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Abstract. The concept of πgβ-closed sets is introduced and investigated by Tahiliani
[12] earlier. In the present paper we investigate some more properties of πgβ-closed
sets. Their relations in group theory and digital line are investigated.

1 Introduction Throughout the present paper, (X, τ), (Y, σ) and (Z, η) (or X, Y and
Z) represent nonempty topological spaces on which no separation axioms are assumed,
unless otherwise mentioned. The closure and interior of a subset A ⊆ X will be denoted by
Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called β-open
[1] or semi-preopen [2] if A ⊆ Cl(Int(Cl(A))). The compliment of a β-open set is called
β-closed [1]. The intersection of all β-closed sets containing A is called β-closure of A and
it is denoted by βCl(A). A subset A of (X, τ) is called regular open (resp. regular closed)
if A = Int(Cl(A)) (resp. A = Cl(Int(A)). A finite union of regular open set is said to be
π-open. The complement of π-open set is said to be π-closed [3]. A subset A of (X, τ) is said
to be gβ-closed [5] (resp. πgβ-closed [12]) if βCl(A) ⊆ U whenever A ⊆ U and U is open
(resp. π-open). It’s complement is said to be gβ-open (resp. πgβ-open). Using the concept
of β-closed sets, classes of some functions (e.g., β-irresoluteness [11], pre-β-closedness [11],
gsp-irresolute [5] (or gβ-irresoluteness ), πgβ-irresoluteness [12] and contra gβ-irresoluteness
and contra πgβ-irresoluteness) are introduced (cf. Definition 2.1, Definition 4.1 below).

The present paper is a continuation of [12] due to one of the present authors; we investi-
gate more properties of functions preserving πgβ-closed sets, some groups of such functions
and properties on digital line (so called the Khalimsky line) [7],[8],[9],[10], e.g., [6]. In
Section 2, we recall some definitions on functions and we need some properties on func-
tions (cf. Lemma 2.2 and Theorem 2.3). In Section 3, for a topological space (X, τ), we
introduce and investigate goups of functions, say πgβch(X, τ), gβch(X, τ), βch(X, τ), pre-
serving πgβ-closed sets, gβ-closed sets and β-closed sets, respecticely; they contain the
homeomorphism group h(X, τ) as a subgroup (cf. Theorem 3.3). Morever, these groups
have an importante property that they are one of topological invariants (Theorem 3.4).
Using the concept of contra-β-irresoluteness (resp. contra-gβ-irresoluteness, contra-πgβ-
irresoluteness), in Section 4, we construct more groups of functions, say βch(X, τ) ∪ con-
βch(X, τ), gβch(X, τ) ∪ con-gβch(X, τ) and πgβch(X, τ) ∪ con-πgβch(X, τ) for a topolog-
ical space (X, τ); they contain the homeomorpism group h(X, τ) as a subgroup (cf. Theo-
rem 4.4). They are also examples of topological invariants (cf. Theorem 4.5). Some examples
on the digital line (Z, κ) are given in Section 5. If A is a β-open set of (Z, κ), the inverse
image by a digital translation f2m+1 : (Z, κ) → (Z, κ), say f−1

2m+1(A), is expressible to the
union of any β-closed sets. Namely, f2m+1 ∈ con-st-βh(Z, κ) (cf. Theorem 5.10 (iii)).
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2 Preliminalies We need the following definition, lemma and theorem:

Definition 2.1 For topological spaces (X, τ) and (Y, σ), a function f : (X, τ) → (Y, σ) is
said to be:

(i) π-irresolute [3] (resp. β-irresolute [11]), if f−1(V ) is π-closed (resp. β-closed) in (X, τ)
for every π-closed set (resp. β-closed set) V of (Y, σ);

(ii) pre-β-closed [11], if f(V ) is β-closed in (Y, σ) for every β-closed set V of (X, τ);
(iii) gsp-irresolute [5] or gβ-irresolute, if f−1(F ) is gβ-closed (X, τ) for every gβ-closed

set F of (Y, σ);
(iv) πgβ-irresolute [12], if f−1(V ) is πgβ-closed in (X, τ) for every πgβ-open set V of

(Y, σ).

Lemma 2.2 Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, ζ) be two functions between
topological spaces.

(i-1) If f and g are πgβ-irresolute (cf. [12]), then the composition g ◦ f is also πgβ-
irresolute.

(i-2) The identity function 1X : (X, τ) → (X, τ) is πgβ-irresolute.
(ii-1) If f and g are gβ-irresolute, then the composition g ◦ f is also gβ-irresolute.
(ii-2) The identity function 1X : (X, τ) → (X, τ) is gβ-irresolute.
(iii)([11, Theorem 2.7 (i)]) If f and g are β-irresolute, then the composition g ◦ f is also

β-irresolute. The identity function 1X : (X, τ) → (X, τ) is β-irresolute.

Proof. The proofs are obvious from definitions. �

Theorem 2.3 Let f : (X, τ) → (Y, σ) be a function.
(i) If f is a homeomorphism, then f is π-irresolute.
(ii) If f is a homeomorphism, then f is pre-β-closed (i.e., f−1 is β-irresolute).
(iii) If f is a homeomorphism, then f(A) is πgβ-closed in (Y, σ) for every πgβ-closed

set A of (X, τ) (i.e., f−1 is πgβ-irresolute [12, Definition 4.2, Theorem 4.2] ).
(iv) Every homeomorphism is πgβ-irresolute, gβ-irresolute and β-irresolute.

Proof. (i) Let A be a π-open set of (Y, σ), say A =
⋃{Vi|i ∈ {1, 2, ...,m}}, where m

is a positive integer and Vi is regular open in (Y, σ) for each i with 1 ≤ i ≤ m. Since
f is a homeomorphism, f−1(Vi) = f−1(Int(Cl(Vi))) = Int(Cl(f−1(Vi))) holds for each
i(1 ≤ i ≤ m) and so f−1(A) =

⋃{f−1(Vi)|i ∈ {1, 2, ...,m}} holds. Namely, by definition,
f−1(A) is π-open in (X, τ). Thus, we have that f is π-irresolute. Indeed, in general, a
function is π-irresolute if and only if an inverse image of every π-open set is π-open.

(ii) Let V be a β-closed set of (X, τ), i.e., Int(Cl(Int(V ))) ⊆ V holds. Because of the
homeomorphism on f , it is shown that f(Int(Cl(Int(V )))) = Cl(Int(Cl(f(V )))) ⊆ f(V )
and so f(V ) is β-closed in (Y, σ).

(iii) By (i) and (ii), f is π-irresolute and pre-β-closed. It follows from [12, Theorem 4.2]
that if A is πgβ-closed in (X, τ) then f(A) is πgβ-closed in (Y, σ).

(iv) Let f be a homeomorphism. Then, f−1 : (Y, σ) → (X, τ) is also a homeomorphism.
By (iii) for the homeomorphism f−1, it is shown that f = (f−1)−1 is πgβ-irresolute. Let F
be a gβ-closed set (Y, σ). Let U be an open subset of (X, τ) such that f−1(F ) ⊆ U . Then,
F = f(f−1(F )) ⊆ f(U) and f(U) is open in (Y, σ). It follows from the gβ-closedness
of F that βCl(F ) ⊆ f(U) and so f−1(βCl(F )) = f−1(F ) ∪ Int(Cl(Int(f−1(F )))) =
βCl(f−1(F )) ⊆ U . Thus we have that f−1(F ) is gβ-closed in (X, τ). Hence, f is gβ-
irresolute. It is similarly proved that f is β-irresolute. �
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3 More on functions preserving πgβ-closed sets, gβ-closed sets, β-closed sets

Definition 3.1 (i) A function f : (X, τ) → (Y, σ) is called a πgβc-homeomorphism (resp.
gβc-homeomorphism) if f is a πgβ-irresolute (resp. gβ-irresolute) bijection and f−1 is πgβ-
irresolute (resp. gβ-irresolute).

(ii) A function f : (X, τ) → (Y, σ) is called a βc-homeomorphism if f is a β-irresolute
bijection and f−1 is β-irresolute.

For a topological space (X, τ), we introduce the following:
(1) πgβch(X ; τ) := {f | f : (X, τ) → (X, τ) is a πgβc-homeomorphism};
(2) gβch(X ; τ) := {f | f : (X, τ) → (X, τ) is a gβc-homeomorphism};
(3) βch(X ; τ) := {f | f : (X, τ) → (X, τ) is a βc-homeomorphism};
(4) h(X ; τ) := {f | f : (X, τ) → (X, τ) is a homeomorphism}.

Theorem 3.2 For a topological space (X, τ), the following properties hold.
(i) h(X ; τ) ⊆ πgβch(X ; τ).
(ii) h(X ; τ) ⊆ gβch(X ; τ).
(iii) h(X ; τ) ⊆ βch(X ; τ).

Proof. Let f ∈ h(X ; τ). Then, by Theorem 2.3 (iii) (iv) (resp. (v), (ii)) and Defi-
nition 3.1 (i) (resp. (i), (ii)), it is shown that f and f−1 are πgβ-irresolute (resp. gβ-
irresolute, β-irresolute) and so f is πgβc-homeomorphism (resp. gβc-homeomorphism, βc-
homeomorphism), i.e., f ∈ πgβch(X ; τ) (resp. f ∈ gβch(X ; τ), f ∈ βch(X ; τ)) . �

Theorem 3.3 Let (X, τ) be a topological space. Then, we have the following properties.
(i) The collection πgβch(X ; τ) forms a group under the composition of functions.
(ii) The collection gβch(X ; τ) forms a group under the composition of functions.
(iii) The collection βch(X ; τ) forms a group under the composition of functions.
(iv) The homeomorphism group h(X ; τ) is a subgroup of the group πgβch(X ; τ).
(v) The homeomorphism group h(X ; τ) is a subgroup of the group gβch(X ; τ).
(vi) The homeomorphism group h(X ; τ) is a subgroup of the group βch(X ; τ).

Proof. (i-1) A binary operation ηX : πgβch(X ; τ) × πgβch(X ; τ) → πgβch(X ; τ) is well
defined by ηX(a, b) := b ◦ a, where b ◦ a : X → X is the composite function of the
functions a and b such that (b ◦ a)(x) := b(a(x)) for every point x ∈ X . Indeed, by
Lemma 2.2 (i), it is shown that, for every πgβc-homeomorphisms a and b, the composition
b ◦ a is also πgβc-homeomorphism. Namely, for every pair (a, b) ∈ πgβch(X, τ), ηX(a, b) =
b ◦ a ∈ πgβch(X ; τ). Then, it is claimed that the binary operation ηX : πgβch(X ; τ) ×
πgβch(X ; τ) → πgβch(X ; τ) satisfies the axiom of group. Namely, putting a · b := ηX(a, b),
the following properties hold πgβch(X ; tau).

(1) ((a · b) · c) = (a · (b · c)) holds for every elements a, b, c ∈ πgβch(X ; τ);
(2) for all element a ∈ πgβch(X ; τ), there exists an element e ∈ πgβch(X ; τ) such that

a · e = e · a = a hold in πgβch(X ; τ);
(3) for each element a ∈ πgβch(X ; τ), there exists an element a1 ∈ πgβch(X ; τ) such

that a · a1 = a1 · a = e hold in πgβch(X ; τ).
Indeed, the proof of (1) is obvious; the proof of (2) is obtained by taking e := 1X , where

1X is the identity function on X and using Lemma 2.2(i-2); the proof of (3) is obtained
by taking a1 := a−1 for each a ∈ πgβch(X ; τ) and Definition 3.1, where a−1 is the inverse
function of a. Therefore, by definition of groups, the pair (πgβch(X ; τ), ηX) forms a group
under the composition of functions, i.e., πgβch(X ; τ) is a group.
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(ii) Let η′
X : gβch(X ; τ) × gβch(X ; τ) → gβch(X ; τ) be a binary operation defined by

η′
X(a, b) := b ◦ a (the composition) for every pair (a, b) ∈ gβch(X ; τ) × gβch(X ; τ). Then,

by using Lemma 2.2 (ii-1), (ii-2) and the same argument as that in the proof of (i) above, it
is shown that the collection gβch(X ; τ) forms a group under the composition of functions.

(iii) Let η′′
X : βch(X ; τ) × βch(X ; τ) → βch(X ; τ) be a binary operation defined by

η′′
X(a, b) := b ◦ a (the composition) for every pair (a, b) ∈ βch(X ; τ) × βch(X ; τ). Then, by

using Lemma 2.2 (iii) and the same argument as that in the proof of (i) above, it is shown
that the collection βch(X ; τ) forms a group under the composition of functions.

(iv) It is obvious that 1X : (X, τ) → (X, τ) is a homeomorphism and so h(X ; τ) �= ∅. It
follows from Theorem 3.2(i) that h(X ; τ) ⊆ πgβch(X ; τ). Let a, b ∈ h(X ; τ). Then we have
that ηX(a, b−1) = b−1 ◦ a ∈ h(X ; τ), here ηX : πgβch(X ; τ) × πgβch(X ; τ) → πgβch(X ; τ)
is the binary operation (cf. Proof of Theorem 3.3(i)). Therefore, the group h(X ; τ) is a
subgroup of πgβch(X ; τ).

(v) Let a, b ∈ h(X ; τ). Then we have that η′
X(a, b−1) = b−1 ◦ a ∈ h(X ; τ), where

η′
X : gβch(X ; τ) × gβch(X ; τ) → gβch(X ; τ) is the binary operation (cf. Proof of Theo-

rem 3.3(ii)). By this binary operation, the group h(X ; τ) is a subgroup of gβch(X ; τ) (cf.
Theorem 3.2(ii)).

(vi) We have that η′′
X(a, b−1) = b−1 ◦ a ∈ h(X ; τ) for every a, b ∈ h(X ; τ), where

η′′
X : βch(X ; τ) × βch(X ; τ) → βch(X ; τ) is the binary operation (cf. Theorem 3.2(iii)). It

is shown that h(X ; τ) is a subgroup of βch(X ; τ). �

Theorem 3.4 Let (X, τ) and (Y, σ) be topological spaces.
If (X, τ) and (Y, σ) are homeomorphic, then there exist isomorphisms:

(i) πgβch(X, τ) ∼= πgβch(Y, σ);
(ii) gβch(X, τ) ∼= gβch(Y, σ);
(iii) βch(X, τ) ∼= βch(Y, σ).

Proof. It follows from assumption that there exsts a homeomorphism, say f : (X, τ) →
(Y, σ). We define a function f∗ : πgβch(X, τ) → πgβch(Y, σ) by f∗(a) := f ◦ a ◦ f−1 for
every element a ∈ πgβch(X, τ); by Theorem 2.3 (iv) (or Theorem 3.2) and Lemma 2.2 (i-1),
the bijections f ◦a◦f−1 and (f ◦a◦f−1)−1 are πgβ-irresolute and so f∗ is well defined. The
induced function f∗ is a homomorphism. Indeed, f∗(ηX(a, b)) = f ◦ b ◦ f−1 ◦ f ◦ a ◦ f−1 =
(f∗(b)) ◦ (f∗(a)) = ηX(f∗(a), f∗(a)) hold. Obviously, f∗ is bijective. Thus, we have (i), i.e.,
f∗ is an isomorphism. By using Theorem 2.3 (iv) (or Theorem 3.2) and Lemma 2.2 (ii-1)
(resp. Lemma 2.2 (iii)), (ii) (resp. (iii)) is obtained with similar argument above. �

In Theorem 3.4, by using Lemma 2.2 (i-2), (ii-2), (iii), it is obtained that f∗(1X) = 1Y

holds.

4 More on the groups including the homeomorphism group h(X ; τ) as subgroup

Definition 4.1 For a topological spaces (X, τ) and (Y, σ), we define the following functions.
A function f : (X, τ) → (Y, σ) is said to be contra β-irresolute [4] (resp. contra gβ-irresolute,
contra πgβ-irresolute) if f−1(V ) is β-closed (resp. gβ-closed, πgβ-closed) in (X, τ) for every
β-open (resp. gβ-open, πgβ-open) set V of (Y, σ).

For these, we can immediately see the following lemma:

Lemma 4.2 Let f : (X, τ) → (Y, σ) and g : (Y, σ) → (Z, ζ) be two functions between
topological spaces.

(i-1) If f and g are contra-β-irresolute, then the composition g ◦ f is also β-irresolute.
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(i-2) If f is β-irresolute (resp. contra-β-irresolute) and g are contra-β-irresolute (resp.
β-irresolute), then the composition g ◦ f is contra-β-irresolute.

(ii-1) If f and g are contra-gβ-irresolute, then the composition g◦f is also gβ-irresolute.
(ii-2) If f is gβ-irresolute (resp. contra-gβ-irresolute) and g are contra-gβ-irresolute

(resp. gβ-irresolute), then the composition g ◦ f is contra-gβ-irresolute.
(iii-1) If f and g are contra-πgβ-irresolute, then the composition g ◦ f is also πgβ-

irresolute.
(iii-2) If f is πgβ-irresolute (resp. contra-πgβ-irresolute) and g are contra-πgβ-irresolute

(resp. πgβ-irresolute), then the composition g ◦ f is contra-gβ-irresolute. �

Definition 4.3 For a topological space (X, τ), we define the following collection of func-
tions:

(1) con-βch(X ; τ) := {f | f : (X, τ) → (X, τ) is a contra-β-irresolute bijection and f−1

is contra-β-irresolute };
(2) con-gβch(X ; τ) := {f | f : (X, τ) → (X, τ) is a contra-gβ-irresolute bijection and

f−1 is contra-gβ-irresolute };
(3) con-πgβch(X ; τ) := {f | f : (X, τ) → (X, τ) is a contra-πgβ-irresolute bijection and

f−1 is contra-πgβ-irresolute}.
For a topological space (X, τ), we construct alternative groups, say βch(X ; τ)∪con-βch(X ; τ),
gβch(X ; τ) ∪ con-gβch(X ; τ) and πgβch(X ; τ) ∪ con-πgβch(X ; τ).

Theorem 4.4 Let (X, τ) be a topological space. Then, we have the following properties.
(i) The union of two collections, βch(X ; τ)∪ con-βch(X ; τ), forms a group under the

composition of functions.
(ii) The union of two collections, gβch(X ; τ)∪ con-gβch(X ; τ), forms a group under the

composition of functions.
(iii) The union of two collections, πgβch(X ; τ)∪ con-πgβch(X ; τ), forms a group under

the composition of functions.
(iv) The group βch(X ; τ) (resp. gβch(X ; τ), πgβch(X ; τ)) is a subgroup of βch(X ; τ)∪

con-βch(X ; τ) (resp. gβch(X ; τ)∪ con-gβch(X ; τ), πgβch(X ; τ)∪ con-πgβch(X ; τ)).
(v) The homeomorphism group h(X ; τ) is a subgroup of βch(X ; τ)∪ con-βch(X ; τ)

(resp. gβch(X ; τ)∪ con-gβch(X ; τ), πgβch(X ; τ) ∪ con-πgβch(X ; τ)).

Proof. (i) Let BX := βch(X ; τ)∪ con-βch(X ; τ). A binary operation wX : BX ×BX → BX

is well defined by WX(a, b) := b ◦ a, where b ◦ a : X → X is the composite function of
the functions a and b. Indeed, let (a, b) ∈ BX ; if a ∈ βch(X ; τ) and b ∈ con-βch(X ; τ),
then b ◦ a : (X, τ) → (X, τ) a contra-β-irresolute bijection and (b ◦ a)−1 is also contra-
β-irresolute and so wX(a, b) = b ◦ a ∈ con-βch(X ; τ) ⊂ BX (cf. Lemma 4.2 (i-2)); if
a ∈ βch(X ; τ) and b ∈ βch(X ; τ), then b ◦ a : (X, τ) → (X, τ) is a β-irresolute bijection
and so wX(a, b) = b ◦ a ∈ βch(X, τ) ⊆ BX (cf. Lemma 2.2 (iii)); if a ∈ con-βch(X ; τ) and
b ∈ con-βch(X ; τ), then b◦a : (X, τ) → (X, τ) is a β-irresolute bijection and (b◦a)−1 is also
β-irresolute and so wX(a, b) = b ◦ a ∈ βch(X ; τ) ⊆ BX (cf. Lemma 4.2 (i-1)); if a ∈ con-
βch(X ; τ) and b ∈ βch(X ; τ), then b ◦ a : (X, τ) → (X, τ) is a contra-β-irresolute bijection
and (b ◦ a)−1 is also contra-β-irresolute and so wX(a, b) = b ◦ a ∈ con-βch(X ; τ) ⊆ BX (cf.
Lemma 4.2 (i-2)). By the similar arguments of Theorem 3.3, it is claimed that the binary
operation wX : BX × BX → BX satisfies the axiom of group; for the identity element e of
BX , e := 1X : (X, τ) → (X, τ) (the identity function). Thus, the pair (BX , wX) forms a
group under the composition of functions, i.e., βch(X ; τ) ∪ con-βch(X ; τ) is a group.

(ii) (resp. (iii)) The proof is obtained by similar arguments of (i) above using Lemma 4.2
(ii-1), (ii-2)) (resp. (iii-1), (iii-2)) and Lemma 2.2 (ii-1), (ii-2)) (resp. (i-1), (i-2)) in the place
of Lemma 4.2 (i-1), (i-2) and Lemma 2.2 (iii).
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(iv) The group βch(X ; τ) (resp. gβch(X ; τ), πgβch(X ; τ)) is not empty (cf. Lemma 2.2
(iii) (resp. (ii-2), (i-2)). Using the binary operation in the proof (i) above, it is shown that
wX(a, b−1) = b−1 ◦ a ∈ βch(X ; τ) for any a, b ∈ βch(X ; τ) and so βch(X ; τ) is a subgroup
of βch(X ; τ) ∪ con-βch(X ; τ). For the other cases, they are similarly proved (cf. Proof of
(ii),(iii) above).

(v) By Theorem 3.3 (vi) above, it is shown that h(X ; τ) is a subgroup of βch(X ; τ)∪con-
βch(X ; τ) (resp. gβch(X ; τ) ∪ con-gβch(X ; τ), πgβch(X ; τ) ∪ con-πgβch(X ; τ)). �

The groups of Theorem 4.4 are also invariant concepts under homeomorphisms between
topological spaces (cf. Theorem 3.4).

Theorem 4.5 Let (X, τ) and (Y, σ) be topological spaces.
If (X, τ) and (Y, σ) are homeomorphic, then there exist isomorphisms:

(i) βch(X ; τ) ∪ con-βch(X ; τ) ∼= βch(Y ; σ) ∪ con-βch(Y ; σ);
(ii) gβch(X ; τ) ∪ con-gβch(X ; τ) ∼= gβch(Y ; σ) ∪ con-gβch(Y ; σ);
(iii) πgβch(X ; τ) ∪ con-πgβch(X ; τ) ∼= πgβch(Y ; σ) ∪ con-πgβch(Y ; σ).

Proof. Let f : (X, τ) → (Y, σ) be a homeomorphism. We put BX := βch(X ; τ) ∪ con-
βch(X ; τ) (resp. BY := βch(Y ; σ) ∪ con-βch(Y ; σ)) for a topological space (X, τ) (resp.
(Y, σ)). First we have a well defined function f∗ : BX → BY by f∗(a) := f ◦ a ◦ f−1 for
every element a ∈ BX . Indeed, by Theorem 2.3 (iv) (or Theorem 3.2), f and f−1 are β-
irresolute; by Lemma 2.2 (iii) and Lemma 4.2 (i-2), the bijections f◦a◦f−1 and (f◦a◦f−1)−1

are β-irresolute or contra-β-irresolute and so f∗ is well defined. The induced function f∗
is a homomorphism. Indeed, f∗(wX(a, b)) = f ◦ b ◦ f−1 ◦ f ◦ a ◦ f−1 = (f∗(b)) ◦ (f∗(a)) =
wY (f∗(a), f∗(a)) hold, wX : BX × BX → BX and wY : BY × BY → BY are the binary
operations defined in Proof of Theorem 4.4 (i). Obviously, f∗ is bijective. Thus, we have the
isomorphism of (i). By using Theorem 2.3 (iv) (or Theorem 3.2), Lemma 2.2 (ii-1) (resp.
Lemma 2.2 (iii-1)) and Lemma 4.2 (ii-2) (resp. Lemma 4.2 (iii-2)), the isomorphism of (ii)
(resp. (iii)) is obtained with similar argument above. �

In Theorem 4.5, by using Lemma 2.2 (i-2), (ii-2), (iii), it is obtained that f∗(1X) = 1Y

holds.

5 Examples on digital line (Z, κ)

Definition 5.1 The digital line ([7], [8], [9], [10], e.g.,[6]) or so called the Khalimsky line is
the set of all integers Z, equipped with the topology κ having {{2m−1, 2m, 2m+1}|m ∈ Z}
as a subbase; the digital line is denotedd (Z, κ).

A subset V is open in (Z, κ) if and only if whenever x ∈ V and x is an even integer, then
x− 1, x+1 ∈ V (cf. [10, page 175]). It is clear that a singleton {2s +1} is open, a singleton
{2m} is closed and a subset {2k−1, 2k, 2k+1} is the smallest open set containing 2k, where
s, m and k are any integers. In the present paper (cf. [6]), we use the following notation:

U(2s + 1) := {2s + 1} and U(2s) := {2s − 1, 2s, 2s + 1} for each s ∈ Z,
Zκ := {x ∈ Z|{x} is open in (Z, κ)},
ZF := {x ∈ Z|{x} is closed in (Z, κ)},
for a subset A of (Z, κ), Aκ := A ∩ Zκ and AF := A ∩ ZF .
Obviously, we have that Z = Zκ ∪ZF (disjoint union) and, for a subset A,A = Aκ ∪AF

(disjoint union).

Example 5.2 For a fixed integer m, we define the functions f2m : (Z, κ) → (Z, κ) and
f2m+1 : (Z, κ) → (Z, κ), respectively:
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f2m(x) := x + 2m for every point x ∈ Z;
f2m+1(x) := x + (2m + 1) for every point x ∈ Z.
We claim that:
(a) f2m+1 is not continuous and so f2m+1 �∈ h(Z;κ) (cf. Theorem 5.10 (i));
(b) f2m+1 �∈ βch(Z;κ) (cf. Theorem 5.10 (i));
(c) there exists a β-open set A such that f−1

2m+1(A) is β-closed (cf. in general, Theo-
rem 5.10 (i), (ii) below).

(d) f2m ∈ h(Z;κ) (cf. Theorem 5.10 (i), (ii-3)).
Proof of (a). Because f−1

2m+1({1}) = {1 − (2m + 1)} = {−2m} �∈ κ for a subset {1} ∈ κ.
Thus, f2m+1 : (Z, κ) → (Z, κ) is not continuous.
Proof of (b) and (c). The function f2m+1 is not β-irresolute. Indeed, a subset U(2u + 1) :=
{2u+1} is a β-open, where u ∈ Z, because {2u+1} ∈ κ. We have that f−1

2m+1(U(2u+1)) =
{2u +1− (2m+1)} = {2(u−m)} and Cl(Int(Cl(f−1

2m+1(U(2u+1))))) = Cl(Int(Cl({2(u−
m)}))) = Cl(Int({2(u−m)})) = ∅ �⊇ f−1

2m+1(U(2u+1)). Thus, we have that f−1
2m+1(U(2u+

1)) is not β-open for a β-open set U(2u + 1). Namely, f2m+1 is not β-irresolute. Put
A := U(2u + 1) = {2u + 1}. Then, Int(Cl(Int(f−1

2m+1(A)))) =∅ ⊆ f−1
2m+1(A) holds and so

f−1
2m+1(A) is β-closed.

Proof of (d). By the definition of the topology κ, an open subset A is expressible as
A =

⋃{U (x)|x ∈ A}, where U(x) is the smallest open set containing x (i.e., U(2s) :=
{2s−1, 2s, 2s+1} and U(2u+1) := {2u+1}(s, u ∈ Z) ). Then we have that f−1

2m(U(2u+1)) =
{2u+1−2m} ∈ κ and f−1

2m(U(2s)) = {2s−1−2m, 2s−2m, 2s+1−2m} ∈ κ. Therefore, we
have that f−1

2m(A) =
⋃{f−1

2m(U(x))|x ∈ A} ∈ κ and hence f2m is continuous and bijective.
Similarly, it is shown that f−1

2m : (Z, κ) → (Z, κ) is continuous. Therefore, f2m ∈ h(Z;κ). �

We characterlize β-open sets of (Z, κ) (cf. Theorem 5.7 below). First we need the following
definition:

Definition 5.3 For a nonempty subset A of (Z, κ), we introduce the following subsets of
(Z, κ).

(i) ([6]) AF := {x ∈ A|{x} is closed in (Z, κ)}.
(ii) For a point x ∈ Z and a subset A ⊆ Z, VA(x) := {x, x+1} if x+1 ∈ A (sometimes it

is denoted by V +(x)); VA(x) := {x−1, x} if x+1 �∈ A (sometimes, it is denoted by V −(x)).
We note that the concept of VA(x) is uniquely well determined for each point x ∈ Z and A.

(iii) VA :=
⋃{VA(x)|x ∈ AF}, where AF �= ∅.

Example 5.4 In order to understand the concept of the set VA for a subset A, we see some
examples.

(i) Let A := {0, 4, 7}. The set A is not β-open in (Z, κ). Indeed, by definition,
Cl(Int(Cl(A))) = Cl(Int({0, 4, 6, 7, 8})) = Cl({7}) = {6, 7, 8} �⊇ A hold. We note that
AF := {x ∈ A|{x} is closed (i.e., x is even)}; Aκ := {x ∈ A|{x} is open (i.e., x is odd)}.
Then, AF = {0, 4} and Aκ = {7}. For this set AF , we have VA :=

⋃{VA(x)|x ∈ AF} =
V −(0) ∪ V −(4) = {−1, 0} ∪ {3, 4} and we have the set VA ∪ Aκ as follow: VA ∪ Aκ =
{−1, 0} ∪ {3, 4} ∪ {7} �= A. Using Theorem 5.7 below, it is concluded also that A is not
β-open, because A �= VA ∪ Aκ.

(ii) Let A := {0, 1, 3, 4, 9, 11}. Then, we have VA ∪ Aκ = V +(0) ∪ V −(4) ∪ Aκ =
{0, 1} ∪ {3, 4} ∪ {1, 3, 9, 11} = A. We have that A has an expression of the following
form: A = VA ∪ Aκ. By Theorem 5.7 below, the set A is β-open in (Z, κ). We have
directly that Cl(Int(Cl(A))) = Cl(Int({0, 1, 2, 3, 4, 8, 9, 10, 11, 12})) = Cl(U(2) ∪ U(10)) =
Cl({1, 2, 3, 9, 10, 11}) = {0, 1, 2, 3, 4} ∪ {8, 9, 10, 11, 12} ⊇ A and so A is β-open in (Z, κ).
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Example 5.5 Let 2s, 2u ∈ ZF and 2m + 1 ∈ Zκ, where s, u, m ∈ Z.
(i) A subset V +(2s) is β-open and β-closed.
Indeed, Cl(Int(Cl(V +(2s)))) = Cl(Int(Cl({2s, 2s + 1}))) = Cl(Int({2s, 2s + 1, 2s +

2})) = Cl({2s+1}) = {2s, 2s+1, 2s+2} ⊃ {2s, 2s+1} = V +(2s) and so V +(2s) is β-open;
Int(Cl(Int(V +(2s)))) = Int(Cl({2s+1})) = Int({2s, 2s+1, 2s+2}) = {2s+1} ⊂ V +(2s)
and so V +(2s) is β-closed.

(ii) A subset V −(2s) is β-open and β-closed. Indeed, we have that Cl(Int(Cl(V −(2s)))) =
Cl(Int(Cl({2s − 1, 2s}))) = Cl(Int({2s − 2, 2s − 1, 2s})) = Cl({2s − 1}) = {2s − 2, 2s −
1, 2s} ⊃ {2s−1, 2s} = V −(2s) and so V −(2s) is β-open; Int(Cl(Int(V −(2s)))) = Int(Cl({2s−
1})) = Int({2s−2, 2s−1, 2s}) = {2s−1} ⊂ {2s−1, 2s} = V −(2s) and so V −(2s) is β-closed.

(iii) A subset V −(2s) ∪ V +(2s + 2) is β-open and β-closed.
Indeed, by (i) and (ii), the union V −(2s)∪V +(2s+2) is β-open. Since Int(Cl(Int(V −(2s)∪
V +(2s + 2)))) = Int(Cl(Int({2s − 1, 2s, 2s + 2, 2s + 3}))) = Int(Cl({2s − 1, 2s + 3})) =
Int({2s− 2, 2s− 1, 2s, 2s+ 2, 2s + 3, 2s + 4}) = {2s− 1, 2s + 3} ⊂ V −(2s)∪ V +(2s + 2), we
have that V −(2s) ∪ V +(2s + 2) is β-closed.

(iv) A subset V +(2u)∪ V −(2u + 4) is β-open; it is not β-closed; by (i) and (ii), V +(2u)
and V −(2u + 4) are β-closed.
Indeed, Int(Cl(Int(V +(2u)∪ V −(2u + 4)))) = Int(Cl(Int({2u, 2u + 1, 2u + 3, 2u + 4}))) =
Int(Cl({2u+1, 2u+3})) = Int({2u, 2u+1, 2u+2, 2u+3, 2u+4})= {2u+1, 2u+2, 2u+3} �⊆
V +(2u) ∪ V −(2u + 4)) hold and so V +(2u) ∪ V −(2u + 4) is not β-closed.

(v) A subset
⋃{VA(x)|x ∈ AF}, say VA, is β-open, where AF �= ∅. It is obtainrd by (i)

and (ii) above and the well know fact that an arbitrary union of β-open sets is β-open in
general (eg. [12]).

(vi) A subset V +(2m + 1) is β-open and β-closed. Indeed, the proof is similar to one of
(ii) above, because V +(2m + 1) = {2m + 1, 2m + 2}.

(vii) A subset V −(2m + 1) is β-open and β-closed. Since V −(2m + 1) = {2m, 2m + 1},
it is obtained by the proof in (i) above.

Definition 5.6 A subset F of a topological space (X, τ) is called:
(i) a πβ-set of (X, τ), if F is expressible to the union of finitely β-closed sets;
(ii) a stably πβ-set of (X, τ), if F is expressible to the union of any collection of β-closed

sets.

We have a characterization on β-opennese of subsets in (Z, κ) as follows.

Theorem 5.7 Let A be a subset of (Z, κ).
(i) Assume that AF �= ∅.
(i-1) If A is β-open, then A is expressible as the union:VA∪Aκ, where VA :=

⋃{VA(x)|x ∈
AF} (cf. Definition 5.3 (iii)).

(i-2) If A satiesfies a property that A = VA ∪ Aκ, then A is β-open.
(ii) Assume that AF = ∅. Then, VA = ∅ and A = Aκ hold and A is open; it is β-open.

Proof. (i) (i-1) We have that A ⊆ VA ∪ Aκ, because A = Aκ ∪ AF and AF ⊆ VA hold in
general. Conversely, in order to prove that VA ∪ Aκ ⊆ A, let y ∈ VA ∪ Aκ.

Case 1. y ∈ Aκ: for this case, y ∈ A, because Aκ ⊆ A in general.
Case 2. y ∈ VA: for this case, there exists a point x such that y ∈ VA(x) and x ∈ AF .

Then, x = 2s for some integer s ∈ Z and x ∈ A. Because A is β-open, by [14], it is
concluded that A ⊆ Cl(Aκ) holds. Since x = 2s ∈ AF ⊆ A, we have that U(x) ∩ Aκ �= ∅,
where U(x) = {x − 1, x, x + 1} is the smallest open set containing the point x = 2s. If
y = x, then y ∈ A. Hence, we suppose that y �= x. We note that y ∈ VA(x) ⊆ U(x).
(Case 2-1). If x + 1 ∈ A, then VA(x) = V +(x) = {x, x + 1} and so y = x + 1 ∈ A because
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y �= x.
(Case 2-2). If x +1 �∈ A, then VA(x) = V −(x) = {x− 1, x} and so y = x− 1 because y �= x.
Since {x− 1, x, x+1}∩Aκ �= ∅, x �∈ Aκ and x+1 �∈ Aκ, we have that x− 1 ∈ Aκ and hence
y = x − 1 ∈ A.
Thus we obtain that y ∈ A for this point for Case 2.
Therefore, we prove that VA ∪ Aκ ⊆ A and hence VA ∪ Aκ = A.

(i-2) Suppose that A = VA ∪Aκ. We recall that VA :=
⋃{VA(x)|x ∈ AF} and VA(x) =

{x, x + 1} or VA(x) = {x − 1, x}, where x ∈ AF . We first show that {x} ⊆ Cl((VA(x))κ)
for a point x ∈ AF . Indeed, if VA(x) = V +(x), then Cl((VA(x))κ) = Cl(V +(x) \ {x}) =
Cl({x + 1}) = {x, x + 1, x + 2}; if VA(x) = V −(x), then Cl((VA(x))κ) = Cl({x − 1}) =
{x− 2, x− 1, x}; thus x ∈ Cl((VA(x))κ). Secondly, by using the property above, it is shown
that Cl((VA)κ) = Cl((

⋃{VA(x)|x ∈ AF})κ) ⊇ ⋃{Cl((VA(x))κ)|x ∈ AF} ⊇ ⋃{{x}|x ∈
AF} = AF , i.e., Cl((VA)κ) ⊇ AF . Finally, using the assumption of (i-2), we show that
Cl(Aκ) = Cl((VA ∪Aκ)κ) = Cl((VA)κ ∪ (Aκ)κ) = Cl((VA)κ)∪Cl(Aκ) ⊇ AF ∪Aκ = A and
hence Cl(Aκ) ⊇ A. By [14], it is concluded that A is β-open in (Z, κ).

(ii) If AF = ∅, then VA = ∅ and A = Aκ, because AF = ∅ and A = Aκ ∪ AF (disjoint
union); A is open and hence A is β-open. �

We need the following notation:
T e(Z;κ) := {f2m|m ∈ Z}, T o(Z;κ) := {f2m+1|m ∈ Z} and T (Z;κ) := T e(Z;κ) ∪ T o(Z;κ),
where f2m(x) := x + 2m and f2m+1(x) = x + 2m + 1 for every x ∈ Z and for an integer m.

Lemma 5.8 Let A and E be subsets of Z. We have the following properties on the function
f2m+1 : Z → Z, where m ∈ Z:

(i) (i-1) f−1
2m+1(AF ) = (f−1

2m+1(A))κ and f2m+1(EF ) = (f2m+1(E))κ hold;
(i-2) f−1

2m+1(Aκ) = (f−1
2m+1(A))F and f2m+1(Eκ) = (f2m+1(E))F hold.

(ii) For a point x ∈ AF , f−1
2m+1(VA(x)) = VB(f−1

2m+1(x)) holds, where B := f−1
2m+1(A).

(iii) f−1
2m+1(VA) =

⋃{VB(y)|y ∈ (f−1
2m+1(A))κ}, where B := f−1

2m+1(A) and VA is defined
by Definition 5.3 (iii).

(iv) (Example 5.5 (v)) VA is β-open.
(v) f−1

2m+1(VA) is β-open.
(vi) If A is a finite subset of (Z, κ) with AF �= ∅, then VA and f−1

2m+1(VA) are the union
of a finitely β-closed sets. Namely, they are πβ-sets (cf. Definition 5.6 (i)).

(vii) If AF �= ∅, then VA and f−1
2m+1(VA) are the union of any collection of β-closed sets.

Namely, they are stably πβ-sets (cf. Definition 5.6 (ii)).

Proof. (i) (i-1) It is shown that f−1
2m+1(AF ) = {x−(2m+1)|x ∈ AF} = {2s−(2m+1)|2s ∈

A, s ∈ Z}= ({x− (2m + 1)|x ∈ A})κ hold, because x− (2m + 1) ∈ Zκ if and only if x ∈ ZF .
The later equality is obtained by similar argument. (i-2) They are proved by using (i-1).

(ii) For a point x ∈ AF , we have the following two cases:
(Case 1). x + 1 ∈ A: for this case, we have that f−1

2m+1(x + 1) ∈ f−1
2m+1(A) and so

y + 1 ∈ B, where y := f−1
2m+1(x) and B := f−1

2m+1(A). Thus, for the subset B and the point
y, VB(y) is well defined and VB(y) = V +(y) = {y, y + 1} (cf. Definition 5.3 (ii)). Then,
since VA(x) = V +(x) for this point x, it is shown that f−1

2m+1(VA(x)) = f−1
2m+1({x, x+1}) =

{y, y + 1} = VB(y) = VB(f−1
2m+1(x)).

(Case 2). x+1 �∈ A: for this case, we have that y+1 �∈ B, where y := f−1
2m+1(x) and B :=

f−1
2m+1(A). Thus, VB(y) is well defined and VB(y) = V −(y) = {y − 1, y} (cf. Definition 5.3

(ii)). Then, since VA(x) = V −(x) for this point x, it is shown that f−1
2m+1(VA(x)) =

f−1
2m+1({x − 1, x}) = {y − 1, y} = VB(f−1

2m+1(x)).
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(iii) Using (i) above, we note that x ∈ AF if and only if f−1
2m+1(x) ∈ (f−1

2m+1(A))κ. Then,
we have that f−1

2m+1(VA) =
⋃{f−1

2m+1(VA(x))|x ∈ AF} =
⋃{VB(z)|z ∈ (f−1

2m+1(A))κ}, where
B := f−1

2m+1(A) (cf. (ii) above).
(v) The subset f−1

2m+1(VA) is the union of a collection of β-open sets (cf. (iii) above and
Example 5.5 (vi),(vii)). Thus, f−1

2m+1(VA) is β-open.
(vi) The set VA (resp. f−1

2m+1(VA)) is the union of finitely β-closed sets (cf. Definition 5.3
(iii) and Example 5.5 (i), (ii) (resp. (iii) above and Example 5.5 (vi), (vii))). Thus, VA (resp.
f−1
2m+1(VA)) is a πβ-set (cf. Definition 5.6 (i)).

(vii) It is obvious from (iii) above and Example 5.5 (vi),(vii). �

The above Lemma 5.8 (vi) and (vii) suggest the following concepts:

Definition 5.9 (i-1) A function f : (X, τ) → (Y, σ) is said to be:
contra-stably-πβ-continuous (briefly, contra-st-πβ-continuous) if f−1(F ) is a stably πβ-

set of (X, τ) for every β-open set F of (Y, σ).
(i-2) A function f : (X, τ) → (Y, σ) is said to be:

a contra-stably-πβ-homeomorphism (briefly, contra-st-πβ-homeomorphism) if f is a contra-
stably πβ-continuous bijection and f−1 is contra-stably πβ-continuous.

(ii) For a topological space (X, τ), we denote a collection of all contra-st-πβ-homeomorhisms
from (X, τ) onto itself as follows:
con-st-πβh(X ; τ) := {f |f : (X, τ) → (X, τ) is a contra-st-πβ-homeomorphism}.
Theorem 5.10 (i) For a topological space (X, τ), we have the following implications:

h(X ; τ) ⊆ βch(X ; τ) ∪ con-βch(X ; τ) ⊆ βch(X ; τ)∪ con-st-πβh(X ; τ).
(ii) For each integer m, the following properties hold:
(ii-1) f2m+1 �∈ con-βch(Z; κ), f2m+1 �∈ βch(Z;κ);
(ii-2) f2m+1 �∈ h(Z;κ);
(ii-3) (Example 5.2 (d)) f2m ∈ h(Z;κ).
(iii) For each integer m, f2m+1 is contra-stably πβ-continuous and so f2m+1 is a contra-

stably πβ-homeomorphism. Namely, f2m+1 ∈ con-st-πβh(Z; κ).
(iv) The collection T e(Z;κ) is a subgroup of h(Z, κ).
(v) The collection T e(Z;κ)∪T o(Z;κ), say T (Z;κ), forms a group under the compositions

of functions; the group T (Z;κ) is included in the family h(Z;κ)∪ con-st-πβh(Z; κ) (cf. (ii-3),
(iii), (iv) above).

Proof. (i) By Theorem 4.4 (v), it was obtained that h(X, τ) ⊆ βch(X, τ) ∪ con-βch(X, τ).
By definitions, it is shown that every contra-β-irresolute function, say f , is contra-stably πβ-
continuous. Indeed, for a β-open set A, f−1(A) is a β-closed set and so it is a stably πβ-set
(cf. Definition 4.1, Definition 5.9 (i-1)). Therefore, we have that con-βch(X ; τ) ⊆ con-st-
πβh(X; τ) and so the required implication.

(ii-1) (ii-2) Let A := V −(2s) ∪ V +(2s + 2), where s ∈ Z. Then, the subset A is
β-open (also it is β-closed) (cf. Example 5.5 (iii)) and f−1

2m+1(A) = V +(2u) ∪ V −(2u + 4)
is not β-closed and it is β-open (cf. Example 5.5 (iv)), where u := s − m − 1 and so
2u = 2s − (2m + 1) − 1, 2u + 4 = 2s + 2 − (2m + 1) + 1. Therefore, f2m+1 is not contra-β-
irresolute; f2m+1 is not β-irresolute. and hence f2m+1 �∈ con-βch(Z; κ); f2m+1 �∈ βch(Z;κ).

(iii) Let A be a β-open set of (Z, κ). First, suppose that AF �= ∅. Using Theorem 5.7
(i-1), we put A = VA ∪ Aκ. For a point x = 2s ∈ AF , where s ∈ Z, we set B := f−1

2m+1(A).
Then, we have that if x + 1 ∈ A, then f−1

2m+1(VA(x)) = {x − (2m + 1), x + 1 − (2m +
1)} = {2(s − m) − 1, 2(s − m)} = V +(2(s − m) − 1) = VB(f−1

2m+1(x)); if x + 1 �∈ A, then
f−1
2m+1(VA(x)) = {x − 1 − (2m + 1), x − (2m + 1)} = {2(s − m − 1), 2(s − m) − 1} =
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V −(2(s − m)− 1) = VB(f−1
2m+1(x)). Using Theorem 5.7 (i-1) and Lemma 5.8 (i-2),(vii), we

have that
(∗) f−1

2m+1(A) = (f−1
2m+1(VA)) ∪ (f−1

2m+1(A))F and
(∗∗) f−1

2m+1(VA) is a stably πβ-set.
Since the subset (f−1

2m+1(A))F is closed (cf. [13, Lemma 2.6 (ii)]), it is β-closed. Thus,
it follows from (∗) and (∗∗) that the above subset f−1

2m+1(A) is a stably πβ-set. Finally,
suppose that AF = ∅. Then, A = Aκ holds (Z, κ) (cf. Theorem 5.7 (ii)). We have that, by
Lemma 5.8 (i-2), f−1

2m+1(A) = f−1
2m+1(Aκ) = (f−1

2m+1(A))F and so f−1
2m+1(A) is a closed set

(cf. [13, Lemma 2.6 (ii)]); thus f−1
2m+1(A) is a stably πβ-set.

For both cases above, f−1
2m+1(A) is a stably πβ-set for every β-open set A. Namely,

f2m+1 is stably πβ-continuous. Since f2m+1 is bijective and (f2m+1)−1 = f−(2m+1) holds,
f2m+1 : (Z, κ) → (Z, κ) is a contra-stably πβ-homeomorphism.

(iv) Let a, b ∈ T e(Z;κ). Then, there exist integers m and s such that a = f2m and b =
f2s. Since the binary operation WZ : h(Z;κ)× h(Z;κ) → h(Z;κ) is defined by WZ(a′, b′) :=
b′ ◦ a′ for every a′, b′ ∈ h(Z;κ) and T e(Z;κ) ⊂ h(Z;κ) (cf. (ii-3) above), we have that
WZ(a, b−1) = (f2s)−1 ◦ f2m = f2(m−s) ∈ T e(Z;κ). Moreover, f0 = 1Z ∈ T e(Z;κ) �= ∅ hold
and so T e(Z;κ) is a subgroup of h(Z;κ).

(v) Let a, b ∈ T e(Z;κ) ∪ T o(Z;κ). Then, if a, b ∈ T e(Z;κ), then b ◦ a ∈ T e(Z;κ); if
a ∈ T e(Z;κ) and b ∈ T o(Z;κ), then b ◦ a ∈ T o(Z;κ); if a ∈ T o(Z;κ) and b ∈ T e(Z;κ),
then b ◦ a ∈ T o(Z;κ); if a, b ∈ T o(Z;κ), then b ◦ a ∈ T e(Z;κ). Thus, a binary operation
W ′

Z
: T (Z;κ) × T (Z;κ) → T (Z;κ) is well defined by the composition of functions. It is

obviously T (Z;κ) forms a group. Let f ∈ T (Z;κ); then if f ∈ T e(Z;κ), then f ∈ h(Z;κ)
(cf. (iv) above); if f ∈ T 0(Z;κ), then f ∈ con-st-πβh(Z; κ) (cf. (iii) above). Therefore, we
have T (Z;κ) ⊆ h(Z;κ) ∪ con-st-πβh(Z; κ) as subset. �
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