(X ; τ), i.e., pch(X ; τ)∪contpch(X; τ),

forms a group under the composition of maps.
(ii) The family pch(X ; τ) forms a subgroup of pch(X ; τ) ∪ contpch(X ; τ).
(iii) Fortunately, the group h(X ; τ) is a subgroup of pch(X ; τ) and h(X ; τ) is also a

subgroup of pch(X ; τ) ∪ contpch(X ; τ).

Proof. Set HX := pch(X ; τ) ∪ contpch(X ; τ) for a topological space (X, τ) throughout this
proof. (i) A binary operation ω : HX × HX → HX is defined by ω(a, b) := b ◦ a, where
a, b ∈ HX and b ◦ a denotes the composite of two maps a and b defined by (b ◦ a)(x) =
b(a(x)) for any x ∈ X . By Theorem 4.1(i) and (ii), it is shown that ω(a, b) = b ◦ a ∈ HX

for any a, b ∈ HX . We observe that the axioms of group are satisfied. The identity
map 1X : (X, τ) → (X, τ) is the identity element of the group HX (cf. Theorem 4.1(i)(i-
2)). (ii) Let a ∈ pch(X ; τ) and b ∈ pch(X ; τ). Then, it is shown that pch(X ; τ) �= ∅
because 1X ∈ pch(X ; τ), and ω(a, b−1) = b−1 ◦ a ∈ pch(X ; τ) by Theorem 4.1(i) and
Definition 4.2(i), where ω : HX × HX → HX . Thus, pch(X ; τ) is a subgroup of HX =
pch(X ; τ) ∪ contpch(X ; τ) under the binary operation ωX :=ω|(pch(X ; τ) × pch(X ; τ)).
(iii) First recall that h(X, τ) ⊆ pch(X ; τ) and h(X ; τ) �= ∅. Moreover, ωX(a, b−1) =
b−1 ◦ a ∈ h(X ; τ) for any a, b ∈ h(X ; τ) (cf. the proof of (ii) above). �

Theorem 4.4 Let (X, τ), (Y, σ) and (Z, η) be topological spaces.
(i) If f : (X, τ)→ (Y, σ) is a pre.c-homeomorphism (resp. contra-pre.c-homeomorphism),

then the map f induces an isomorphism f∗ : pch(X ; τ) ∪ contpch(X ; τ) → pch(Y ; σ) ∪
contpch(Y ; σ), where f∗ is defined by f∗(a) := f ◦ a ◦ f−1 for any a ∈ pch(X ; τ) ∪
contpch(X ; τ). Moreover,

(∗-1) (g ◦ f)∗ = g∗ ◦ f∗ : pch(X ; τ) ∪ contpch(X ; τ)→ pch(Z; η) ∪ contpch(Z; η) holds,
where g : (Y, σ)→ (Z, η) is a pre.c-homeomorphism (resp. contra-pre.c-homeomorphism),

(∗-2) (1X)∗ = 1 : pch(X ; τ)∪contpch(X ; τ)→ pch(X ; τ)∪contpch(X ; τ) is the identity
isomorphism,

(∗-3) f∗(pch(X ; τ)) = pch(Y ; σ), f∗(h(X; τ)) ⊆ pch(Y ; σ) and
f∗(contpch(X ; τ)) = contpch(Y ; σ) hold.

(ii) Especially, if a map f : (X, τ)→ (Y, σ) is a homeomorphism and g : (Y, σ)→ (Z, η)
is a homeomorphism, then the induced maps f∗ : pch(X ; τ) ∪ contpch(X ; τ)→ pch(Y ; σ) ∪
contpch(Y, σ) and g∗ : pch(Y ; σ) ∪ contpch(Y, σ) → pch(Z; η) ∪ contpch(Z; η) are isomor-
phisms (cf. (i) above). Moreover, they have the same property of (∗-1),(∗-2) and (∗-3) in (i)
above. We note that, in (∗-3), f∗(h(X; τ)) = h(Y ; σ) holds precisely.
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Proof. Let HX := pch(X ; τ) ∪ contpch(X ; τ) for a topological space (X, τ) throughout this
proof.

(i) By using Theorem 4.1 (i-1), (i-2), (ii) (resp. Theorem 4.1 (i-2), (i-3), (ii)) , it is shown
that the map f∗ is well defined and f∗ : HX → HY is an isomorphism of groups.

Proofs of (∗-1) and (∗-2): For an element a ∈ HX , (g ◦ f)∗(a) = (g ◦ f) ◦ a ◦ (g ◦ f)−1 =
g ◦ (f ◦ a ◦ f−1) ◦ g−1 = g∗(f∗(a)) and f∗(1X) = f ◦ 1X ◦ f−1 = 1X hold.

Proof of (∗-3): Let a ∈ phc(X ; τ), b ∈ h(X ; τ) and c ∈ contpch(X ; τ). Then, f∗(a) =
f ◦ a ◦ f−1 ∈ pch(Y ; σ) (cf. Theorem 4.1 (i-1) (resp. Theorem 4.1 (ii-1), (i-3))) and so
f∗(pch(X ; τ)) ⊆ pch(Y ; σ). Conversely, for each element h ∈ pch(Y ; σ) we take an element
f−1 ◦ h ◦ f ∈ pch(X ; τ) (cf. Theorem 4.1 (i-1) (resp. Theorem 4.1 (ii-1), (i-3))). Thus
we have that h = f∗(f−1 ◦ h ◦ f) ∈ f∗(pch(X ; τ)) and so pch(Y ; σ) ⊆ f∗(pch(X ; τ)).
Namely, we have that pch(Y ; σ) = f∗(pch(X ; τ)). For the element b ∈ h(X ; τ), f∗(b) =
f◦b◦f−1 ∈ pch(Y ; σ) (cf. Theorem 4.1 (i-1) (resp. Theorem 4.1 (ii-1), (i-3)) and Theorem 4.3
(iii) and so f∗(h(X; τ)) ⊆ pch(Y ; σ). For the element c ∈ contpch(X ; τ), f∗(c) = f ◦ c ◦
f−1 ∈ contpch(Y ; σ) (cf. Theorem 4.1 (ii-2), (ii-1) (resp. Theorem 4.1 (i-3), (ii-2))) and
so f∗(contpch(X ; τ)) ⊆ contpch(Y ; σ). Conversely, for any h ∈ contpch(Y ; σ) we take an
element f−1 ◦ h ◦ f ∈ contpch(X, τ) (cf. Theorem 4.1 (ii-2), (ii-1) (resp. Theorem 4.1 (i-3),
(ii-2))); h = f∗(f−1 ◦ h ◦ f) ∈ f∗(contpch(X ; τ)). Namely, we have that contpch(Y ; σ) =
f∗(contpch(X ; τ)). (ii) The proof is obtained by an argument similar to that in the
proof of (i) (cf. Theorem 4.1 (i), (ii) and Theorem 4.3 (iii)). �

5 Subgroups of pch(X ; τ) In this section, we investigate some structure of pch(H ; τ |H)
for a subspace (H, τ |H) of (X, τ) using two subgroups of pch(X ; τ), say pch(X, X \H ; τ)
and pch0(X, X \H ; τ) below (cf. Theorem 5.7).

Definition 5.1 For a topological space (X, τ) and subset H of X , we define the following
families of maps:

(i) pch(X, X \H ; τ) := {a|a ∈ pch(X ; τ) and a(X \H) = X \H};
(ii) pch0(X, X \H ; τ) := {a|a ∈ pch(X, X \H ; τ) and a(x) = x for every x ∈ X \H}.

Theorem 5.2 Let H be a subset of a topological space (X, τ).
(i) The family pch(X, X \ H ; τ) forms a subgroup of pch(X, τ) (cf. Definition 5.1,

Corollary 4.3) and pch(X, X \H ; τ) = pch(X, H ; τ) holds. (ii) The family pch0(X, X \
H ; τ) forms a subgroup of pch(X, X \H ; τ) (cf. Definition 5.1) and hence pch0(X, X \H ; τ)
forms a subgroup of pch(X ; τ).

Proof. (i) It is shown obviously that pch(X, X \H ; τ) is a non-empty subset of pch(X ; τ),
because 1X ∈ pch(X, X \H ; τ) (cf. Definition 5.1 (i)). Moreover, we have that ωX(a, b−1) =
b−1◦a ∈ pch(X, X\H ; τ) for any elements a, b ∈ pch(X, X\H ; τ), where ωX := ω|(pch(X, X\
H ; τ)×pch(X, X \H ; τ)) (cf. ω is the binary operation of the group pch(X ; τ) (Corollary 4.3
(ii))). Thus, pch(X, X \H ; τ) is a subgroup of pch(X ; τ). Evidently, the identity map 1X

is the identity element of pch(X, X \ H ; τ). (ii) It is shown that pch0(X, X \ H ; τ)
is a non-empty subset of pch(X, X \ H ; τ), because 1X ∈ pch0(X, X \ H ; τ) (cf. Defini-
tion 5.1 (ii)). We have that ωX,0(a, b−1) = b−1 ◦ a ∈ pch0(X, X \ H ; τ) for any elements
a, b ∈ pch0(X, X \H ; τ), where ωX,0 := ωX |(pch0(X, X \H ; τ)×pch0(X, X \H ; τ)) (cf. ωX

is the binary operation of the group pch(X, X \H ; τ) ((i) above)). Thus, pch0(X, X \H ; τ)
is a subgroup of pch(X, X \ H ; τ) and the identity map 1X is the identity element of
pch0(X, X \H ; τ). By using (i) above, pch0(X, X \H ; τ) is a subgroup of pch(X ; τ). �

Let H and K be subsets of X and Y , respectively. For a map f : X → Y satisfying a
property K = f(H), we define the following map rH,K(f) : H → K by rH,K(f)(x) = f(x)
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for every x ∈ H . Then, we have that jK ◦ rH,K(f) = f |H : H → Y , where jK : K → Y
be an inclusion defined by jK(y) = y for every y ∈ K and f |H : H → Y is a restriction of
f to H defined by (f |H)(x) = f(x) for every x ∈ H . Especially, we consider the following
case that X = Y, H = K ⊆ X and a(H) = H, b(H) = H for any maps a, b : X → X . Then,
rH,H(b ◦ a) = rH,H(b) ◦ rH,H(a) holds. Moreover, if a map a : X → X is a bijection such
that a(H) = H , then rH,H : H → H is bijective and rH,H(a−1) = (rH,H(a))−1.

We recall well known properties on preopen sets of subspace topological spaces etc, i.e.,
Theorem 5.3 needed later. For a subset H of (X, τ) and a subset U ⊆ H , IntH(U) (resp.
ClH(U)) is the interior (resp. closure) of the set U in a subspace (H, τ |H) and pInt(U) is
the preinterior of U in (X, τ). It is well known that for any subset A of (X, τ), pInt(A) =
A ∩ Int(Cl(A)) holds.

Theorem 5.3 For a topological space (X, τ) and subsets H and U of X and A ⊆ H, V ⊆ H,
B ⊆ H, the following properties hold.

(i) ([1], eg., [4, Section 2 (1),(10)]) Arbitrary union of preopen sets of (X, τ) is preopen
in (X, τ); the intersection of an α-open set of (X, τ) and a preopen set of (X, τ) is preopen
in (X, τ).

(ii) (ii-1) ([37, Lemma 2.3], eg., [16, Lemma 4.1]) If A is a preopen in (X, τ) and A ⊂ H,
then A is preopen in a subspace (H, τ |H).

(ii-2) ([16, Lemma 4.2]) If H ⊆ X is α-open in (X, τ) and a subset U ⊆ X is preopen in
(X, τ), then H ∩U is preopen in (X, τ) and hence H ∩U is preopen in a subspace (H, τ |H).

(ii-3) ([34, Lemma 2.10]) If H ⊆ X is semi-open in (X, τ) and a subset U ⊆ X is preopen
in (X, τ), then H ∩ U is preopen in (H, τ |H).

(iii) Let V ⊆ H ⊆ X.
(iii-1) If H is preopen in (X, τ), then IntH(V ) ⊆ pInt(V ) holds.
(iii-2) (eg., [4, Section 2, (13)]) If H is preopen in (X, τ) and V is preopen in a subspace

(H, τ |H) , then V is preopen in (X, τ).
(iv) Let B ⊆ H ⊆ X. If H is preclosed in (X, τ) and B is preclosed in a subspace

(H, τ |H), then B is preclosed in (X, τ).
(v) ((ii-1), (ii-2) above; cf. [14, Corollary 4]) Let V ⊆ H ⊆ X and assume that H ∈

PO(X, τ) holds. Then, the following properties (1) and (2) are equivalente:
(1) V ∈ PO(X, τ) holds;
(2) V ∈ PO(H, τ |H) holds,

(the implication of (1)⇒(2) is true without the assumption of preopennness of H).
(vi) (vi-1) Assume that H is a semi-open subset of (X, τ). Then,

PO(X, τ)|H ⊆ PO(H, τ |H) holds, where PO(X, τ)|H := {W ∩H |W ∈ PO(X, τ)}.
(vi-2) Assume that H is a preopen subset of (X, τ). Then,
PO(H, τ |H) ⊆ PO(X, τ)|H holds.
(vi-3) Under the assumption that H is an α-open set of (X, τ),
PO(H, τ |H) = PO(X, τ)|H holds.

Proof. They are well known; but we give the proofs of (iii), (iv) and (vi). (iii) (iii-
1) Let x ∈ IntH(V ). There exists a subset W (x) ∈ τ such that W (x) ∩H ⊆ V . By (i),
W (x)∩H ∈ PO(X, τ). Thus, this shows that x ∈ pInt(V ) and so IntH(V ) ⊂ pInt(V ) holds.
(iii-2) Since V ∈ PO(H, τ |H), V ⊆ IntH(ClH(V )) holds in (H, τ |H). Using (ii-2) and a
formula of the preinterior, we have V ⊆ pInt(ClH(V )) = ClH(V ) ∩ Int(Cl(ClH(V ))) ⊆
Int(Cl(Cl(V ) ∩ H)) ⊆ Int(Cl(V )) and hence V ⊆ Int(Cl(V )), i.e., V ∈ PO(X, τ).
(iv) It follows from definition that ClH(IntH(B)) ⊆ B holds. Then, it is shown that
ClH(IntH(B)) ⊇ Cl(Int(B)). Indeed, because Cl(A) ⊇ pCl(A) and IntH(E) ⊇ Int(E)
hold for any subset A ⊆ X and E ⊆ H , we have ClH(IntH(B)) = H ∩ Cl(IntH(B)) ⊇
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H ∩ Cl(Int(B)) ⊇ Cl(Int(H)) ∩ Cl(Int(B)) ⊇ Cl(Int(H) ∩ Int(B)) = Cl(Int(H ∩ B)) =
Cl(Int(B)). Therefore, we have that Cl(Int(B)) ⊆ B and so B is preclosed in (X, τ).
(v) (1)⇒(2) Assume that V ∈ PO(X, τ) with V ⊆ H . By (ii-1) above, it is obtained
that V ∈ PO(H, τ |H). (2)⇒(1) Since V ∈ PO(H, τ |H) and H ∈ PO(X, τ), we have that
V ∈ PO(X, τ) holds (cf. (iii-2) above). (vi) (vi-1) Let V ∈ PO(X, τ)|H. For some
set W ∈ PO(X, τ), V = W ∩H and so we have W ∩H ∈ PO(H, τ |H) (cf. (ii-3) above).
Hence, V ∈ PO(H, τ |H) holds. (vi-2) Let V ∈ PO(H, τ |H). Since H ∈ PO(X, τ), we
have V ∈ PO(X, τ) by (iii-2) above or (v-2); thus V = V ∩ H ∈ PO(X, τ)|H. (vi-3)
The property (vi-3) follows from (vi-1) and (vi-2), because H is α-open if and only if H is
preopen and semi-open, in general. �
Proposition 5.4 (i) If f : (X, τ)→ (Y, σ) is preirresolute and a subset H is semi-open in
(X, τ), then f |H : (H, τ |H)→ (Y, σ) is preirresolute.

(ii) Let (1) and (2) be properties of two maps k : (X, τ)→ (K, σ|K), where K ⊆ Y , and
jK ◦ k : (X, τ)→ (Y, σ) as follows:

(1) k : (X, τ)→ (K, σ|K) is preirresolute;
(2) jK ◦ k : (X, τ)→ (Y, σ) is preirresolute.

Then, the following implications and an equivalence hold:
(ii-1) Under the assumption that K is semi-open in (Y, σ), (1)⇒(2).
(ii-2) Conversely, under the assumption that K is preopen in (Y, σ), (2)⇒(1).
(ii-3) Under the assumption that K is α-open, (1)⇔(2).
(iii) If f : (X, τ) → (Y, σ) is preirresolute and a subset H is semi-open in (X, τ) and

f(H) is preopen in (Y, σ), then rH,f(H)(f) : (H, τ |H)→ (f(H), σ|f(H)) is preirresolute (cf.
the contents between Definition 5.1 and Theorem 5.3 for the notation of rH,f(H)(f)).

Proof. (i) Let V ∈ PO(Y, σ). Then, we have (f |H)−1(V ) = f−1(V )∩H and (f |H)−1(V ) ∈
PO(H, τ |H) (cf. Theorem 5.3 (ii-3)). (ii) (ii-1) (1)⇒(2) Let V ∈ PO(Y, σ). Since
(jK ◦ k)−1(V ) = k−1(V ∩ K) and V ∩ K ∈ PO(K, σ|K) (cf. Theorem 5.3 (ii-3)), we
have that (jK ◦ k)−1(V ) ∈ PO(X, τ) and hence jK ◦ k is preirresolute. (ii-2) (2)⇒(1)
Let U ∈ PO(K, σ|K). Since U ∈ PO(Y, σ) (cf. Theorem 5.3 (iii-2)), we have k−1(U) =
(jK ◦k)−1(U) ∈ PO(X, τ). Thus, k is preirresolute. (ii-3) In general, it is well known that
a subset A of (Y, σ) is α-open in (Y, σ) if and only if A is semi-open and preopen in (Y, σ).
Thus, (ii-3) is obtained by (ii-1) and (ii-2). (iii) By (i), f |H : (H, τ |H) → (Y, σ) is
preirresolute. The map rH,f(H)(f) is preirresolute, because f |H = jf(H) ◦ rH,f(H)(f) holds.
�

Definition 5.5 For an α-open subset H of (X, τ), the following maps (rH)∗ : pch(X, X \
H ; τ) → pch(H ; τ |H) and (rH)∗,0 : pch0(X, X \ H ; τ) → pch(H ; τ |H) are well defined as
follows (cf. Proposition 5.4(iii)), respectively:

(rH)∗(f) := rH,H(f) for every f ∈ pch(X, X \H ; τ);
(rH)∗,0(g) := rH,H(g) for every g ∈ pch0(X, X \H ; τ).

Indeed, in Proposition 5.4 (iii), we assume that X = Y, τ = σ and H = f(H). Then, under
the assumption that H is semi-open and preopen in (X, τ), it is obtained that rH,H(f) ∈
pch(H ; τ |H) holds for any f ∈ pch(X, X \H ; τ) (resp. f ∈ pch0(X, X \H ; τ)).

We need the following lemma and then we prove that (rH)∗ and (rH)∗,0 are onto homo-
morphisms under the assumption that H is α-open and α-closed in (X, τ) (cf. Theorem 5.7
(i-2)).

Let X = U1 ∪ U2 for some subsets U1 and U2 and f1 : (U1, τ |U1) → (Y, σ) and f2 :
(U2, τ |U2) → (Y, σ) be two maps satisfying a property f1(x) = f2(x) for every point x ∈
U1∩U2. Then, a map f1∇f2 is well defined as follows: (f1∇f2)(x) = f1(x) for every x ∈ U1

and (f1∇f2)(x) = f2(x) for every x ∈ U2; we call this map the combination of f1 and f2.
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Lemma 5.6 (A pasting lemma for preirresolute maps) For a topological space (X, τ), we
assume that X = U1 ∪ U2, where U1 and U2 are subsets of X and f1 : (U1, τ |U1) → (Y, σ)
and f2 : (U2, τ |U2) → (Y, σ) are two maps satisfying a property f1(x) = f2(x) for every
point x ∈ U1 ∩ U2.

(i) If Ui ∈ PO(X, τ) for each i ∈ {1, 2} and f1 and f2 are preirresolute, then its
combination f1∇f2 : (X, τ)→ (Y, σ) is preirresolute.

(ii) Assume that PO(X, τ) ⊆ τα holds for a topological space (X, τ). If Ui ∈ PC(X, τ)
for each i ∈ {1, 2} and f1 and f2 are preirresolute, then its combination f1∇f2 : (X, τ) →
(Y, σ) is preirresolute.

Proof. (i) Let V ∈ PO(Y, σ). By Theorem 5.3 (i) and (iii-2), it is proved that (f1∇f2)−1(V ) ∈
PO(X, τ), because f−1

i (V ) ∈ PO(Ui, τ |Ui), f−1
i (V ) ∈ PO(X, τ) for each i ∈ {1, 2} and

(f1∇f2)−1(V ) = f−1
1 (V ) ∪ f−1

2 (V ) hold. (ii) Let V ∈ PC(Y, σ). For each i ∈ {1, 2},
it follows from assumptions that f−1

i (V ) ∈ PC(Ui, τ |Ui) and so f−1
i (V ) ∈ PC(X, τ) (cf.

Theorem 5.3 (iv)). Using the assumption of (ii), we may consider that f−1
1 (V ) ∈ PC(X, τ)

and f−1
2 (V ) is α-closed. By Theorem 5.3 (i), f−1

1 (V ) ∪ f−1
2 (V ) is preclosed in (X, τ), i.e.,

(f1∇f2)−1(V ) is preclosed in (X, τ). Therefore, f1∇f2 : (X, τ)→ (Y, σ) is preirresolute. �

Theorem 5.7 Let H be a subset of a topological space (X, τ).
(i) (i-1) If H is α-open in (X, τ), then the maps (rH)∗ : pch(X, X \H ; τ)→ pch(H ; τ |H)

and (rH)∗,0 : pch0(X, X \H ; τ) → pch(H ; τ |H) are homomorphisms of groups (cf. Defini-
tion 5.5). Moreover, (rH)∗|pch0(X, X \H ; τ) = (rH)∗,0 holds.

(i-2) If H is α-open and α-closed in (X, τ), then the maps (rH)∗ : pch(X, X \H ; τ) →
pch(H ; τ |H) and (rH)∗,0 : pch0(X, X \ H ; τ) → pch(H ; τ |H) are onto homomorphisms of
groups.

(ii) For an α-open subset H of (X, τ), we have the following isomorphisms of groups:
(ii-1) pch(X, X \H ; τ)/Ker(rH)∗ ∼= Im(rH)∗;
(ii-2) pch0(X, X \H ; τ) ∼= Im(rH)∗,0,

where Ker(rH)∗:= {a ∈ pch(X, X\H ; τ)|(rH)∗(a) = 1X} is a normal subgroup of pch(X, X\
H ; τ); Im(rH)∗:={(rH)∗(a)|a ∈ pch(X, X\H ; τ)} and Im(rH)∗,0:={(rH)∗,0(b)|b ∈ pch0(X, X\
H ; τ)} are subgroups of pch(H ; τ).

(iii) For an α-open and α-closed subset H of (X, τ), we have the following isomorphisms
of groups:

(iii-1) pch(H ; τ |H) ∼= pch(X, X \H ; τ)/Ker(rH)∗;
(iii-2) pch(H ; τ |H) ∼= pch0(X, X \H ; τ).

Proof. (i) (i-1) Let a, b ∈ pch(X, X \H ; τ). Since H is α-open in (X, τ), the maps (rH)∗
and (rH)∗,0 are well defined (cf. Definition 5.5). Then, we have that (rH)∗(ωX(a, b)) =
(rH)∗(b ◦ a) = rH,H(b ◦ a) = (rH,H(b)) ◦ (rH,H(a)) = ωH((rH)∗(a), (rH)∗(b)) hold, where
ωH is the binary operation of pch(H ; τ |H) (cf. Theorem 4.3 (ii)). Thus, (rH)∗ is a ho-
momorphism of groups. For the map (rH)∗,0 : pch0(X, X \ H ; τ) → pch(H ; τ |H), we
have that (rH)∗,0(ωX,0(a, b)) = (rH)∗,0(b ◦ a) = rH,H(b ◦ a) = (rH,H(b)) ◦ (rH,H(a)) =
ωH((rH)∗(a), (rH)∗(b)) hold, where ωH is the binary operation of pch(H, τ |H) (cf. The-
orem4.3 (ii)). Thus, (rH)∗,0 is also a homomorphism of groups. It is obviously shown
that (rH)∗|pch0(X, X \ H ; τ) = (rH)∗,0 holds (cf. Definition 5.1, Definition 5.5). (i-2)
We first recall that, in general, τα = PO(X, τ) ∩ SO(X, τ) holds. In order to prove
that (rH)∗ and (rH)∗,0 are onto, let h ∈ pch(H ; τ |H). Let jH : (H; τ |H) → (X ; τ)
and jX\H : (X \ H, τ |(X \ H)) → (X, τ) be the inclusions defined by jH(x) = x for
every x ∈ H and jX\H(x) = x for every x ∈ X \ H . We consider the combination
h1 := (jH ◦ h)∇(jX\H ◦ 1X\H) : (X, τ) → (X, τ). By Proposition 5.4 (ii-1), under the as-
sumption of semi-openness on H , it is shown that the two maps jH ◦ h : (H, τ |H)→ (X, τ)
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and jH ◦ h−1 : (H, τ |H) → (X, τ) are preirresolute; moreover, under the assumption of
semi-openness on X \H, jX\H ◦ 1X\H : (X \H, τ |(X \H))→ (X, τ) is preirresolute. Using
Lemma 5.6 (i) for a preopen cover {H, X \H} of X , the combination above h1 : (X, τ) →
(X, τ) is preirresolute. Since h1 is bijective, its inverse map h−1

1 = (jH ◦h−1)∇(jX\H ◦1X\H)
is also preirresolute. Thus, under the assumption that both H and X \ H are semi-open
and preopen in (X, τ), we have that h1 ∈ pch(X, τ). Since h1(x) = x for every point
x ∈ X \H , we conclude that h1 ∈ pch0(X, X \H ; τ) and so h1 ∈ pch(X, X \H ; τ). More-
over, (rH)∗,0(h1) = (rH)∗(h1) = rH,H(h1) = h; hence (rH)∗,0 and (rH)∗ are onto, under
the assumption that H is α-open and α-closed in (X, τ). (ii) By (i-1) above and the
first isomorphism theorem of group theory, it is shown that there are group isomorphisms
below, under the assumption that H is α-open in (X, τ):

(∗) pch(X, X \H ; τ)/Ker(rH)∗ ∼= Im(rH)∗ and
(∗∗ ) pch0(X, X \H ; τ)/Ker(rH)∗,0

∼= Im(rH)∗,0,
where ker(rH)∗,0 := {a ∈ pch0(X, X \ H ; τ)|(rH)∗,0(a) = 1X}. Moreover, under the as-
sumption of α-openness on H , it is shown that ker(rH)∗,0 = {1H}. Therefore, using (∗∗)
above, we have the isomorphism (ii-2). (iii) By (i-2) above, it is shown that (rH)∗
and (rH)∗,0 are onto homomorphisms of groups, under the assumption that H is α-open
and α-closed in (X, τ). Therefore, by (ii) above, the isomorphisms (iii-1) and (iii-2) are
obtained. �

Example 5.8 (i) (cf. Proposition 6.1 below) The following topological space (X, τ) and a
subset H show that the α-closedness of H in Theorem 5.7 (iii-2) can not be removed. Let
X := Z and τ := κ (the Khalimsky topology). Namely, let (X, τ) be the digital line (Z, κ)
(cf. the end of Section 2) and H := U(0) = {−1, 0, +1} be the smallest open set containing
0 ∈ Z. Since H ∈ κ and κ = PO(Z, κ) = κα (e.g., [17, Theorem 2.1 (a), (b)]), the subset
H is α-open in (Z, κ). In Section 6 below, it is shown that pch0(Z, Z \H ; κ) �∼= pch(H ; κ|H)
and H is not α-closed in (Z, κ) (cf. Proposition 6.1 (ii), (iii)).

(ii) Under the assumption that H is α-open and α-closed in (X, τ), Theorem 5.7 (iii)
is proved. Let (X, τ) be a three point topological space, where X := {a, b, c} and τ :=
{∅, {a}, {b, c}, X}, and (H, τ |H) a subspace of (X, τ), where H := {a}. Then, PO(X, τ) =
P (X)(=the power set of X) and τ = τα and so H is α-open and also α-closed in (X, τ). We
apply Theorem 5.7 (iv) to the present case; we have the group isomorphisms. Directly, we
obtain the following date on groups: pch(X ; τ) ∼= S3 (=the symmetric group of degree 3),
pch(X, X\H ; τ) = {1X , ha}, Ker(rH)∗ = {1X , ha}, pch(H ; τ |H) = {1H} and so pch0(X, X\
H ; τ) = {1X}, where ha : (X, τ) → (X, τ) is a map defined by ha(a) = a, ha(b) = c and
ha(c) = b. therefore, for this example, we have pch(H ; τ |H) ∼= pch(X, X \H ; τ)/Ker(rH)∗;
pch(H ; τ |H) ∼= pch0(X, X \H ; τ). Moreover, we have h(X ; τ) = {1X , ha}.

(iii) Even if a subset H of a topological space (X, τ) is not α-closed and it is α-open,
we have possibilities to investigate isomorphisms of groups corresponding to a subspace
(H, τ |H) and (rH)∗ using Theorem 5.7 (ii). For example, let (X, τ) be a three point topo-
logical space, where X := {a, b, c} and τ := {∅, {a, b}, X}, and (H, τ |H) a subspace of
(X, τ), where H := {a, b}. Then, PO(X, τ) = P (X) \ {{c}} and τα = τ . The sub-
set H is α-open and it is not α-closed in (X, τ). By Theorem 5.7 (i)(i-1), the maps
(rH)∗ : pch(X, X \ H ; κ) → pch(H ; τ |H) and (rH)∗,0 : pch0(X, X \ H ; κ) → pch(H ; τ |H)
are homomorphisms of groups and by Theorem 5.7 (ii) two isomorphisms of groups are
obtained:
(∗-1) pch(X, X \H ; τ)/Ker(rH)∗ ∼= Im(rH)∗; (∗-2) pch0(X, X \H ; τ) ∼= Im(rH)∗,0.
We need notation on maps as follows: let hc : (X, τ) → (X, τ) and ta,b : (H, τ |H) →
(H, τ |H) are maps defined by hc(a) = b, hc(b) = a, hc(c) = c and ta,b(a) = b, ta,b(b) = a,
respectively. Then, it is shown directly that pch(X, X \H ; τ) = {1X , hc} ∼= Z2, (hc)2 = 1X ,
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and Ker(rH)∗={a ∈ pch(X, X \ H ; τ) | (rH)∗(a)=1H} = {a ∈ {1X , hc}|(rH)∗(a) = 1H}
={1X}, because (rH)∗(1X) = 1H and (rH)∗(hc) = ta,b �= 1H . By using (∗-1) above,
Im(rH)∗ ∼= pch(X, X \ H :τ)={1X , hc} and so Im(rH)∗ = {1H , rH,H(hc)} = {1H , ta,b}.
Since Im(rH)∗ ⊆ pch(H ; τ |H) ⊆ {1H , ta,b}, we have that Im(rH)∗=pch(H ; τ |H)
={1H, ta,b} and hence (rH)∗ is onto. Namely, we have an isomorphism (rH)∗ : pch(X, X \
H ; τ) ∼= pch(H ; τ |H) ∼= Z2. Moreover, it is shown that pch0(X, X \ H ; τ) = {a ∈
pch(X, X \ H ; τ)|a(x) = x for any x ∈ {c}} ={1X , hc} = pch(X, X \ H ; τ) hold and so
(rH)∗ = (rH)∗,0 holds.

We conclude this section with an open question and a related definition:
Question. Study analogous theorems to Theorem 5.2 and Theorem 5.7 or new theorems
for families using Definition 5.9 below, i.e., pch(X, X \ H ; τ) ∪ contpch(X, X \ H ; τ) and
pch0(X, X \H ; τ) ∪ contpch0(X, H ; τ).

Definition 5.9 For a topological space (X, τ) and a subset H of X , we define the following
families of maps:

(i) contpch(X, X \H ; τ) := {b|b ∈ contpch(X ; τ) and b(X \H) = X \H};
(ii) contpch0(X, X \ H ; τ) := {b|b ∈ contpch(X, X \ H ; τ) and b(x) = x for every

x ∈ X \H}.
6 Examples on digital lines and digital planes We first investigate an example
concerning the digital line (Z, κ) (cf. the end of Section 2). We recall the concept of the
smallest open set U(x) containing a point x ∈ Z, i.e., U(x) := {2m − 1, 2m, 2m + 1} for
x = 2m (m ∈ Z) and U(x) = {2s + 1} for x = 2s + 1 (s ∈ Z). Then, for any open
subset G containing a point x ∈ Z, U(x) ⊆ G holds in (Z, κ). We have Cl({2m + 1}) =
{2m, 2m+1, 2m+2}, where m ∈ Z. Let H := U(0) be the smallest open set containing 0 ∈ Z

and (H,κ|H) be a subspace of (Z, κ). Since κ = PO(Z, κ) = κα (e.g., [17, Theorem 2.1
(a), (b)]), H is α-open in (Z, κ). Because of Cl(Int(Cl(H))) = Cl(Int({−2,−1, 0, 1, 2})) =
Cl({−1, 0, 1}) = {−2,−1, 0, 1, 2}, we have Cl(Int(Cl(H))) �⊆ H . Namely, the subset H
is not α-closed in (Z, κ). The following proposition shows that, for the above subspace
(H,κ|H),

(6-a) pch0(Z, Z \H ; κ) �∼= pch(H ; κ|H) (cf. Definition 5.1).
Then, the α-closedness of H in Theorem 5.7 (iii-2) can not be removed (cf. Example 5.8
(i) above, Proposition 6.1 (ii), (iii) below). Let t0 : (Z, κ) → (Z, κ) be a map defined by
t0(x) := −x for every x ∈ Z.

Proposition 6.1 (cf. Remark 5.8 (i)) Let (H,κ|H) be a subspace of (Z, κ), where H :=
U(0) = {−1, 0, +1} be the smallest open set containing 0 ∈ Z. Then, the following properties
hold.

(i) pch(Z, Z \H ; κ) = {1Z, t0}.
(ii) pch0(Z, Z \H ; κ) = {1Z}.
(iii) pch(H ; κ|H) = {1H , t0|H}.
(iv) Im(rH)∗ = {1H , t0|H} and (rH)∗ : pch(Z, Z \H ; κ)→ pch(H, κ|H) is onto.
(v) Ker(rH)∗ = {1Z}.

Proof. To prove Proposition 6.1, we need the following notation (6-b) related on the subset
H :

(6-b) H1 := H = U(0), H2 := H1 ∪ U(2) ∪ U(−2), . . .
(∗) Hi := Hi−1 ∪ U(2i− 2) ∪ U(−(2i− 2)) for each integer i ≥ 2.
It is easily shown that Hi =

⋃{U (2j − 2) ∪ U(−(2j − 2))|j ∈ Z with 1 ≤ j ≤ i} for each
integer i ≥ 2; if i < j, then Hi ⊆ Hj and

⋃{Hj|j ∈ Z with j ≥ 1} = Z. We claim the
following property:
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Claim. Let f ∈ pch(Z, Z \H ; κ) and {Hj}j∈Z, where j ≥ 1, a family of subsets defined
by (6-b) above.

(i) If f |H = t0|H, then f |Hm = t0|Hm for any m ∈ Z with m ≥ 2.
(ii) If f |H = 1H , then f |Hm = 1Hm for any m ∈ Z with m ≥ 2.

Proof of Claim. We prove the above properties by induction on m as follows.
(i) For case m = 2: for this case, we prove f |H2 = t0|H2. We recall that H2 =

H1 ∪ U(2) ∪ U(−2) and U(2), U(−2), {1} and {−1} are preopen in (Z, κ). Since f−1 is
preirresolute, we have that {−1} = f({1}) ∈ f(U(2)), f({2}) is preclosed, f({3}) is an open
singleton and f(U(2)) ∈ PO(Z, κ). Thus, we can assume that f(2) = 2s for some integer
s and f(3) = 2u + 1 for some integer u, because {2} is preclosed and {3} is preopen in
(Z, κ). Since U(2s) is the smallest open set containing 2s and 2 ∈ f−1({2s}), we have that
f−1(U(2s)) = f−1({2s−1, 2s, 2s+1}) is the smallest open set containing 2. Thus, we have
1 ∈ {1, 2, 3} = U(2) = f−1({2s − 1, 2s, 2s + 1}) and 3 ∈ f−1({2s − 1, 2s, 2s + 1}). Then,
−1 = f(1) ∈ {2s− 1, 2s, 2s + 1} and f(3) = 2u + 1 ∈ {2s− 1, 2s, 2s + 1} hold. Namely, we
have that

(6-c) −1 = 2s− 1 or −1 = 2s + 1 and 2u + 1 = 2s− 1 or 2u + 1 = 2s + 1.
If s = 0, then f(2) = 0 and f(0) = t0(0) = 0 and so 0 = 2 because f is bijective. Thus, it
follows from (6-c) that s = −1 and so f(2) = 2s = −2. For the integer f(3) = 2u+1, 2u+1 =
−3 or 2u+1 = −1. If 2u+1 = −1, then f(3) = −1 = t0(1) = f(1) and so 3 = 1, because f is
bijective. Thus, we have f(3) = 2u + 1 = −3. We conclude that f(2) = −2 and f(3) = −3;
i.e., f |H1 ∪U(2) = t0|H1 ∪U(2). It is shown similarly that f |H1 ∪U(−2) = t0|H1 ∪U(−2).
Thus, we prove that f |H2 = t0|H2 holds.

Assuming that (i) is true for an arbitrary integer m with m ≥ 2, we prove that (i) is
true for an integer m + 1 as follows. We recall that Hm+1 = Hm ∪ U(2(m + 1) − 2) ∪
U(−2(m + 1) + 2) = Hm ∪ U(2m) ∪ U(−2m), where U(2m) = {2m − 1, 2m, 2m + 1}.
It follows from assumption that f(2m − 1) = t0(2m − 1) = −(2m − 1) holds, because
2m − 1 ∈ U(2m− 2) ⊂ Hm. We can assume that f(2m) = 2s for some integer s, because
{2m} is preclosed, and f(2m+1) = 2u+1 for some integer u, because {2m+1} ∈ PO(Z, κ).
Since U(2s) is the smallest open set containing 2s and {2m} = f−1({2s}), f−1(U(2s)) =
f−1({2s − 1, 2s, 2s + 1}) is the smallest open set U(2m) containing 2m. Thus, we have
2m−1 ∈ f−1({2s−1, 2s, 2s+1}) and 2m+1 ∈ f−1({2s−1, 2s, 2s+1}). Then, f(2m−1) =
−(2m− 1) ∈ {2s− 1, 2s, 2s + 1} holds because of 2m− 1 ∈ Hm, and f(2m + 1) = 2u + 1 ∈
{2s− 1, 2s, 2s + 1} hold. Namely, we have that

(6-d) −2m + 1 = 2s − 1 or −2m + 1 = 2s + 1 (i.e., 2s = −2(m− 1) or 2s = 2m), and
2u + 1 = 2s− 1 or 2u + 1 = 2s + 1.
If 2s = −2(m − 1), then f(2m) = 2s = −2(m − 1) = t0(2(m − 1)) = f(2(m − 1)) and
so 2m = 2(m − 1), i.e., 0 = −2. Thus, it follows from (6-d) that 2s = −2m and hence
f(2m) = −2m. For the integer f(2m + 1) = 2u + 1, if 2u + 1 = 2s + 1, then f(2m + 1) =
2u+1 = 2s+1 = −2m+1 = −(2m−1) = t0(2m−1) = f(2m−1), because of 2m−1 ∈ Hm,
and so 2m + 1 = 2m − 1 by the bijectivity of f . This conclude that 2u + 1 = 2s − 1
holds. Thus, f(2m + 1) = 2u + 1 = 2s − 1 = −2m − 1 = −(2m + 1). Therefore, we
have that f(2m) = −2m = t0(2m) and f(2m + 1) = −(2m + 1) = t0(2m + 1) hold.
Namely, we have that f |Hm ∪ U(2m) = t0|Hm ∪ U(2m) holds. It is shown similarly that
f |Hm∪U(−2m) = t0|Hm∪U(−2m). Consequently, we have that f |Hm+1 = t0|Hm+1 holds
for the integer m + 1. By induction on m, (i) is proved. (ii) The proof of (ii) is the
same as that of (i) except for obvious modifications.
We conclude the proof of Claim above.
Proof of Proposition 6.1 (i). First we shall prove that {1Z, t0} ⊆ pch(Z, Z \H ; κ) holds.
We have that t0(U(2m)) = {−(2m − 1),−2m,−(2m + 1)} = U(−2m), where U(2m) =
{2m− 1, 2m, 2m + 1} and m ∈ Z, and t0(U(2s + 1)) = {−(2s + 1)} = U(−(2s + 1)), where
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U(2s + 1) = {2s + 1} and s ∈ Z. Thus, t0(U(y)) = U(−y) ∈ κ = PO(Z, κ) for any y ∈ Z.
A preopen set V of (Z, κ) is expressible as V =

⋃{U (y)|y ∈ V }, because PO(Z, κ) = κ
holds. Then, t0

−1(V ) = t0(V ) =
⋃{t0(U(y))|y ∈ V } =

⋃{U (−y)|y ∈ V } ∈ κ = PO(Z, κ)
and so t0

−1(V ) = t0(V ) is preopen in (Z, κ). Thus, t0
−1 and t0 are preirresolute. Since t0

is bijective, we have {1Z, t0} ⊆ pch(Z, Z \H ; κ).
Finally we shall prove that pch(Z, Z \H ; κ) ⊆ {1Z, t0} holds. Let f ∈ pch(Z, Z \H ; κ).

Since f−1 is preirresolute and f−1(H) = H, f(V ) ∈ PO(Z, κ) = κ for any V ∈ PO(Z, κ) =
κ with V ⊆ H . For example, {−1}, {1} and {−1, 1} are open and so preopen. Then,
f({−1}) = {−1} or {1}, f({1}) = {1} or {−1} and f({−1, 1}) = {−1, 1}. Since {0}
is a unique preclosed singleton in (Z, κ) such that {0} ⊆ H and f(H) = H , we have
f({0}) = {0}. Thus, we obtain

(6-e) f |H = t0|H or f |H = 1H .
Using Claim above, we now prove the following inclusion: pch(Z, Z \ H ; κ) ⊆ {1Z, t0} as
follows. Indeed, let f ∈ pch(Z, Z \ H ; κ) and x ∈ Z. There exists an integer m such
that x ∈ Hm. When f |H = t0|H , by (6-e), it is obtained that, by Claim (i) above,
f(x) = (f |Hm)(x) = (t0|Hm)(x) = t0(x) for the point x, i.e., we have f = t0. When
f |H = 1H , by (6-e), it is obtained that, by Claim (ii) above, f(x) = (f |Hm)(x) =
(1Z|Hm)(x) = x = 1Z(x) for the point x, i.e., we have f = 1Z. Consequently, f = t0
or f = 1Z for any f ∈ pch(Z; Z \ H ; κ), i.e., pch(Z, Z \ H ; κ) ⊆ {1Z, t0}. Therefore, we
conclude the proof of (i): pch(Z; Z \ H ; κ) = {1Z, t0} and pch(Z, Z \ H ; κ) ∼= Z2, because
(t0)2 = 1Z.
Proof of Proposition 6.1 (ii). It is obviously shown that t0 �∈ pch0(Z; Z \H ; κ). Indeed,
for a point 2 �∈ H, t0(2) = −2 �= 2 and hence t0|(Z \H) �= 1Z.
Proof of Proposition 6.1 (iii). We first prove that {1H , t0|H} ⊆ pch(H ; κ|H) holds.
It is obvious that 1H ∈ pch(H ; κ|H). We show that t0|H ∈ pch(H, κ|H). For a sub-
set V ⊆ H , under the assumption that H ∈ PO(H,κ|H), V ∈ PO(H,κ|H) if and
only if V ∈ PO(Z, κ) (cf. Theorem 5.3 (v)). Consequently, we have that PO(H; κ|H) =
{{−1}, {+1}, {−1, 1}, H, ∅}, because PO(Z, κ) = κ. Then, it is easily shown that (t0|H)−1(V ) =
(t0|H)(V ) ∈ PO(H,κ|H) for any V ∈ PO(H,κ|H). Thus, we conclude {1H , t0|H} ⊆
pch(H ; κ|H). Conversely, let f ∈ pch(H ; κ|H). Then, f({0}) = {0} holds, because the sin-
gleton {0} is a unique preclosed singleton of (H,κ|H); f({−1}) = {1} or {−1} and f({1}) =
{−1} or {1}. Thus, we have that f = 1H or t0|H and hence pch(H, κ|H) ⊆ {1H , t0|H}.
Therefore, (iii) is proved.
Proof of Proposition 6.1 (iv). It follows from (i), (iii) and definition that Im(rH)∗ =
{(rH)∗(1Z), (rH)∗(t0)} ={1H, rH,H(t0)} = {1H , t0|H}. This property shows directly that
(rH)∗ is onto. (We note that the α-openness and α-closedness of H are assumed in order
to show the onto homomorphism of (rH)∗ in general (cf. Theorem 5.7 (ii), (ii-2)) ; this
property (iv) shows that this homomorphism (rH)∗ is onto even if H is not α-closed in
(Z, κ)).
Proof of Proposition 6.1 (v). It follows from (i), (ii) and definition that Ker(rH)∗ =
{a ∈ pch(Z, Z \ H ; κ)|(rH)∗(a) =1H} = {a ∈ {1Z, t0}|rH,H(a) = 1H} = {1Z}, because
rH,H(t0) = t0|H �= 1H . �

In the end of this section, we investigate characterizations of preirresolute functions and
preirresolute homeomorphisms on digital planes (cf. Theorem 6.8) and some examples (cf.
Theorem 6.12, Proposition 6.14). Let (Z2, κ2) be the digital plane throughout this section.
First we recall some definitions and properties on digital planes (e.g., [7], [17], [18], [42], [9]).
The topological product of two copies of the digital line (Z, κ) is called the digital plane, it
is denoted by (Z2, κ2) (cf. in [24, Definition 4], it is called digital 2-space).

Let x = (x1, x2) be a point of (Z2, κ2), where x1, x2 ∈ Z.
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(∗1) When the integers x1, x2 are all odd, then a singleton {x} = {(x1, x2)} is open in
(Z2, κ2). We use the following notation for the point x (i.e., {x} is open): U(x) := {x}; this
set U(x) is the smallest open set containing the point x.

(∗2) When the integers x1, x2 are all even, then a singleton {x} = {(x1, x2)} is closed
in (Z2, κ2). For the point x above, we put the four points p

(1)
x := (x1 + 1, x2 + 1), p(2)

x :=
(x1−1, x2+1), p(3)

x := (x1−1, x2−1), p(4)
x := (x1+1, x2−1). Each singleton {p(i)

x } is open in
(Z2, κ2) for i ∈ {1, 2, 3, 4}, because all components of the points are odd (cf. (∗1)). For the
point x = (x1, x2) above (i.e., {x} is closed), put U(x) := {x1−1, x1, x1+1}×{x2−1, x2, x2+
1}. This set U(x) is the smallest open set containing x and {x, p

(1)
x , p

(2)
x , p

(3)
x , p

(4)
x } ⊆ U(x).

(∗3) Let x = (x1, x2) be a point of (Z2, κ2) such that xi is odd and xj is even for distinct
integers i and j with i, j ∈ {1, 2}. Such point x is called a mixed point of (Z2, κ2). When
(x1, x2) := (2s, 2m + 1), where s, m ∈ Z, let x+ := (2s + 1, 2m + 1), x− := (2s− 1, 2m + 1);
when (x1, x2) := (2s+1, 2m), where s, m ∈ Z, let x+ := (2s+1, 2m+1), x− := (2s+1, 2m−
1). By using above notations, we define U(x) := {x−, x, x+} for this point x; this set U(x)
is also the smallest open set containing x. The set U(x) has the following property: for
x = (2s, 2m + 1), U(x) := {2s − 1, 2s, 2s + 1} × {2m + 1}; for x = (2s + 1, 2m), U(x) :=
{2s + 1} × {2m− 1, 2m, 2m + 1}.

It is well known that for any open subset G containing a point x ∈ Z
2, U(x) ⊆ G holds

in (Z2, κ2).

We use the following notation (e.g., [17], [18], [7], [42], [9]).

Definition 6.2 (i) (Z2)κ2 := {x ∈ Z
2|{x} is open in (Z2, κ2)};

(Z2)F2 := {x ∈ Z
2|{x} is closed in (Z2, κ2)};

(Z2)mix := Z
2 \ ((Z2)κ2 ∪ (Z2)F2).

(ii) For a subset A of (Z2, κ2),
Aκ2 := (Z2)κ2 ∩A and so Aκ2 = {x ∈ A|{x} is open in (Z2, κ2)} holds;
AF2 := (Z2)F2 ∩A and so AF2 = {x ∈ A|{x} is closed in (Z2, κ2)} holds;
Amix := A \ (Aκ2 ∪AF2).

Example 6.3 (i) It is obviously shown that, in (Z2, κ2),
(i-1) (Z2)κ2 = {(2s + 1, 2m + 1) ∈ Z

2|s, m ∈ Z},
(i-2) (Z2)F2 = {(2s, 2m) ∈ Z

2|s, m ∈ Z},
(i-3) (Z2)mix = {(2s + 1, 2m) ∈ Z

2|s, m ∈ Z} ∪ {(2s, 2m + 1) ∈ Z
2|s, m ∈ Z},

(i-4) Z
2 = (Z2)κ2 ∪ (Z2)F2 ∪ (Z2)mix (disjoint union) and

A = Aκ2 ∪AF2 ∪Amix (disjoint union) for a subset A of (Z2, κ2).
(ii) (ii-1) For a point x ∈ (Z2)κ2 , (U(x))F2 = ∅, (U(x))κ2 = {x} and (U(x))mix = ∅.
(ii-2) For a point x := (x1, x2) ∈ (Z2)F2 , (U(x))F2 = {x}, (U(x))κ2 = {p(i)

x |i ∈
{1, 2, 3, 4}} (cf. (∗-2) above) and (U(x))mix= {(x1, x2 + 1), (x1, x2 − 1), (x1 + 1, x2), (x1 −
1, x2)}.

(ii-3) For a point x ∈ (Z2)mix, (U(x))F2 = ∅, (U(x))κ2 = {x+, x−} and (U(x))mix = {x}
(cf. (∗-3)).

(iii) Let s, m ∈ Z. (iii-1) For a point (2s + 1, 2m + 1) ∈ (Z2)κ2 , Cl({(2s + 1, 2m + 1)}) =
{2s, 2s + 1, 2s + 2} × {2m, 2m + 1, 2m + 2}.

(iii-2) For a point (2s, 2m) ∈ (Z2)F2 , Cl({(2s, 2m)}) = {(2s, 2m)}.
(iii-3) For a point (2s, 2m+1) ∈ (Z2)mix, Cl({(2s, 2m+1)}) = {2s}×{2m, 2m+1, 2m+

2}; for a point (2s + 1, 2m) ∈ (Z2)mix, Cl({(2s + 1, 2m)}) = {2s, 2s + 1, 2s + 2} × {2m}.

Moreover, we recall the following well known definitions and examples.
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Definition 6.4 (i) For a topological space (X, τ) and a subset A of X ,
(i-1) Ker(A) :=

⋂{V |A ⊆ V, V ∈ τ};
(i-2) Kerp(A) :=

⋂{V |A ⊆ V, V ∈ PO(X, τ)}.
(ii) For a subspace (H, τ |H) of (X, τ) and a subset B of H ,
(ii-1) (τ |H)-Ker(B) :=

⋂{W |B ⊆W,W ∈ τ |H};
(ii-2) (τ |H)-Kerp(B) :=

⋂{V |B ⊆W,W ∈ PO(H, τ |H)}.

Example 6.5 For (X, τ) = (Z2, κ2) in Definition 6.4, we have the following properties: for
any s, m ∈ Z,
Ker({(2s + 1, 2m + 1)}) = {(2s + 1, 2m + 1)} = U((2s + 1, 2m + 1)),
Ker({(2s, 2m)}) = {2s− 1, 2s, 2s + 1} × {2m− 1, 2m, 2m + 1} = U((2s, 2m)),
Ker({(2s, 2m + 1)}) = {2s− 1, 2s, 2s + 1} × {2m + 1} = U((2s, 2m + 1)),
Ker({(2s + 1, 2m)}) = {2s + 1} × {2m− 1, 2m, 2m + 1} = U((2s + 1, 2m)).

We need the following properties in order to characterize the group pch(Z2; κ2) (cf. Theo-
rem 6.8).

Proposition 6.6 (i) (cf. [9, Lemma 2.2 (ii)]) {x} ∪ (U(x))κ2 ∈ PO(Z2, κ2) holds for every
x ∈ Z

2.
(ii) Kerp({x}) = {x} ∪ (U(x))κ2 holds in (Z2, κ2) for every x ∈ Z

2.
(iii) Let x ∈ Z

2, x0 := (0, 0) and H := U(x0), i.e., H = {−1, 0, 1} × {−1, 0, 1}.
(iii-1) {x0} ∪ (U(x0))κ2 ∈ PO(H,κ2|H) holds.
(iii-2) (κ2|H)-Kerp({x0}) = {x0} ∪ (U(x0))κ2 holds.

Proof. (i) Case 1. x ∈ (Z2)F2 : in [9, Lemma 2.2 (ii)], recently one of the present authors
proved this property (i) for a point x ∈ (Z2)F2 ; let x := (2s, 2m), where s, m ∈ Z; for this
case, it is shown that Int(Cl({x}∪(U(x))κ2 )) = Int({2s−2, 2s−1, 2s, 2s+1, 2s+2}×{2m−
2, 2m−1, 2m, 2m+1, 2m+2}) = {2s−1, 2s, 2s+1}×{2m−1, 2m, 2m+1}= U((2s, 2m)) ⊇
{x}∪(U(x))κ2 hold. Thus the set {x}∪(U(x))κ2 is preopen in (Z2, κ2). Case 2. x ∈ (Z2)κ2 :
for this case, we have that U(x) = {x} (cf. (∗1)) and so {x} ∪ (U(x))κ2 = {x} ∈ κ2 and so
it is preopen. Case 3. x ∈ (Z2)mix: for this case, by Example 6.3 (ii-3), it is shown that
{x} ∪ (U(x))κ2 = {x+, x, x−} = U(x) ∈ κ2 ⊆ PO(Z2, κ2). (ii) Using (i), we have that
Kerp({x}) ⊆ {x} ∪ (U(x))κ2 . We should prove {x} ∪ (U(x))κ2 ⊆ Kerp({x}). By using [7,
Lemma 6.3 (i)] and [18, Lemma 4.7], it is shown that

(∗) every preopen set V such that x ∈ V includes the preopen set {x} ∪ (U(x))κ2 .
Using this property (∗), we have {x} ∪ (U(x))κ2 ⊆ ⋂{V |{x} ⊆ V, V ∈ PO(Z2, κ2)} =
Kerp({x}). Therefore, Kerp({x}) = {x}∪ (U(x))κ2 holds. (iii) (iii-1) Using (i) above
and Theorem 5.3 (ii), {x0} ∪ (U(x0))κ2 is preopen in (H,κ2|H). (iii-2) Since H := U(x0)
and x0 = (0, 0), we have that H is α-open and so PO(Z2, κ2)|H = PO(H,κ2|H) holds
(cf. Theorem 5.3 (vi-3)). By the definition of p-kernels (cf. Definition 6.4) and (iii-1), it is
shown that (κ2|H)-Kerp({x0}) =

⋂{W |{x0} ⊂W,W ∈ PO(Z2, κ2)|H} =
⋂{V ∩H |{x0} ⊂

V ∩H, V ∈ PO(Z2, κ2)} = (
⋂{V |{x0} ⊂ V, V ∈ PO(Z2, κ2)}) ∩H = (Kerp({x0})) ∩H =

({x0} ∪ ((U(x0))κ2) ∩H = {x0} ∪ ((U(x0))κ2 hold. �

In Theorem 6.7 below, we use the following notation:
(Z2)PO := {x|{x} ∈ PO(Z2; κ2)},
(Z2)PC := {x|{x} is preclosed in (Z2, κ2)}.

Then, it is shown that (Z2)PO = (Z2)κ2 , (Z2)PC = (Z2)F2 ∪ (Z2)mix (disjoint union) and
Z

2 = (Z2)PO ∪ (Z2)PC (disjoint union) hold (cf. Definition 6.2, Example 6.3).
For a finite set K, we denote the cardinal number of K by #(K).
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Theorem 6.7 Assume f ∈ pch(Z2; κ2). Then, the following properties are verified. Let
x ∈ Z

2.
(i) x ∈ (Z2)κ2 if and only if f(x) ∈ (Z2)κ2 .
(ii) x ∈ (Z2)F2 if and only if f(x) ∈ (Z2)F2 .
(iii) x ∈ (Z2)mix if and only if f(x) ∈ (Z2)mix.
(iv) For a point x ∈ Z

2, f(Kerp({x})) = Kerp({f(x)}) holds.
Explicitly, if x ∈ (Z2)κ2 , then f(U(x)) = U(f(x)) holds; if x ∈ (Z2)mix, then f(U(x)) =
U(f(x)) holds; if x ∈ (Z2)F2 , then f({x} ∪ (U(x))κ2) = {f (x)} ∪ (U(f(x)))κ2 holds (i.e.,
f((U(x))κ2 ) = (U(f(x)))κ2).

(v) (v-1) If z ∈ (Z2)κ2 , then f(U(z)) = {f (z)} = U(f(z)) hold.
(v-2) If y ∈ (Z2)mix, then f(U(y)) = U(f(y)) holds.
(v-3) If x ∈ (Z2)F2 , then f((U(x))κ2 ) = (U(f(x)))κ2 , f((U(x))F2) = {f (x)} = (U(f(x)))F2

and f((U(x))mix) = (U(f(x)))mix hold.
(vi) For a point x ∈ Z

2, f(U(x)) = U(f(x)) holds.

Proof. (i) Since f ∈ pch(Z2, κ2), it is shown that x ∈ (Z2)PO if and only if f(x) ∈ (Z2)PO.
Thus, (i) is obtained by using the property of (Z2)PO = (Z2)κ2 .

(ii) (Necessity) Suppose x ∈ (Z2)F2 . Since (Z2)F2 ⊆ (Z2)PC , we have f(x) ∈ (Z2)PC =
(Z2)mix ∪ (Z2)F2 (disjoint union). Assume f(x) ∈ (Z2)mix. Then, first let f(x) = (2s +
1, 2m) , where s, m ∈ Z. Take two open singletons {y+} := {(2s + 1, 2m + 1)} and {y−} :=
{(2s+1, 2m−1)}. Since U(f(x)) = {y+, f(x), y−} ∈ κ2 ⊆ PO(Z2, κ2) and f ∈ pch(Z2; κ2),
we have that f−1(U(f(x)))={f−1(y+), x, f−1(y−))} and so f−1(U(f(x))) ∈ PO(Z2, κ2).
Thus, we have that Kerp({x}) ⊆ {f−1(y+), x, f−1(y−)} holds and so #(Kerp({x})) ≤
#({f−1(y+), x, f−1(y−)}) = 3 holds. However, by Proposition 6.6 (i) and (ii), it is shown
that #(Kerp({x})) = 5 for the point x ∈ (Z2)F2 ; we have a contradiction for this case.
Finally, we have similarly a contradiction for the case where f(x) = (2s, 2m + 1), where
s, m ∈ Z. Therefore, we claim f(x) ∈ (Z2)F2 .

(Sufficiency) Suppose f(x) ∈ (Z2)F2 . Since f(x) ∈ (Z2)PC and f−1 ∈ pch(Z2; κ2),
we have x = f−1(f(x)) ∈ (Z2)PC = (Z2)mix ∪ (Z2)F2 (disjoint union). Assume that
x ∈ (Z2)mix; we have a contradiction using similar arguments in the proof of the necessity.
Thus, we conclude that x ∈ (Z2)F2 holds.

(iii) We recall that Z
2 is the disjoint union of (Z2)F2 , (Z2)κ2 and (Z2)mix. Then, x ∈

(Z2)mix if and only if x �∈ (Z2)F2 and x �∈ (Z2)κ2 ; by (i) and (ii) above, if and only if
f(x) �∈ (Z2)F2 and f(x) �∈ (Z2)κ2 ; i.e., f(x) ∈ (Z2)mix holds.

(iv) Case 1. x ∈ (Z2)κ2 : for this case, we have Kerp({x}) = {x} and Kerp(f({x})) =
{f (x)} = f(Kerp({x})) (cf. (i) above).
Case 2. x ∈ (Z2)mix: for this case, there exist two points, say x+ and x−, such that
U(x) = {x+, x, x−} is the smallest open set containing the point x, where {x+, x−} ⊆
(Z2)κ2 and x+ �= x−. Using Proposition 6.6 (ii), it is shown that Kerp({x}) = U(x) =
{x+, x, x−} ∈ PO(Z2, κ2). Thus, we have f(Kerp({x})) = f(U(x))= {f (x+), f(x), f(x−)},
f(Kerp({x})) ∈ PO(Z2, κ2), f(x+) ∈ (Z2)κ2 , f(x−) ∈ (Z2)κ2 and f(x) ∈ (Z2)mix (cf.
(i) and (iii) above). We claim that for the mixed point f(x), U(f(x)) ={f (x+), f(x),
f(x−)}, i.e., U(f(x)) = f(U(x)) holds. Indeed, U(f(x)) = Kerp({f(x)}) is the small-
est preopen set containing f(x) (cf. Proposition 6.6 (ii) for the mixed point f(x)), say
U(f(x)) := {p(1), f(x), p(2)}, where {p(1)} and {p(2)} are the open singletons determined by
the point f(x). Then, U(f(x)) = Kerp({f(x)}) ={p(1), f(x), p(2)} ⊆ {f (x+), f(x), f(x−)}
and so 3 = #(U(f(x)))= #({f(x+), f(x), f(x−)} ∩ {p(1), f(x), p(2)}). Thus, we have
{f (x+), f(x), f(x−)} ={p(1), f(x), p(2)}; we claimed U(f(x)) = f(U(x)). Hence, we have
that f(Kerp({x})) = f(U(x)) = U(f(x)) = Kerp({f(x)}) for a mixed point x. (cf. Propo-
sition 6.6 (ii)).
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Case 3. x ∈ (Z2)F2 : for this point x, {x} is closed, #(U(x)) = 9, #((U(x))κ2 ) = 4
and #(f((U(x))κ2 )) = 4. Then, by Proposition 6.6 (ii) and (i), (ii) above, it is shown that
f(Kerp({x})) = f({x}) ∪ f((U(x))κ2 ). And so we have
(∗∗)(1) (f(Kerp({x})))κ2 = f((U(x))κ2 ) and #((f(Kerp({x})))κ2) = 4.
Since f(x) ∈ (Z2)F2 , we have (Kerp({f(x)}))κ2 = (U(f(x)))κ2 and so
(∗∗)(2) #(Kerp({f(x)}))κ2) = 4.
Now, f(Kerp({x})) is a preopen set containing f(x), because f−1 ∈ pch(Z2; κ2) and
Kerp({x}) ∈ PO(Z2, κ2) (cf. Proposition 6.6 (i) (ii)). On the other hand, Kerp({f(x)})
is the smallest preopen set containing f(x) and f(x) ∈ (Z2)F2 . Thus, we have that
f(x) ∈ Kerp({f(x)}) ⊆ f(Kerp({x})) and so
(∗∗)(3) (Kerp({f(x)}))κ2 ⊆ (f(Kerp({x})))κ2 holds.

By using (∗∗)(1), (∗∗)(2) and (∗∗)(3), it is shown that (Kerp({f(x)}))κ2 = (f(Kerp({x})))κ2 =
f((U(x))κ2) holds, i.e., (U(f(x)))κ2 = f((U(x))κ2 ) holds. Therefore, we have {f (x)} ∪
(U(f(x)))κ2 = f({x})∪f((U(x))κ2 ) = f({x}∪(U(x))κ2). Namely, we show that Kerp({f(x)}) =
f(Kerp({x})) holds for this closed singleton {x} (cf. Proposition 6.6 (ii)).

(v) (v-1) (v-2) These are obtained by (iv).
(v-3) Since x ∈ (Z2)F2 , {x} is closed and U(x) = (U(x))κ2 ∪ (U(x))F2 ∪ (U(x))mix

(disjoint union) and (U(x))F2 = {x} hold. By (iv), it is first shown that f((U(x))κ2) =
(U(f(x)))κ2 holds for the point x; by definition and (ii) above, f((U(x))F2) = (U(f(x)))F2

holds. Finally, we claim that f((U(x))mix) = (U(f(x)))mix hold. [ Indeed, let f(y) ∈
f((U(x))mix), where y ∈ (U(x))mix. We set U(y) = {y−, y, y+}, where y−, y+ ∈ (U(y))κ2 ⊆
(U(x))κ2 . Since y ∈ Z

2, y ∈ U(x) and U(y) ⊆ U(x), by using (iv), it is shown that
f(U(y)) = U(f(y)), f(y) ∈ U(f(y)) and so (U(f(y)))κ2 = f((U(y))κ2) ⊆ f(U(x)κ2). Thus
we have f(U(y))κ2) ⊆ (U(f(x)))κ2 and so {f (y+), f(y−)} = (U(f(x)))κ2 ∩ (U(f(y)))κ2 =
(U(f(y)) ∩ U(f(x)))κ2 . We note that f(x) ∈ (Z2)F2 . By using [41, Lemma 2.3] for the
points f(y) ∈ U(f(y)) and f(x) ∈ U(f(x)), it is shown that f(y) ∈ U(f(x)). Indeed,
f(y) ∈ (Z2)mix(1) and f(x) ∈ (Z2)mix(2)(a′ = 1, a = 2, n = 2) and U(f(y)) ∩ U(f(x))
contains the 2-open singletons {f (y+)} and {f (y−)} (Note: 2a′

= 2). Since f(y) ∈ (Z2)mix,
we conclude that f(y) ∈ (U(f(x))mix and hence f((U(x))mix) ⊆ (U(f(x)))mix. We can
prove the converse implication using the case where f−1 ∈ pch(Z2, κ2) and the point f(x) ∈
(Z2)F2 . Then, we have that f−1((U(f(x)))mix) ⊆ (U(f−1(f(x))))mix, i.e., (U(f(x)))mix ⊆
f((U(x))mix).] Therefore, we proved that (U(f(x)))mix = f((U(x))mix) holds.

(vi) For a point x ∈ (Z2)κ2 ∪ (Z2)mix, the proof is obtained by (v-1) or (v-2). For
a point x ∈ (Z2)F2 , the proof is as follows. Since U(x) = (U(x))κ2 ∪ (U(x))mix ∪ {x}
(cf. Example 6.3 (i-4)), we have that f(U(x)) = f((U(x))κ2 ) ∪ f((U(x))mix) ∪ {f (x)} =
(U(f(x)))κ2) ∪ ((U(f(x)))mix) ∪ {f (x)} = U(f(x)) hold (cf. (v) above). �
Theorem 6.8 Let f : (Z2, κ2)→ (Z2, κ2) be a function.

(i) If f is a function satisfying the following property that f(Kerp({x})) = Kerp({f(x)})
holds for every x ∈ Z

2, then f is preirresolute.
(ii) For a bijection f : (Z2, κ2)→ (Z2, κ2), the following properties are equivalent:
(1) f ∈ pch(Z2; κ2) holds;
(2) f(Kerp({x})) = Kerp({f(x)}) and f−1(Kerp({x})) = Kerp({f−1(x)}) hold for

every x ∈ Z
2;

(3) f({x} ∪ (U(x))κ2 ) = {f (x)} ∪ (U(f(x)))κ2 and
f−1({x} ∪ (U(x))κ2 ) = {f−1(x)} ∪ (U(f−1({x})))κ2 hold for every x ∈ Z

2.

Proof. (i) Let V ∈ PO(Z2, κ2). For each x ∈ f−1(V ), by Definition 6.4 (i-2) and
the assumption, it is shown that, for the point f(x) ∈ V, Kerp({f(x)}) ⊆ V and so
Kerp({f(x)}) = f(Kerp({x})) ⊆ V . Thus, we have that f−1(V ) =

⋃{Kerp({x})| x ∈
f−1(V )} and so f−1(V ) ∈ PO(Z2, κ2), because Kerp({x}) ∈ PO(Z2, κ2) for each x ∈ V
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(cf. Proposition 6.6 (i), (ii)). Therefore, f is preirresolute. (ii) (1)⇒(2) It is proved in
Proposition 6.7 (iv). (2)⇒(1) Using (i) above for the bijections f and f−1, we have that
f and f−1 are preirresolute. (2)⇔(3) It is proved by Proposition 6.6 (ii). �

Using Theorem 6.8, we have some examples of functions on (Z2, κ2).

Definition 6.9 Let tc,d : (Z2, κ2)→ (Z2, κ2) be a bijection defined as follow, where c, d ∈ Z:
tc,d(x1, x2) := (x1 + c, x2 + d) for every point (x1, x2) of (Z2, κ2).

Theorem 6.10 (i) A collection {t2a,2b|a, b ∈ Z} forms a subgroup of pch(Z2; κ2); explicitly,
the collection is a subgroup of h(Z2; κ2).

(ii) Let a and b integers. The following properties are verified.
(ii-1) t2a+1,2b �∈ pch(Z2; κ2); (ii-2) t2a,2b+1 �∈ pch(Z2; κ2);
(ii-3) t2a+1,2b+1 �∈ pch(Z2; κ2).

Proof. (i) We put T := {t2a,2b|a, b ∈ Z}. The collection T is nonempty, because t0,0 is
the identity function and t0,0 ∈ T. We claim T ⊆ pch(Z2; κ2) (cf. Theorem 6.8 (i)). For
t2a,2b ∈ T and a point x ∈ Z

2, it is shown that
t2a,2b({x} ∪ (U(x))κ2) = {t2a,2b(x)} ∪ (U(t2a,2b(x)))κ2 and
(t2a,2b)−1({x} ∪ (U(x))κ2 ) = {(t2a,2b)−1(x)} ∪ (U((t2a,2b)−1(x)))κ2 .

By using Theorem 6.8 (i), it is obtained that t2a,2b ∈ pch(Z2; κ2) and so T ⊆ pch(Z2; κ2).
For two elements t2a,2b, t2h,2k ∈ T, we have ω(t2a,2b, (t2h,2k)−1) = (t2h,2k)−1 ◦ t2a,2b =
t2a−2h,2b−2k and so ω(t2a,2b, (t2h,2k)−1) ∈ T, where ω is the binary operation defined in
the proof of Theorem 4.3 (ii). Therefore, T is a subgroup of pch(Z2; κ2). We note that
the above mentioned proof is one of using Theorem 6.8 and t2a,2b ∈ pch(Z2; κ2), where
a, b ∈ Z. Using the above mentioned property, we claim that T is also a subgroup of
h(Z2; κ2). Let t2a,2b ∈ T and G an open set of (Z2, κ2). Then, using the concept of smallest
open sets U(x), the set G is expressible as G =

⋃{U (x)|x ∈ G} and so (t2a,2b)−1(G) =⋃{(t2a,2b)−1(U(x))|x ∈ G}. Since t2a,2b ∈ pch(Z2; κ2), using Theorem 6.7 (vi), we have
t2a,2b(U(x)) = U(t2a,2b(x)) and also (t2a,2b)−1(U(x)) = U((t2a,2b)−1(x)) hold for any point
x ∈ Z

2 and a, b ∈ Z. Thus, we conclude that (t2a,2b)−1(G) =
⋃{U ((t2a,2b)−1(x))|x ∈ G} ∈

κ2 and so t2a,2b is a homeomorphism, i.e., t2a,2b ∈ h(Z2; κ2); by an argument similar to that
above, we can prove T is a subgroup of h(Z2; κ2). (ii) (ii-1) (resp. (ii-2), (ii-3)) For a
preopen set V = {(1, 1)}, t−1

2a+1,2b(V ) = {(−2a, 1−2b)} (resp. t−1
2a,2b+1(V ) = {(1−2a,−2b)},

t−1
2a+1,2b+1(V ) = {(−2a,−2b)}) is not preopen. Thus, we have: t2a+1,2b �∈ pch(Z2; κ2) (resp.

t2a,2b+1 �∈ pch(Z2; κ2), t2a+1,2b+1 �∈ pch(Z2; κ2)). �

To prove Theorem 6.12 below, we need the following lemma.

Lemma 6.11 (i) For a subset F of (Z2, κ2), the following properties are equivalent:
(1) F is nowhere dense in (Z2, κ2) (i.e., Int(Cl(F )) = ∅);
(2) Fκ2 = ∅;
(3) Int(F ) = ∅.

(ii) For a subset A of (Z2, κ2), Amix ∪AF2 is nowhere dense and so it is semi-closed in
(Z2, κ2).

(iii) If Ai is nowhere dense in (Z2, κ2) for each i ∈ Λ, where Λ is an index set, then⋃{Ai|i ∈ Λ} is nowhere dense in (Z2, κ2).

Proof. (i) (1)⇒(2) Suppose Fκ2 �= ∅. There exists an open singleton {x} such that x ∈ F .
Since Int(Cl({x})) = {x}, we have x ∈ Int(Cl(F )) and so Int(Cl(F )) �= ∅; this contradicts
to (1). (2)⇒(3) Suppose that Int(F ) �= ∅. There exists a point y ∈ Int(F ) and so
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U(y) ⊆ F . Thus, we have (U(y))κ2 ⊆ Fκ2 and Fκ2 �= ∅; this contradicts to (2). (3)⇒(1)
Suppose that Int(Cl(F )) �= ∅. There exists a point x ∈ Int(Cl(F )) and so there the smallest
open set U(x) containing x such that U(x) ⊂ Cl(F ). Then, since (U(x))κ2 �= ∅, there exists
an open singleton {z} such that z ∈ U(x) and so {z} ⊆ F , i.e., z ∈ Int(F ); this contradicts
to the assumption (3). (ii) By definition, it is shown that (Amix ∪ AF2)κ2 = ∅ and so
Amix∪AF2 is nowhere dense in (Z2, κ2) (cf. (i) above). It is clear that every nowhere dense
set of a topological space is semi-closed. (iii) It follows from assumption and (i) above
that (Ai)κ2 = ∅ for each i ∈ Λ. Since (

⋃{Ai|i ∈ Λ})κ2 =
⋃{(Ai)κ2 |i ∈ Λ} holds, we have

that (
⋃{Ai|i ∈ Λ})κ2 = ∅ and

⋃{Ai|i ∈ Λ} is nowhere dense in (Z2, κ2) (cf. (i) above). �

Theorem 6.12 For the function t2a+1,2b+1 (resp. t2a,2b+1, t2a+1,2b) : (Z2, κ2) → (Z2, κ2),
where a, b ∈ Z, we have the following property:
for every preopen subset V of (Z2, κ2), (t2a+1,2b+1)−1(V ) (resp. (t2a,2b+1)−1(V ), (t2a+1,2b)−1(V )
) is the union of any collection of semi-closed sets of (Z2, κ2).

Proof. Throughout this proof, we denote W (x) := t−1({x} ∪ (U(x))κ2) for a point x ∈ Z
2

and a function t ∈ {t2a+1,2b+1, t2a,2b+1, t2a+1,2b}.
(1) Let t2a+1,2b+1 : (Z2, κ2) → (Z2, κ2) be the function. In (1), we first claim that: for

any point x ∈ Z
2,

(∗) W (x) is semi-closed in (Z2, κ2).
Case 1-1. x ∈ (Z2)F2 , say x = (2s, 2m), where s, m ∈ Z: for this case, we show that
(t2a+1,2b+1)−1({(2s, 2m)}) = {(o1, o2)}, where o1 := 2s− 2a− 1 and o2 := 2m− 2b− 1, and
W (x) = {(o1, o2)}∪{(o1+1, o2+1), (o1−1, o2−1), (o1+1, o2−1), (o1−1, o2+1)}. Then, we
have that Int(Cl(W (x))) = Int({o1−1, o1, o1+1}×{o2−1, o2, o2+1}) = {(o1, o2)} ⊆W (x)
hold and hence W (x) is semi-closed.
Case 1-2. x ∈ (Z2)κ2 , say x = (2s + 1, 2m + 1), where s, m ∈ Z: for this case, we have
that (t2a+1,2b+1)−1({(2s + 1, 2m + 1)}) = (t2a+1,2b+1)−1(U((2s + 1, 2m + 1))) = {(e1, e2)},
where e1 := 2s−2a and e2 := 2m−2b. Then, we have W (x) = {(e1, e2)} hold and so W (x)
is closed; it is semi-closed.
Case 1-3. x ∈ (Z2)mix, say x = (2s, 2m + 1) or x = (2s + 1, 2m), where s, m ∈ Z: when
x = (2s, 2m + 1), we have that (t2a+1,2b+1)−1({(2s, 2m + 1)}) = {(o, e)} ⊆ (Z2)mix, where
o := 2s−2a−1 and e := 2m−2b, and (t2a+1,2b+1)−1((U((2s, 2m+1)))κ2) = {(o−1, e), (o+
1, e)} ⊆ (Z2)F2 . Thus, we have W (x) = W (x)∩((Z2)mix∪(Z2)F2) = (W (x))mix∪(W (x))F2

and so W (x) is semi-closed (cf. Lemma 6.11 (ii)). When x = (2s + 1, 2m), by similar
argument above, we have W (x) = (W (x))mix ∪ (W (x))F2 and W (x) is semi-closed.

Thus we showed (∗) above. In (1), finally, let V be a preopen set of (Z2, κ2). For
(Z2, κ2), it is proved by [40] that a subset V is preopen in (Z2, κ2) if and only if V is
expressible as V =

⋃{{x} ∪ (U(x))κ2 |x ∈ V } ([40]);(cf. Proposition 6.6 (i)). Therefore,
(t2a+1,2b+1)−1(V )=

⋃{(t2a+1,2b+1)−1({x} ∪ (U(x))κ2)|x ∈ V } =
⋃{W (x)|x ∈ V } and so

(t2a+1,2b+1)−1(V ) is the union of the semi-closed sets W (x), where x ∈ V (cf. (∗) above).
(2) Let t2a,2b+1 : (Z2, κ2)→ (Z2, κ2) be the function and x ∈ Z

2.
Case 2-1. x ∈ (Z2)F2 , say x = (2s, 2m), where s, m ∈ Z: for this case, we show that
(t2a,2b+1)−1({(2s, 2m)}) = {(e, o)} ⊆ (W (x))mix, where e := 2s− 2a and o := 2m− 2b− 1,
and (t2a,2b+1)−1((U((2s, 2m)))κ2) ⊆ (t2a,2b+1)−1((Z2)κ2) = (Z2)mix holds. Thus, we have
W (x) = (W (x))mix and so W (x) is semi-closed (cf. Lemma 6.11 (ii)).
Case 2-2. x ∈ (Z2)κ2 , say x = (2s + 1, 2m + 1), where s, m ∈ Z: for this case, we have
that (t2a,2b+1)−1({(2s+1, 2m+1)})=(t2a,2b+1)−1(U((2s+1, 2m+1)))= {(o, e)} ⊆ (Z2)mix,
where o := 2s + 1 − 2a and e := 2m − 2b; thus, W (x) = (W (x))mix and it is semi-closed
(cf. Lemma 6.11 (ii)).
Case 2-3. x ∈ (Z2)mix, say x = (2s, 2m + 1) or x = (2s + 1, 2m), where s, m ∈
Z: when x = (2s, 2m + 1), we have that (t2a,2b+1)−1({(2s, 2m + 1)}) = {(e1, e2)} ⊆
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(Z2)F2 , where e1 := 2s − 2a and e2 := 2m − 2b, and (t2a,2b+1)−1((U((2s, 2m + 1)))κ2) ⊆
(t2a,2b+1)−1((Z2)κ2) = (Z2)mix hold. Then, W (x) = (W (x))F2 ∪ (W (x))mix holds and so it
is semi-closed (cf. Lemma 6.11 (ii)). When x = (2s + 1, 2m), we have (t2a,2b+1)−1({(2s +
1, 2m)}) = {(o1, o2)} ⊆ W (x), where o1 := 2s − 2a + 1 and o2 := 2m − 2b − 1, and
(t2a,2b+1)−1((U((2s + 1, 2m)))κ2) = {(o1, o2 − 1), (o1, o2 + 1)} hold. Then, we have that
Int(Cl(W (x)))=Int({o1 − 1, o1, o1 + 1} × {o2 − 1, o2, o2 + 1}) ={(o1, o2)} ⊆ W (x) and so
W (x) is semi-closed.
For every cases above in (2), W (x) is semi-closed for any point x ∈ Z

2. By the same
argument in the end of the proof of (1) above, for a preopen set V , (t2a,2b+1)−1(V )=⋃{(t2a,2b+1)−1({x} ∪ (U(x))κ2 )|x ∈ V } =

⋃{W (x)|x ∈ V } and so (t2a,2b+1)−1(V ) is the
union of the semi-closed sets W (x), where x ∈ V .

(3) Let t2a+1,2b : (Z2, κ2)→ (Z2, κ2) be the functiom and x ∈ Z
2.

Case 3-1. x ∈ (Z2)F2 , say x = (2s, 2m), where s, m ∈ Z: for this case, we show that
(t2a+1,2b)−1({(2s, 2m)}) ⊆ (t2a+1,2b)−1((Z2)F2) ⊆ (Z2)mix and (t2a+1,2b)−1((U((2s, 2m)))κ2) ⊆
(t2a+1,2b)−1((Z2)κ2) ⊆ (Z2)mix hold. Thus, we have W (x) = (W (x))mix and so W (x) is
semi-closed (cf. Lemma 6.11 (ii)).
Case 3-2. x ∈ (Z2)κ2 , say x = (2s + 1, 2m + 1), where s, m ∈ Z: for this case, we have
W (x) = (t2a+1,2b)−1({(2s + 1, 2m + 1)}) ⊆ (t2a+1,2b)−1((Z2)κ2) =(Z2)mix; by Lemma 6.11
(ii), W (x) is semi-closed.
Case 3-3. x ∈ (Z2)mix, say x = (2s, 2m + 1) or x = (2s + 1, 2m), where s, m ∈ Z: when
x = (2s, 2m+1), we have that (t2a+1,2b)−1({(2s, 2m+1)}) ={(o1, o2)}, where o1 := 2s−2a−1
and o2 := 2m + 1− 2b, and (t2a+1,2b)−1(U((2s, 2m + 1))κ2)= {(o1− 1, o2), (o1 + 1, o2)}. For
this case, it is shown that Int(Cl(W (x))) = {(o1, o2)} ⊆ W (x) holds and so W (x) is semi-
closed. When x := (2s + 1, 2m), it is shown that W (x) = (W (x))F2 ∪ (W (x))mix holds and
so it is semi-closed (cf. Lemma 6.11 (ii)).
For every cases above in (3), W (x) is semi-closed for any point x ∈ Z

2. By the same
argument in the end of the proof of (1) above, for a preopen set V , (t2a+1,2b)−1(V )=⋃{(t2a+1,2b)−1({x} ∪ (U(x))κ2 )|x ∈ V }) =

⋃{W (x)|x ∈ V } and so (t2a+1,2b)−1(V ) is the
union of the semi-closed sets W (x), where x ∈ V . �
Remark 6.13 (i) The functions t2a,2b, t2a+1,2b, t2a,2b+1, t2a+1,2b+1 : Z

2 → Z
2 (cf. Defini-

tion 6.9) are extended from R
2 onto itself. It is obviously shown that

{t2a,2b, t2a+1,2b, t2a,2b+1, t2a+1,2b+1} ⊆ h(R2; ε2), as functions from the Euklidean plane
(R2, ε2) onto itself, where a, b ∈ Z; however, as functions from a topological space (Z2, κ2)
onto itself, by Theorem 6.10 (ii), it is shown that t2a+1,2b �∈ h(Z2; κ2), t2a,2b+1 �∈ h(Z2; κ2)
and t2a+1,2b+1 �∈ h(Z2; κ2). This is one of examples of property which shows differences
between topological spaces (R2, ε2) and (Z2, κ2). As alternative example, it is well known
that (R2, ε2) is a Hausdorff space and so a T1-space; however (Z2, κ2) and (Z, κ) are not T1

(cf. [22, page 7], [8, Example 4.6], e.g [18, Theorems 2.3, 4.8]). (ii) We are suggested to
define a new kind of class of functions by observing Theorem 6.12.

Finally, we give more examples of functions belonging to pch(Z2; κ2) and a corollary. We
recall the following known functions from Z

2 onto itself. First we need the functions
ρR, rR

1 , rR

2 , uR and vR from R
2 onto itself defined as follows: for every point x ∈ R

2,
let ρR : R

2 → R
2 be the rotation around x0 := (0, 0) by angle π/2, i.e., ρR(x1, x2) =

(−x2, x1); rR

1 (x1, x2) := (x1,−x2) and rR

2 (x1, x2) := (−x1, x2) ; uR(x1, x2) := (−x2,−x1)
and vR(x1, x2) := (x2, x1).

Using the forms of the above functions, we have the following example.

Example 6.14 (i) Each function f ∈ {ρ, ρ2, ρ3, r1, r2, u, v} is preirresolute (cf. Theo-
rem 6.8) and f ∈ pch(Z2; κ2), where ρ, ρ2, ρ3, r1, r2, u and v are defined as follows: for
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x =: (x1, x2) ∈ Z
2,

(1) ρ(x) := ρR(x) = (−x2, x1); (2) for each i ∈ {1, 2}, ri(x) := rR

i (x), i.e., r1(x) = (x1,−x2)
and r2(x) = (−x1, x2); (3) u(x) := uR(x) = (−x2,−x1); (4) v(x) := vR(x) = (x2, x1). The
proof of f ∈ pch(Z2; κ2) is done using Theorem 6.8 and they are omitted. (ii) By using (i)
above and Theorem 6.7 (vi), it is obtained that each function f of (i) above is a homeomor-
phism from (Z2, κ2) onto itself, because f(U(x)) = U(f(x)) and f−1(U(x)) = U(f−1(x))
hold for every point x ∈ Z

2 (cf. Proof of Theorem 6.10 (i) and Corollary 6.15 below).

We are inspired the following corollary by studying Example 6.14, Theorem 6.10 (i) and
Theorem 6.7 (vi).

Corollary 6.15 For (Z2, κ2), h(Z2; κ2) = pch(Z2; κ2) holds.

Proof. We have h(Z2; κ2) ⊆ pch(Z2; κ2) (cf. Theorem 4.3 (iii)). We claim that pch(Z2; κ2) ⊆
h(Z2; κ2)) holds. Let f ∈ pch(Z2; κ2). Using Theorem 6.7 (vi) for the function f , we have
the property:f (U(x)) = U(f(x)) for every point x ∈ Z

2. Let G ∈ κ2. Then, for each point
z ∈ G there exists the smallest open set U(z) containing z such that U(z) ⊆ G and so
f(U(z)) = U(f(z)) ⊆ f(G). We have that f(G) =

⋃{U (f(z))|z ∈ G} and f(G) ∈ κ2; thus,
this shows that f−1 is continuous. By an argument similar to that above, it is shown that
f is continuous; thus, f ∈ h(Z2; κ2). Therefore, we show pch(Z2; κ2) = h(Z2; κ2). �

Question Let x0 := (0, 0) and H := U(x0), i.e., H = {−1, 0, 1} × {−1, 0, 1}. Study an
analogous property to Proposition 6.1 on pch(H ; κ|H) and pch(Z2, Z2 \H ; κ2) .
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