637

on π generalized β -closed sets in topological spaces ii

S.C. Arora, Sanjay Tahiliani and H. Maki

Received June 4, 2009

ABSTRACT. The concept of $\pi g\beta$ -closed sets is introduced and investigated by Tahiliani [12] earlier. In the present paper we investigate some more properties of $\pi g\beta$ -closed sets. Their relations in group theory and digital line are investigated.

1 Introduction Throughout the present paper, $(X, \tau), (Y, \sigma)$ and (Z, η) (or X, Y and Z) represent nonempty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. The closure and interior of a subset $A \subseteq X$ will be denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is called β -open [1] or semi-preopen [2] if $A \subseteq Cl(Int(Cl(A)))$. The compliment of a β -open set is called β -closed [1]. The intersection of all β -closed sets containing A is called β -closure of A and it is denoted by $\beta Cl(A)$. A subset A of (X, τ) is called regular open (resp. regular closed) if A = Int(Cl(A)) (resp. A = Cl(Int(A)). A finite union of regular open set is said to be π -open. The complement of π -open set is said to be π -closed [3]. A subset A of (X, τ) is said to be $g\beta$ -closed [5] (resp. $\pi g\beta$ -closed [12]) if $\beta Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open (resp. π -open). It's complement is said to be $g\beta$ -open (resp. $\pi g\beta$ -open). Using the concept of β -closed sets, classes of some functions (e.g., β -irresoluteness [11], pre- β -closedness [11], gsp-irresoluteness) are introduced (cf. Definition 2.1, Definition 4.1 below).

The present paper is a continuation of [12] due to one of the present authors; we investigate more properties of functions preserving $\pi g\beta$ -closed sets, some groups of such functions and properties on digital line (so called the Khalimsky line) [7],[8],[9],[10], e.g., [6]. In Section 2, we recall some definitions on functions and we need some properties on functions (cf. Lemma 2.2 and Theorem 2.3). In Section 3, for a topological space (X, τ) , we introduce and investigate goups of functions, say $\pi g\beta ch(X,\tau), g\beta ch(X,\tau), \beta ch(X,\tau)$, preserving $\pi g\beta$ -closed sets, $g\beta$ -closed sets and β -closed sets, respecticely; they contain the homeomorphism group $h(X,\tau)$ as a subgroup (cf. Theorem 3.3). Morever, these groups have an importante property that they are one of topological invariants (Theorem 3.4). Using the concept of contra- β -irresoluteness (resp. contra- $q\beta$ -irresoluteness, contra- $\pi q\beta$ irresoluteness), in Section 4, we construct more groups of functions, say $\beta ch(X,\tau) \cup con \beta ch(X,\tau), q\beta ch(X,\tau) \cup con-q\beta ch(X,\tau)$ and $\pi q\beta ch(X,\tau) \cup con-\pi q\beta ch(X,\tau)$ for a topological space (X,τ) ; they contain the homeomorphism group $h(X,\tau)$ as a subgroup (cf. Theorem 4.4). They are also examples of topological invariants (cf. Theorem 4.5). Some examples on the digital line (\mathbb{Z}, κ) are given in Section 5. If A is a β -open set of (\mathbb{Z}, κ) , the inverse image by a digital translation $f_{2m+1}: (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa)$, say $f_{2m+1}^{-1}(A)$, is expressible to the union of any β -closed sets. Namely, $f_{2m+1} \in con\text{-}st\text{-}\beta h(\mathbb{Z},\kappa)$ (cf. Theorem 5.10 (iii)).

²⁰⁰⁰ Mathematics Subject Classification. Primary:54C10,54D10.

Key words and phrases. $\pi g\beta$ -closed sets, $g\beta$ -closed sets, preopen sets, preirresolute maps, preclosed maps, β -irresolute maps, $\pi g\beta$ -irresolute maps, $\pi g\beta$ -irresolute, $\pi \beta$ -sets, digital lines, homeomorphisms group.

2 Preliminalies We need the following definition, lemma and theorem:

Definition 2.1 For topological spaces (X, τ) and (Y, σ) , a function $f : (X, \tau) \to (Y, \sigma)$ is said to be:

(i) π -irresolute [3] (resp. β -irresolute [11]), if $f^{-1}(V)$ is π -closed (resp. β -closed) in (X, τ) for every π -closed set (resp. β -closed set) V of (Y, σ) ;

(ii) pre- β -closed [11], if f(V) is β -closed in (Y, σ) for every β -closed set V of (X, τ) ;

(iii) gsp-irresolute [5] or $g\beta$ -irresolute, if $f^{-1}(F)$ is $g\beta$ -closed (X, τ) for every $g\beta$ -closed set F of (Y, σ) ;

(iv) $\pi g\beta$ -irresolute [12], if $f^{-1}(V)$ is $\pi g\beta$ -closed in (X, τ) for every $\pi g\beta$ -open set V of (Y, σ) .

Lemma 2.2 Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \zeta)$ be two functions between topological spaces.

(i-1) If f and g are $\pi g\beta$ -irresolute (cf. [12]), then the composition $g \circ f$ is also $\pi g\beta$ -irresolute.

(i-2) The identity function $1_X : (X, \tau) \to (X, \tau)$ is $\pi g\beta$ -irresolute.

(ii-1) If f and g are $g\beta$ -irresolute, then the composition $g \circ f$ is also $g\beta$ -irresolute.

(ii-2) The identity function $1_X : (X, \tau) \to (X, \tau)$ is $g\beta$ -irresolute.

(iii)([11, Theorem 2.7 (i)]) If f and g are β -irresolute, then the composition $g \circ f$ is also β -irresolute. The identity function $1_X : (X, \tau) \to (X, \tau)$ is β -irresolute.

Proof. The proofs are obvious from definitions.

Theorem 2.3 Let
$$f : (X, \tau) \to (Y, \sigma)$$
 be a function.

(i) If f is a homeomorphism, then f is π -irresolute.

(ii) If f is a homeomorphism, then f is pre- β -closed (i.e., f^{-1} is β -irresolute).

(iii) If f is a homeomorphism, then f(A) is $\pi g\beta$ -closed in (Y, σ) for every $\pi g\beta$ -closed set A of (X, τ) (i.e., f^{-1} is $\pi g\beta$ -irresolute [12, Definition 4.2, Theorem 4.2]).

(iv) Every homeomorphism is $\pi q\beta$ -irresolute, $q\beta$ -irresolute and β -irresolute.

Proof. (i) Let A be a π -open set of (Y, σ) , say $A = \bigcup\{V_i | i \in \{1, 2, ..., m\}\}$, where m is a positive integer and V_i is regular open in (Y, σ) for each i with $1 \le i \le m$. Since f is a homeomorphism, $f^{-1}(V_i) = f^{-1}(Int(Cl(V_i))) = Int(Cl(f^{-1}(V_i)))$ holds for each $i(1 \le i \le m)$ and so $f^{-1}(A) = \bigcup\{f^{-1}(V_i) | i \in \{1, 2, ..., m\}\}$ holds. Namely, by definition, $f^{-1}(A)$ is π -open in (X, τ) . Thus, we have that f is π -irresolute. Indeed, in general, a function is π -irresolute if and only if an inverse image of every π -open set is π -open.

(ii) Let V be a β -closed set of (X, τ) , i.e., $Int(Cl(Int(V))) \subseteq V$ holds. Because of the homeomorphism on f, it is shown that $f(Int(Cl(Int(V)))) = Cl(Int(Cl(f(V)))) \subseteq f(V))$ and so f(V) is β -closed in (Y, σ) .

(iii) By (i) and (ii), f is π -irresolute and pre- β -closed. It follows from [12, Theorem 4.2] that if A is $\pi g\beta$ -closed in (X, τ) then f(A) is $\pi g\beta$ -closed in (Y, σ) .

(iv) Let f be a homeomorphism. Then, $f^{-1}: (Y, \sigma) \to (X, \tau)$ is also a homeomorphism. By (iii) for the homeomorphism f^{-1} , it is shown that $f = (f^{-1})^{-1}$ is $\pi g\beta$ -irresolute. Let F be a $g\beta$ -closed set (Y, σ) . Let U be an open subset of (X, τ) such that $f^{-1}(F) \subseteq U$. Then, $F = f(f^{-1}(F)) \subseteq f(U)$ and f(U) is open in (Y, σ) . It follows from the $g\beta$ -closedness of F that $\beta Cl(F) \subseteq f(U)$ and so $f^{-1}(\beta Cl(F)) = f^{-1}(F) \cup Int(Cl(Int(f^{-1}(F)))) =$ $\beta Cl(f^{-1}(F)) \subseteq U$. Thus we have that $f^{-1}(F)$ is $g\beta$ -closed in (X, τ) . Hence, f is $g\beta$ irresolute. It is similarly proved that f is β -irresolute. \Box

3 More on functions preserving $\pi g\beta$ -closed sets, $g\beta$ -closed sets, β -closed sets

Definition 3.1 (i) A function $f : (X, \tau) \to (Y, \sigma)$ is called a $\pi g\beta c$ -homeomorphism (resp. $g\beta c$ -homeomorphism) if f is a $\pi g\beta$ -irresolute (resp. $g\beta$ -irresolute) bijection and f^{-1} is $\pi g\beta$ -irresolute (resp. $g\beta$ -irresolute).

(ii) A function $f: (X, \tau) \to (Y, \sigma)$ is called a βc -homeomorphism if f is a β -irresolute bijection and f^{-1} is β -irresolute.

For a topological space (X, τ) , we introduce the following:

- (1) $\pi g\beta ch(X;\tau) := \{f \mid f : (X,\tau) \to (X,\tau) \text{ is a } \pi g\beta c\text{-homeomorphism}\};$
- (2) $g\beta ch(X;\tau) := \{f \mid f : (X,\tau) \to (X,\tau) \text{ is a } g\beta c\text{-homeomorphism}\};$
- (3) $\beta ch(X;\tau) := \{f \mid f : (X,\tau) \to (X,\tau) \text{ is a } \beta c\text{-homeomorphism}\};$
- (4) $h(X;\tau) := \{f \mid f : (X,\tau) \to (X,\tau) \text{ is a homeomorphism}\}.$

Theorem 3.2 For a topological space (X, τ) , the following properties hold.

(i) $h(X;\tau) \subseteq \pi g\beta ch(X;\tau)$. (ii) $h(X;\tau) \subseteq g\beta ch(X;\tau)$. (iii) $h(X;\tau) \subseteq \beta ch(X;\tau)$.

Proof. Let $f \in h(X;\tau)$. Then, by Theorem 2.3 (iii) (iv) (resp. (v), (ii)) and Definition 3.1 (i) (resp. (i), (ii)), it is shown that f and f^{-1} are $\pi g\beta$ -irresolute (resp. $g\beta$ -irresolute) and so f is $\pi g\beta$ c-homeomorphism (resp. $g\beta c$ -homeomorphism), i.e., $f \in \pi g\beta ch(X;\tau)$ (resp. $f \in g\beta ch(X;\tau)$, $f \in \beta ch(X;\tau)$).

Theorem 3.3 Let (X, τ) be a topological space. Then, we have the following properties.

- (i) The collection $\pi g\beta ch(X;\tau)$ forms a group under the composition of functions.
- (ii) The collection $g\beta ch(X;\tau)$ forms a group under the composition of functions.
- (iii) The collection $\beta ch(X; \tau)$ forms a group under the composition of functions.
- (iv) The homeomorphism group $h(X;\tau)$ is a subgroup of the group $\pi g\beta ch(X;\tau)$.
- (v) The homeomorphism group $h(X;\tau)$ is a subgroup of the group $g\beta ch(X;\tau)$.
- (vi) The homeomorphism group $h(X;\tau)$ is a subgroup of the group $\beta ch(X;\tau)$.

Proof. (i-1) A binary operation $\eta_X : \pi g\beta ch(X;\tau) \times \pi g\beta ch(X;\tau) \to \pi g\beta ch(X;\tau)$ is well defined by $\eta_X(a,b) := b \circ a$, where $b \circ a : X \to X$ is the composite function of the functions a and b such that $(b \circ a)(x) := b(a(x))$ for every point $x \in X$. Indeed, by Lemma 2.2 (i), it is shown that, for every $\pi g\beta c$ -homeomorphisms a and b, the composition $b \circ a$ is also $\pi g\beta c$ -homeomorphism. Namely, for every pair $(a,b) \in \pi g\beta ch(X,\tau), \eta_X(a,b) =$ $b \circ a \in \pi g\beta ch(X;\tau)$. Then, it is claimed that the binary operation $\eta_X : \pi g\beta ch(X;\tau) \times$ $\pi g\beta ch(X;\tau) \to \pi g\beta ch(X;\tau)$ satisfies the axiom of group. Namely, putting $a \cdot b := \eta_X(a,b)$, the following properties hold $\pi g\beta ch(X;tau)$.

(1) $((a \cdot b) \cdot c) = (a \cdot (b \cdot c))$ holds for every elements $a, b, c \in \pi g\beta ch(X; \tau)$;

(2) for all element $a \in \pi g\beta ch(X; \tau)$, there exists an element $e \in \pi g\beta ch(X; \tau)$ such that $a \cdot e = e \cdot a = a$ hold in $\pi g\beta ch(X; \tau)$;

(3) for each element $a \in \pi g\beta ch(X;\tau)$, there exists an element $a_1 \in \pi g\beta ch(X;\tau)$ such that $a \cdot a_1 = a_1 \cdot a = e$ hold in $\pi g\beta ch(X;\tau)$.

Indeed, the proof of (1) is obvious; the proof of (2) is obtained by taking $e := 1_X$, where 1_X is the identity function on X and using Lemma 2.2(i-2); the proof of (3) is obtained by taking $a_1 := a^{-1}$ for each $a \in \pi g\beta ch(X;\tau)$ and Definition 3.1, where a^{-1} is the inverse function of a. Therefore, by definition of groups, the pair $(\pi g\beta ch(X;\tau),\eta_X)$ forms a group under the composition of functions, i.e., $\pi g\beta ch(X;\tau)$ is a group.

(ii) Let $\eta'_X : g\beta ch(X;\tau) \times g\beta ch(X;\tau) \to g\beta ch(X;\tau)$ be a binary operation defined by $\eta'_X(a,b) := b \circ a$ (the composition) for every pair $(a,b) \in g\beta ch(X;\tau) \times g\beta ch(X;\tau)$. Then, by using Lemma 2.2 (ii-1), (ii-2) and the same argument as that in the proof of (i) above, it is shown that the collection $g\beta ch(X;\tau)$ forms a group under the composition of functions.

(iii) Let $\eta''_X : \beta ch(X;\tau) \times \beta ch(X;\tau) \to \beta ch(X;\tau)$ be a binary operation defined by $\eta''_X(a,b) := b \circ a$ (the composition) for every pair $(a,b) \in \beta ch(X;\tau) \times \beta ch(X;\tau)$. Then, by using Lemma 2.2 (iii) and the same argument as that in the proof of (i) above, it is shown that the collection $\beta ch(X;\tau)$ forms a group under the composition of functions.

(iv) It is obvious that $1_X : (X, \tau) \to (X, \tau)$ is a homeomorphism and so $h(X; \tau) \neq \emptyset$. It follows from Theorem 3.2(i) that $h(X; \tau) \subseteq \pi g\beta ch(X; \tau)$. Let $a, b \in h(X; \tau)$. Then we have that $\eta_X(a, b^{-1}) = b^{-1} \circ a \in h(X; \tau)$, here $\eta_X : \pi g\beta ch(X; \tau) \times \pi g\beta ch(X; \tau) \to \pi g\beta ch(X; \tau)$ is the binary operation (cf. Proof of Theorem 3.3(i)). Therefore, the group $h(X; \tau)$ is a subgroup of $\pi g\beta ch(X; \tau)$.

(v) Let $a, b \in h(X; \tau)$. Then we have that $\eta'_X(a, b^{-1}) = b^{-1} \circ a \in h(X; \tau)$, where $\eta'_X : g\beta ch(X; \tau) \times g\beta ch(X; \tau) \to g\beta ch(X; \tau)$ is the binary operation (cf. Proof of Theorem 3.3(ii)). By this binary operation, the group $h(X; \tau)$ is a subgroup of $g\beta ch(X; \tau)$ (cf. Theorem 3.2(ii)).

(vi) We have that $\eta''_X(a, b^{-1}) = b^{-1} \circ a \in h(X; \tau)$ for every $a, b \in h(X; \tau)$, where $\eta''_X : \beta ch(X; \tau) \times \beta ch(X; \tau) \to \beta ch(X; \tau)$ is the binary operation (cf. Theorem 3.2(iii)). It is shown that $h(X; \tau)$ is a subgroup of $\beta ch(X; \tau)$.

Theorem 3.4 Let (X, τ) and (Y, σ) be topological spaces.

If (X, τ) and (Y, σ) are homeomorphic, then there exist isomorphisms:

- (i) $\pi g\beta ch(X,\tau) \cong \pi g\beta ch(Y,\sigma);$
- (ii) $g\beta ch(X,\tau) \cong g\beta ch(Y,\sigma);$
- (iii) $\beta ch(X,\tau) \cong \beta ch(Y,\sigma).$

Proof. It follows from assumption that there exsts a homeomorphism, say $f: (X, \tau) \to (Y, \sigma)$. We define a function $f_*: \pi g\beta ch(X, \tau) \to \pi g\beta ch(Y, \sigma)$ by $f_*(a) := f \circ a \circ f^{-1}$ for every element $a \in \pi g\beta ch(X, \tau)$; by Theorem 2.3 (iv) (or Theorem 3.2) and Lemma 2.2 (i-1), the bijections $f \circ a \circ f^{-1}$ and $(f \circ a \circ f^{-1})^{-1}$ are $\pi g\beta$ -irresolute and so f_* is well defined. The induced function f_* is a homeomorphism. Indeed, $f_*(\eta_X(a,b)) = f \circ b \circ f^{-1} \circ f \circ a \circ f^{-1} = (f_*(b)) \circ (f_*(a)) = \eta_X(f_*(a), f_*(a))$ hold. Obviously, f_* is bijective. Thus, we have (i), i.e., f_* is an isomorphism. By using Theorem 2.3 (iv) (or Theorem 3.2) and Lemma 2.2 (ii-1) (resp. Lemma 2.2 (iii)), (ii) (resp. (iii)) is obtained with similar argument above.

In Theorem 3.4, by using Lemma 2.2 (i-2), (ii-2), (iii), it is obtained that $f_*(1_X) = 1_Y$ holds.

4 More on the groups including the homeomorphism group $h(X;\tau)$ as subgroup

Definition 4.1 For a topological spaces (X, τ) and (Y, σ) , we define the following functions. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be *contra* β *-irresolute* [4] (resp. *contra* $g\beta$ *-irresolute*, *contra* $\pi g\beta$ *-irresolute*) if $f^{-1}(V)$ is β -closed (resp. $g\beta$ -closed, $\pi g\beta$ -closed) in (X, τ) for every β -open (resp. $g\beta$ -open, $\pi g\beta$ -open) set V of (Y, σ) .

For these, we can immediately see the following lemma:

Lemma 4.2 Let $f : (X, \tau) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z, \zeta)$ be two functions between topological spaces.

(i-1) If f and g are contra- β -irresolute, then the composition $g \circ f$ is also β -irresolute.

(i-2) If f is β -irresolute (resp. contra- β -irresolute) and g are contra- β -irresolute (resp. β -irresolute), then the composition $g \circ f$ is contra- β -irresolute.

(ii-1) If f and g are contra- $g\beta$ -irresolute, then the composition $g \circ f$ is also $g\beta$ -irresolute.

(ii-2) If f is $g\beta$ -irresolute (resp. contra- $g\beta$ -irresolute) and g are contra- $g\beta$ -irresolute (resp. $g\beta$ -irresolute), then the composition $g \circ f$ is contra- $g\beta$ -irresolute.

(iii-1) If f and g are contra- $\pi g\beta$ -irresolute, then the composition $g \circ f$ is also $\pi g\beta$ -irresolute.

(iii-2) If f is $\pi g\beta$ -irresolute (resp. contra- $\pi g\beta$ -irresolute) and g are contra- $\pi g\beta$ -irresolute (resp. $\pi g\beta$ -irresolute), then the composition $g \circ f$ is contra- $g\beta$ -irresolute.

Definition 4.3 For a topological space (X, τ) , we define the following collection of functions:

(1) $con-\beta ch(X;\tau) := \{f \mid f: (X,\tau) \to (X,\tau) \text{ is a contra-}\beta\text{-irresolute bijection and } f^{-1} \text{ is contra-}\beta\text{-irresolute } \};$

(2) $con-g\beta ch(X;\tau) := \{f | f : (X,\tau) \to (X,\tau) \text{ is a contra-}g\beta\text{-irresolute bijection and } f^{-1} \text{ is contra-}g\beta\text{-irresolute } \};$

(3) $con \pi g\beta ch(X;\tau) := \{f | f: (X,\tau) \to (X,\tau) \text{ is a contra-}\pi g\beta \text{-irresolute bijection and } f^{-1} \text{ is contra-}\pi g\beta \text{-irresolute} \}.$

For a topological space (X, τ) , we construct alternative groups, say $\beta ch(X; \tau) \cup con-\beta ch(X; \tau)$, $g\beta ch(X; \tau) \cup con-g\beta ch(X; \tau)$ and $\pi g\beta ch(X; \tau) \cup con-\pi g\beta ch(X; \tau)$.

Theorem 4.4 Let (X, τ) be a topological space. Then, we have the following properties.

(i) The union of two collections, $\beta ch(X;\tau) \cup con-\beta ch(X;\tau)$, forms a group under the composition of functions.

(ii) The union of two collections, $g\beta ch(X;\tau) \cup con-g\beta ch(X;\tau)$, forms a group under the composition of functions.

(iii) The union of two collections, $\pi g\beta ch(X;\tau) \cup con - \pi g\beta ch(X;\tau)$, forms a group under the composition of functions.

(iv) The group $\beta ch(X;\tau)$ (resp. $g\beta ch(X;\tau)$, $\pi g\beta ch(X;\tau)$) is a subgroup of $\beta ch(X;\tau) \cup$ $con-\beta ch(X;\tau)$ (resp. $g\beta ch(X;\tau) \cup con-g\beta ch(X;\tau)$, $\pi g\beta ch(X;\tau) \cup con-\pi g\beta ch(X;\tau)$).

(v) The homeomorphism group $h(X;\tau)$ is a subgroup of $\beta ch(X;\tau) \cup con-\beta ch(X;\tau)$ (resp. $g\beta ch(X;\tau) \cup con-g\beta ch(X;\tau)$, $\pi g\beta ch(X;\tau) \cup con-\pi g\beta ch(X;\tau)$).

Proof. (i) Let $B_X := \beta ch(X; \tau) \cup con-\beta ch(X; \tau)$. A binary operation $w_X : B_X \times B_X \to B_X$ is well defined by $W_X(a, b) := b \circ a$, where $b \circ a : X \to X$ is the composite function of the functions a and b. Indeed, let $(a, b) \in B_X$; if $a \in \beta ch(X; \tau)$ and $b \in con-\beta ch(X; \tau)$, then $b \circ a : (X, \tau) \to (X, \tau)$ a contra- β -irresolute bijection and $(b \circ a)^{-1}$ is also contra- β -irresolute and so $w_X(a, b) = b \circ a \in con-\beta ch(X; \tau) \subset B_X$ (cf. Lemma 4.2 (i-2)); if $a \in \beta ch(X; \tau)$ and $b \in \beta ch(X; \tau)$, then $b \circ a : (X, \tau) \to (X, \tau)$ is a β -irresolute bijection and so $w_X(a, b) = b \circ a \in \beta ch(X; \tau)$ is a β -irresolute bijection and $(b \circ a)^{-1}$ is also β -irresolute and so $w_X(a, b) = b \circ a \in \beta ch(X; \tau) \subseteq B_X$ (cf. Lemma 2.2 (iii)); if $a \in con-\beta ch(X; \tau)$ and $b \in con-\beta ch(X; \tau)$, then $b \circ a : (X, \tau) \to (X, \tau)$ is a β -irresolute bijection and so $w_X(a, b) = b \circ a \in \beta ch(X; \tau) \subseteq B_X$ (cf. Lemma 4.2 (i-1)); if $a \in con-\beta ch(X; \tau)$ and $b \in con-\beta ch(X; \tau)$, then $b \circ a : (X, \tau) \to (X, \tau)$ is a contra- β -irresolute bijection and $(b \circ a)^{-1}$ is also contra- β -irresolute and so $w_X(a, b) = b \circ a \in con-\beta ch(X; \tau) \subseteq B_X$ (cf. Lemma 4.2 (i-2)). By the similar arguments of Theorem 3.3, it is claimed that the binary operation $w_X : B_X \times B_X \to B_X$ satisfies the axiom of group; for the identity element e of $B_X, e := 1_X : (X, \tau) \to (X, \tau)$ (the identity function). Thus, the pair (B_X, w_X) forms a group under the composition of functions, i.e., $\beta ch(X; \tau) \cup con-\beta ch(X; \tau)$ is a group.

(ii) (resp. (iii)) The proof is obtained by similar arguments of (i) above using Lemma 4.2 (ii-1), (ii-2)) (resp. (iii-1), (iii-2)) and Lemma 2.2 (ii-1), (ii-2)) (resp. (i-1), (i-2)) in the place of Lemma 4.2 (i-1), (i-2) and Lemma 2.2 (iii).

(iv) The group $\beta ch(X; \tau)$ (resp. $g\beta ch(X; \tau)$, $\pi g\beta ch(X; \tau)$) is not empty (cf. Lemma 2.2 (iii) (resp. (ii-2), (i-2)). Using the binary operation in the proof (i) above, it is shown that $w_X(a, b^{-1}) = b^{-1} \circ a \in \beta ch(X; \tau)$ for any $a, b \in \beta ch(X; \tau)$ and so $\beta ch(X; \tau)$ is a subgroup of $\beta ch(X; \tau) \cup con-\beta ch(X; \tau)$. For the other cases, they are similarly proved (cf. Proof of (ii),(iii) above).

(v) By Theorem 3.3 (vi) above, it is shown that $h(X;\tau)$ is a subgroup of $\beta ch(X;\tau) \cup con-\beta ch(X;\tau)$ (resp. $g\beta ch(X;\tau) \cup con-g\beta ch(X;\tau)$, $\pi g\beta ch(X;\tau) \cup con-\pi g\beta ch(X;\tau)$).

The groups of Theorem 4.4 are also invariant concepts under homeomorphisms between topological spaces (cf. Theorem 3.4).

Theorem 4.5 Let (X, τ) and (Y, σ) be topological spaces.

If (X, τ) and (Y, σ) are homeomorphic, then there exist isomorphisms:

- (i) $\beta ch(X;\tau) \cup con-\beta ch(X;\tau) \cong \beta ch(Y;\sigma) \cup con-\beta ch(Y;\sigma);$
- (ii) $g\beta ch(X;\tau) \cup con-g\beta ch(X;\tau) \cong g\beta ch(Y;\sigma) \cup con-g\beta ch(Y;\sigma);$
- (iii) $\pi g\beta ch(X;\tau) \cup con \pi g\beta ch(X;\tau) \cong \pi g\beta ch(Y;\sigma) \cup con \pi g\beta ch(Y;\sigma).$

Proof. Let $f: (X, \tau) \to (Y, \sigma)$ be a homeomorphism. We put $B_X := \beta ch(X; \tau) \cup con-\beta ch(X; \tau)$ (resp. $B_Y := \beta ch(Y; \sigma) \cup con-\beta ch(Y; \sigma)$) for a topological space (X, τ) (resp. (Y, σ)). First we have a well defined function $f_* : B_X \to B_Y$ by $f_*(a) := f \circ a \circ f^{-1}$ for every element $a \in B_X$. Indeed, by Theorem 2.3 (iv) (or Theorem 3.2), f and f^{-1} are β -irresolute; by Lemma 2.2 (iii) and Lemma 4.2 (i-2), the bijections $f \circ a \circ f^{-1}$ and $(f \circ a \circ f^{-1})^{-1}$ are β -irresolute or contra- β -irresolute and so f_* is well defined. The induced function f_* is a homomorphism. Indeed, $f_*(w_X(a,b)) = f \circ b \circ f^{-1} \circ f \circ a \circ f^{-1} = (f_*(b)) \circ (f_*(a)) = w_Y(f_*(a), f_*(a))$ hold, $w_X : B_X \times B_X \to B_X$ and $w_Y : B_Y \times B_Y \to B_Y$ are the binary operations defined in Proof of Theorem 2.3 (iv) (or Theorem 3.2), Lemma 2.2 (ii-1) (resp. Lemma 2.2 (ii-1)) and Lemma 4.2 (i-2) (resp. Lemma 4.2 (i-2)), the isomorphism of (i) (resp. (iii)) is obtained with similar argument above. \Box

In Theorem 4.5, by using Lemma 2.2 (i-2), (ii-2), (iii), it is obtained that $f_*(1_X) = 1_Y$ holds.

5 Examples on digital line (\mathbb{Z}, κ)

Definition 5.1 The digital line ([7], [8], [9], [10], e.g., [6]) or so called the *Khalimsky line* is the set of all integers \mathbb{Z} , equipped with the topology κ having $\{\{2m-1, 2m, 2m+1\} | m \in \mathbb{Z}\}$ as a subbase; the digital line is denotedd (\mathbb{Z}, κ) .

A subset V is open in (\mathbb{Z}, κ) if and only if whenever $x \in V$ and x is an even integer, then $x - 1, x + 1 \in V$ (cf. [10, page 175]). It is clear that a singleton $\{2s + 1\}$ is open, a singleton $\{2m\}$ is closed and a subset $\{2k - 1, 2k, 2k + 1\}$ is the smallest open set containing 2k, where s, m and k are any integers. In the present paper (cf. [6]), we use the following notation:

 $U(2s+1) := \{2s+1\}$ and $U(2s) := \{2s-1, 2s, 2s+1\}$ for each $s \in \mathbb{Z}$,

```
\mathbb{Z}_{\kappa} := \{ x \in \mathbb{Z} | \{ x \} \text{ is open in } (\mathbb{Z}, \kappa) \},\
```

 $\mathbb{Z}_{\mathcal{F}} := \{ x \in \mathbb{Z} | \{ x \} \text{ is closed in } (\mathbb{Z}, \kappa) \},\$

for a subset A of (\mathbb{Z}, κ) , $A_{\kappa} := A \cap \mathbb{Z}_{\kappa}$ and $A_{\mathcal{F}} := A \cap \mathbb{Z}_{\mathcal{F}}$.

Obviously, we have that $\mathbb{Z} = \mathbb{Z}_{\kappa} \cup \mathbb{Z}_{\mathcal{F}}$ (disjoint union) and, for a subset $A, A = A_{\kappa} \cup A_{\mathcal{F}}$ (disjoint union).

Example 5.2 For a fixed integer m, we define the functions $f_{2m} : (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa)$ and $f_{2m+1} : (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa)$, respectively:

 $f_{2m}(x) := x + 2m \text{ for every point } x \in \mathbb{Z};$ $f_{2m+1}(x) := x + (2m+1) \text{ for every point } x \in \mathbb{Z}.$

We claim that:

(a) f_{2m+1} is not continuous and so $f_{2m+1} \notin h(\mathbb{Z};\kappa)$ (cf. Theorem 5.10 (i));

(b) $f_{2m+1} \notin \beta ch(\mathbb{Z};\kappa)$ (cf. Theorem 5.10 (i));

(c) there exists a β -open set A such that $f_{2m+1}^{-1}(A)$ is β -closed (cf. in general, Theorem 5.10 (i), (ii) below).

(d) $f_{2m} \in h(\mathbb{Z}; \kappa)$ (cf. Theorem 5.10 (i), (ii-3)).

Proof of (a). Because $f_{2m+1}^{-1}(\{1\}) = \{1 - (2m+1)\} = \{-2m\} \notin \kappa$ for a subset $\{1\} \in \kappa$. Thus, $f_{2m+1} : (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa)$ is not continuous.

Proof of (b) and (c). The function f_{2m+1} is not β -irresolute. Indeed, a subset $U(2u+1) := \{2u+1\}$ is a β -open, where $u \in \mathbb{Z}$, because $\{2u+1\} \in \kappa$. We have that $f_{2m+1}^{-1}(U(2u+1)) = \{2u+1-(2m+1)\} = \{2(u-m)\}$ and $Cl(Int(Cl(f_{2m+1}^{-1}(U(2u+1))))) = Cl(Int(Cl(\{2(u-m)\}))) = \emptyset \not\supseteq f_{2m+1}^{-1}(U(2u+1))$. Thus, we have that $f_{2m+1}^{-1}(U(2u+1))$ is not β -open for a β -open set U(2u+1). Namely, f_{2m+1} is not β -irresolute. Put $A := U(2u+1) = \{2u+1\}$. Then, $Int(Cl(Int(f_{2m+1}^{-1}(A)))) = \emptyset \subseteq f_{2m+1}^{-1}(A)$ holds and so $f_{2m+1}^{-1}(A)$ is β -closed.

Proof of (d). By the definition of the topology κ , an open subset A is expressible as $A = \bigcup \{U(x) | x \in A\}$, where U(x) is the smallest open set containing x (i.e., $U(2s) := \{2s-1, 2s, 2s+1\}$ and $U(2u+1) := \{2u+1\}(s, u \in \mathbb{Z})$). Then we have that $f_{2m}^{-1}(U(2u+1)) = \{2u+1-2m\} \in \kappa$ and $f_{2m}^{-1}(U(2s)) = \{2s-1-2m, 2s-2m, 2s+1-2m\} \in \kappa$. Therefore, we have that $f_{2m}^{-1}(A) = \bigcup \{f_{2m}^{-1}(U(x)) | x \in A\} \in \kappa$ and hence f_{2m} is continuous and bijective. Similarly, it is shown that $f_{2m}^{-1} : (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa)$ is continuous. Therefore, $f_{2m} \in h(\mathbb{Z}; \kappa)$. \Box

We characterlize β -open sets of (\mathbb{Z}, κ) (cf. Theorem 5.7 below). First we need the following definition:

Definition 5.3 For a nonempty subset A of (\mathbb{Z}, κ) , we introduce the following subsets of (\mathbb{Z}, κ) .

(i) ([6]) $A_{\mathcal{F}} := \{x \in A | \{x\} \text{ is closed in } (\mathbb{Z}, \kappa)\}.$

(ii) For a point $x \in \mathbb{Z}$ and a subset $A \subseteq \mathbb{Z}$, $V_A(x) := \{x, x+1\}$ if $x+1 \in A$ (sometimes it is denoted by $V^+(x)$); $V_A(x) := \{x-1, x\}$ if $x+1 \notin A$ (sometimes, it is denoted by $V^-(x)$). We note that the concept of $V_A(x)$ is uniquely well determined for each point $x \in \mathbb{Z}$ and A. (iii) $V_A := \bigcup \{V_A(x) | x \in A_{\mathcal{F}}\}$, where $A_{\mathcal{F}} \neq \emptyset$.

 $(m) \downarrow_A \downarrow \cup \bigcup (\downarrow_A(w) | w \in \mathbb{N}), \text{ where } \mathbb{N} \not \to \mathbb{N}$

Example 5.4 In order to understand the concept of the set V_A for a subset A, we see some examples.

(i) Let $A := \{0, 4, 7\}$. The set A is not β -open in (\mathbb{Z}, κ) . Indeed, by definition, $Cl(Int(Cl(A))) = Cl(Int(\{0, 4, 6, 7, 8\})) = Cl(\{7\}) = \{6, 7, 8\} \not\supseteq A$ hold. We note that $A_{\mathcal{F}} := \{x \in A | \{x\} \text{ is closed (i.e., } x \text{ is even})\}; A_{\kappa} := \{x \in A | \{x\} \text{ is open (i.e., } x \text{ is odd})\}.$ Then, $A_{\mathcal{F}} = \{0, 4\}$ and $A_{\kappa} = \{7\}$. For this set $A_{\mathcal{F}}$, we have $V_A := \bigcup\{V_A(x) | x \in A_{\mathcal{F}}\} =$ $V^-(0) \cup V^-(4) = \{-1, 0\} \cup \{3, 4\}$ and we have the set $V_A \cup A_{\kappa}$ as follow: $V_A \cup A_{\kappa} =$ $\{-1, 0\} \cup \{3, 4\} \cup \{7\} \neq A$. Using Theorem 5.7 below, it is concluded also that A is not β -open, because $A \neq V_A \cup A_{\kappa}$.

(ii) Let $A := \{0, 1, 3, 4, 9, 11\}$. Then, we have $V_A \cup A_{\kappa} = V^+(0) \cup V^-(4) \cup A_{\kappa} = \{0, 1\} \cup \{3, 4\} \cup \{1, 3, 9, 11\} = A$. We have that A has an expression of the following form: $A = V_A \cup A_{\kappa}$. By Theorem 5.7 below, the set A is β -open in (\mathbb{Z}, κ) . We have directly that $Cl(Int(Cl(A))) = Cl(Int(\{0, 1, 2, 3, 4, 8, 9, 10, 11, 12\})) = Cl(U(2) \cup U(10)) = Cl(\{1, 2, 3, 9, 10, 11\}) = \{0, 1, 2, 3, 4\} \cup \{8, 9, 10, 11, 12\} \supseteq A$ and so A is β -open in (\mathbb{Z}, κ) .

Example 5.5 Let $2s, 2u \in \mathbb{Z}_{\mathcal{F}}$ and $2m + 1 \in \mathbb{Z}_{\kappa}$, where $s, u, m \in \mathbb{Z}$.

(i) A subset $V^+(2s)$ is β -open and β -closed.

Indeed, $Cl(Int(Cl(V^+(2s)))) = Cl(Int(Cl(\{2s, 2s+1\}))) = Cl(Int(\{2s, 2s+1, 2s+2\})) = Cl(\{2s+1\}) = \{2s, 2s+1, 2s+2\} \supset \{2s, 2s+1\} = V^+(2s) \text{ and so } V^+(2s) \text{ is } \beta\text{-open};$ $Int(Cl(Int(V^+(2s)))) = Int(Cl(\{2s+1\})) = Int(\{2s, 2s+1, 2s+2\}) = \{2s+1\} \subset V^+(2s) \text{ and so } V^+(2s) \text{ is } \beta\text{-closed.}$

(ii) A subset $V^{-}(2s)$ is β -open and β -closed. Indeed, we have that $Cl(Int(Cl(V^{-}(2s)))) = Cl(Int(Cl(\{2s-1,2s\}))) = Cl(Int(\{2s-2,2s-1,2s\})) = Cl(\{2s-1\}) = \{2s-2,2s-1,2s\} \supset \{2s-1,2s\} = V^{-}(2s)$ and so $V^{-}(2s)$ is β -open; $Int(Cl(Int(V^{-}(2s)))) = Int(Cl(\{2s-1\})) = Int(Cl(\{2s-1\})) = Int(\{2s-2,2s-1,2s\}) = \{2s-1\} \subset \{2s-1,2s\} = V^{-}(2s)$ and so $V^{-}(2s)$ is β -closed. (iii) A subset $V^{-}(2s) \cup V^{+}(2s+2)$ is β -open and β -closed.

Indeed, by (i) and (ii), the union $V^{-}(2s) \cup V^{+}(2s+2)$ is β -open. Since $Int(Cl(Int(V^{-}(2s) \cup V^{+}(2s+2)))) = Int(Cl(Int(\{2s-1,2s,2s+2,2s+3\}))) = Int(Cl(\{2s-1,2s+3\})) = Int(\{2s-2,2s-1,2s,2s+2,2s+3,2s+4\}) = \{2s-1,2s+3\} \subset V^{-}(2s) \cup V^{+}(2s+2)$, we have that $V^{-}(2s) \cup V^{+}(2s+2)$ is β -closed.

(iv) A subset $V^+(2u) \cup V^-(2u+4)$ is β -open; it is not β -closed; by (i) and (ii), $V^+(2u)$ and $V^-(2u+4)$ are β -closed.

Indeed, $Int(Cl(Int(V^+(2u) \cup V^-(2u+4)))) = Int(Cl(Int(\{2u, 2u+1, 2u+3, 2u+4\}))) = Int(Cl(\{2u+1, 2u+3\})) = Int(\{2u, 2u+1, 2u+2, 2u+3, 2u+4\}) = \{2u+1, 2u+2, 2u+3\} \not\subseteq V^+(2u) \cup V^-(2u+4))$ hold and so $V^+(2u) \cup V^-(2u+4)$ is not β -closed.

(v) A subset $\bigcup \{V_A(x) | x \in A_F\}$, say V_A , is β -open, where $A_F \neq \emptyset$. It is obtained by (i) and (ii) above and the well know fact that an arbitrary union of β -open sets is β -open in general (eg. [12]).

(vi) A subset $V^+(2m+1)$ is β -open and β -closed. Indeed, the proof is similar to one of (ii) above, because $V^+(2m+1) = \{2m+1, 2m+2\}$.

(vii) A subset $V^{-}(2m+1)$ is β -open and β -closed. Since $V^{-}(2m+1) = \{2m, 2m+1\}$, it is obtained by the proof in (i) above.

Definition 5.6 A subset F of a topological space (X, τ) is called:

(i) a $\pi\beta$ -set of (X, τ) , if F is expressible to the union of finitely β -closed sets;

(ii) a stably $\pi\beta$ -set of (X, τ) , if F is expressible to the union of any collection of β -closed sets.

We have a characterization on β -opennese of subsets in (\mathbb{Z}, κ) as follows.

Theorem 5.7 Let A be a subset of (\mathbb{Z}, κ) .

(i) Assume that $A_{\mathcal{F}} \neq \emptyset$.

(i-1) If A is β -open, then A is expressible as the union: $V_A \cup A_\kappa$, where $V_A := \bigcup \{V_A(x) | x \in A_\mathcal{F}\}$ (cf. Definition 5.3 (iii)).

(i-2) If A satisfies a property that $A = V_A \cup A_{\kappa}$, then A is β -open.

(ii) Assume that $A_{\mathcal{F}} = \emptyset$. Then, $V_A = \emptyset$ and $A = A_{\kappa}$ hold and A is open; it is β -open.

Proof. (i) (i-1) We have that $A \subseteq V_A \cup A_\kappa$, because $A = A_\kappa \cup A_\mathcal{F}$ and $A_\mathcal{F} \subseteq V_A$ hold in general. Conversely, in order to prove that $V_A \cup A_\kappa \subseteq A$, let $y \in V_A \cup A_\kappa$.

Case 1. $y \in A_{\kappa}$: for this case, $y \in A$, because $A_{\kappa} \subseteq A$ in general.

Case 2. $y \in V_A$: for this case, there exists a point x such that $y \in V_A(x)$ and $x \in A_{\mathcal{F}}$. Then, x = 2s for some integer $s \in \mathbb{Z}$ and $x \in A$. Because A is β -open, by [14], it is concluded that $A \subseteq Cl(A_{\kappa})$ holds. Since $x = 2s \in A_{\mathcal{F}} \subseteq A$, we have that $U(x) \cap A_{\kappa} \neq \emptyset$, where $U(x) = \{x - 1, x, x + 1\}$ is the smallest open set containing the point x = 2s. If y = x, then $y \in A$. Hence, we suppose that $y \neq x$. We note that $y \in V_A(x) \subseteq U(x)$.

(Case 2-1). If $x + 1 \in A$, then $V_A(x) = V^+(x) = \{x, x + 1\}$ and so $y = x + 1 \in A$ because

 $y \neq x$.

(Case 2-2). If $x + 1 \notin A$, then $V_A(x) = V^-(x) = \{x - 1, x\}$ and so y = x - 1 because $y \neq x$. Since $\{x-1, x, x+1\} \cap A_{\kappa} \neq \emptyset, x \notin A_{\kappa}$ and $x+1 \notin A_{\kappa}$, we have that $x-1 \in A_{\kappa}$ and hence $y = x - 1 \in A.$

Thus we obtain that $y \in A$ for this point for Case 2.

Therefore, we prove that $V_A \cup A_{\kappa} \subseteq A$ and hence $V_A \cup A_{\kappa} = A$.

(i-2) Suppose that $A = V_A \cup A_{\kappa}$. We recall that $V_A := \bigcup \{V_A(x) | x \in A_F\}$ and $V_A(x) =$ $\{x, x+1\}$ or $V_A(x) = \{x-1, x\}$, where $x \in A_{\mathcal{F}}$. We first show that $\{x\} \subseteq Cl((V_A(x))_{\kappa})$ for a point $x \in A_{\mathcal{F}}$. Indeed, if $V_A(x) = V^+(x)$, then $Cl((V_A(x))_{\kappa}) = Cl(V^+(x) \setminus \{x\}) =$ $Cl(\{x+1\}) = \{x, x+1, x+2\}; \text{ if } V_A(x) = V^-(x), \text{ then } Cl((V_A(x))_{\kappa}) = Cl(\{x-1\}) = Cl(\{x-1\})$ $\{x-2, x-1, x\}$; thus $x \in Cl((V_A(x))_{\kappa})$. Secondly, by using the property above, it is shown that $Cl((V_A)_{\kappa}) = Cl((\bigcup\{V_A(x)|x \in A_{\mathcal{F}}\})_{\kappa}) \supseteq \bigcup\{Cl((V_A(x))_{\kappa})|x \in A_{\mathcal{F}}\} \supseteq \bigcup\{\{x\}|x \in V_{\mathcal{F}}\}$ $A_{\mathcal{F}} = A_{\mathcal{F}}$, i.e., $Cl((V_A)_{\kappa}) \supseteq A_{\mathcal{F}}$. Finally, using the assumption of (i-2), we show that $Cl(A_{\kappa}) = Cl((V_A \cup A_{\kappa})_{\kappa}) = Cl((V_A)_{\kappa} \cup (A_{\kappa})_{\kappa}) = Cl((V_A)_{\kappa}) \cup Cl(A_{\kappa}) \supseteq A_{\mathcal{F}} \cup A_{\kappa} = A$ and hence $Cl(A_{\kappa}) \supseteq A$. By [14], it is concluded that A is β -open in (\mathbb{Z}, κ) .

(ii) If $A_{\mathcal{F}} = \emptyset$, then $V_A = \emptyset$ and $A = A_{\kappa}$, because $A_{\mathcal{F}} = \emptyset$ and $A = A_{\kappa} \cup A_{\mathcal{F}}$ (disjoint union); A is open and hence A is β -open.

We need the following notation:

 $T^{e}(\mathbb{Z};\kappa) := \{ f_{2m} | m \in \mathbb{Z} \}, T^{o}(\mathbb{Z};\kappa) := \{ f_{2m+1} | m \in \mathbb{Z} \} \text{ and } T(\mathbb{Z};\kappa) := T^{e}(\mathbb{Z};\kappa) \cup T^{o}(\mathbb{Z};\kappa),$ where $f_{2m}(x) := x + 2m$ and $f_{2m+1}(x) = x + 2m + 1$ for every $x \in \mathbb{Z}$ and for an integer m.

Lemma 5.8 Let A and E be subsets of \mathbb{Z} . We have the following properties on the function $f_{2m+1}: \mathbb{Z} \to \mathbb{Z}, where m \in \mathbb{Z}:$

(i) (i-1) $f_{2m+1}^{-1}(A_{\mathcal{F}}) = (f_{2m+1}^{-1}(A))_{\kappa}$ and $f_{2m+1}(E_{\mathcal{F}}) = (f_{2m+1}(E))_{\kappa}$ hold; (i-2) $f_{2m+1}^{-1}(A_{\kappa}) = (f_{2m+1}^{-1}(A))_{\mathcal{F}}$ and $f_{2m+1}(E_{\kappa}) = (f_{2m+1}(E))_{\mathcal{F}}$ hold.

(ii) For a point $x \in A_{\mathcal{F}}$, $f_{2m+1}^{-1}(V_A(x)) = V_B(f_{2m+1}^{-1}(x))$ holds, where $B := f_{2m+1}^{-1}(A)$. (iii) $f_{2m+1}^{-1}(V_A) = \bigcup \{V_B(y) | y \in (f_{2m+1}^{-1}(A))_{\kappa}\}$, where $B := f_{2m+1}^{-1}(A)$ and V_A is defined by Definition 5.3 (iii).

(iv) (Example 5.5 (v)) V_A is β -open.

(v) $f_{2m+1}^{-1}(V_A)$ is β -open.

(vi) If A is a finite subset of (\mathbb{Z}, κ) with $A_{\mathcal{F}} \neq \emptyset$, then V_A and $f_{2m+1}^{-1}(V_A)$ are the union of a finitely β -closed sets. Namely, they are $\pi\beta$ -sets (cf. Definition 5.6 (i)).

(vii) If $A_{\mathcal{F}} \neq \emptyset$, then V_A and $f_{2m+1}^{-1}(V_A)$ are the union of any collection of β -closed sets. Namely, they are stably $\pi\beta$ -sets (cf. Definition 5.6 (ii)).

Proof. (i) (i-1) It is shown that $f_{2m+1}^{-1}(A_{\mathcal{F}}) = \{x - (2m+1) | x \in A_{\mathcal{F}}\} = \{2s - (2m+1) | 2s \in A_{\mathcal{F}}\}$ $A, s \in \mathbb{Z} = (\{x - (2m+1) | x \in A\})_{\kappa}$ hold, because $x - (2m+1) \in \mathbb{Z}_{\kappa}$ if and only if $x \in \mathbb{Z}_{\mathcal{F}}$. The later equality is obtained by similar argument. (i-2) They are proved by using (i-1).

(ii) For a point $x \in A_{\mathcal{F}}$, we have the following two cases:

(Case 1). $x + 1 \in A$: for this case, we have that $f_{2m+1}^{-1}(x + 1) \in f_{2m+1}^{-1}(A)$ and so $y + 1 \in B$, where $y := f_{2m+1}^{-1}(x)$ and $B := f_{2m+1}^{-1}(A)$. Thus, for the subset B and the point $y, V_B(y)$ is well defined and $V_B(y) = V^+(y) = \{y, y + 1\}$ (cf. Definition 5.3 (ii)). Then, since $V_A(x) = V^+(x)$ for this point x, it is shown that $f_{2m+1}^{-1}(V_A(x)) = f_{2m+1}^{-1}(\{x, x + 1\}) = V^+(x)$. $\{y, y+1\} = V_B(y) = V_B(f_{2m+1}^{-1}(x)).$

(Case 2). $x+1 \notin A$: for this case, we have that $y+1 \notin B$, where $y := f_{2m+1}^{-1}(x)$ and B := $f_{2m+1}^{-1}(A)$. Thus, $V_B(y)$ is well defined and $V_B(y) = V^-(y) = \{y - 1, y\}$ (cf. Definition 5.3) (ii)). Then, since $V_A(x) = V^-(x)$ for this point x, it is shown that $f_{2m+1}^{-1}(V_A(x)) =$ $f_{2m+1}^{-1}(\{x-1,x\}) = \{y-1,y\} = V_B(f_{2m+1}^{-1}(x)).$

(iii) Using (i) above, we note that $x \in A_{\mathcal{F}}$ if and only if $f_{2m+1}^{-1}(x) \in (f_{2m+1}^{-1}(A))_{\kappa}$. Then, we have that $f_{2m+1}^{-1}(V_A) = \bigcup \{f_{2m+1}^{-1}(V_A(x)) | x \in A_{\mathcal{F}}\} = \bigcup \{V_B(z) | z \in (f_{2m+1}^{-1}(A))_{\kappa}\}$, where $B := f_{2m+1}^{-1}(A)$ (cf. (ii) above).

(v) The subset $f_{2m+1}^{-1}(V_A)$ is the union of a collection of β -open sets (cf. (iii) above and Example 5.5 (vi),(vii)). Thus, $f_{2m+1}^{-1}(V_A)$ is β -open.

(vi) The set V_A (resp. $f_{2m+1}^{-1}(V_A)$) is the union of finitely β -closed sets (cf. Definition 5.3 (ii) and Example 5.5 (i), (ii) (resp. (iii) above and Example 5.5 (vi), (vii))). Thus, V_A (resp. $f_{2m+1}^{-1}(V_A)$) is a $\pi\beta$ -set (cf. Definition 5.6 (i)).

(vii) It is obvious from (iii) above and Example 5.5 (vi),(vii).

The above Lemma 5.8 (vi) and (vii) suggest the following concepts:

Definition 5.9 (i-1) A function $f: (X, \tau) \to (Y, \sigma)$ is said to be:

contra-stably- $\pi\beta$ -continuous (briefly, contra-st- $\pi\beta$ -continuous) if $f^{-1}(F)$ is a stably $\pi\beta$ set of (X, τ) for every β -open set F of (Y, σ) .

(i-2) A function $f: (X, \tau) \to (Y, \sigma)$ is said to be:

a contra-stably- $\pi\beta$ -homeomorphism (briefly, contra-st- $\pi\beta$ -homeomorphism) if f is a contrastably $\pi\beta$ -continuous bijection and f^{-1} is contra-stably $\pi\beta$ -continuous.

(ii) For a topological space (X, τ) , we denote a collection of all contra-st- $\pi\beta$ -homeomorhisms from (X, τ) onto itself as follows:

 $con-st-\pi\beta h(X;\tau) := \{f | f: (X,\tau) \to (X,\tau) \text{ is a contra-st-}\pi\beta-\text{homeomorphism}\}.$

Theorem 5.10 (i) For a topological space (X, τ) , we have the following implications:

 $h(X;\tau) \subseteq \beta ch(X;\tau) \cup con-\beta ch(X;\tau) \subseteq \beta ch(X;\tau) \cup con-st-\pi\beta h(X;\tau).$

(ii) For each integer m, the following properties hold:

(ii-1) $f_{2m+1} \notin con - \beta ch(\mathbb{Z}; \kappa), f_{2m+1} \notin \beta ch(\mathbb{Z}; \kappa);$

(ii-2) $f_{2m+1} \notin h(\mathbb{Z};\kappa);$

(ii-3) (Example 5.2 (d)) $f_{2m} \in h(\mathbb{Z}; \kappa)$.

(iii) For each integer m, f_{2m+1} is contra-stably $\pi\beta$ -continuous and so f_{2m+1} is a contrastably $\pi\beta$ -homeomorphism. Namely, $f_{2m+1} \in con-st-\pi\beta h(\mathbb{Z};\kappa)$.

(iv) The collection $T^e(\mathbb{Z};\kappa)$ is a subgroup of $h(\mathbb{Z},\kappa)$.

(v) The collection $T^e(\mathbb{Z};\kappa) \cup T^o(\mathbb{Z};\kappa)$, say $T(\mathbb{Z};\kappa)$, forms a group under the compositions of functions; the group $T(\mathbb{Z};\kappa)$ is included in the family $h(\mathbb{Z};\kappa) \cup \text{ con-st-}\pi\beta h(\mathbb{Z};\kappa)$ (cf. (ii-3), (iii), (iv) above).

Proof. (i) By Theorem 4.4 (v), it was obtained that $h(X,\tau) \subseteq \beta ch(X,\tau) \cup con-\beta ch(X,\tau)$. By definitions, it is shown that every contra- β -irresolute function, say f, is contra-stably $\pi\beta$ continuous. Indeed, for a β -open set A, $f^{-1}(A)$ is a β -closed set and so it is a stably $\pi\beta$ -set (cf. Definition 4.1, Definition 5.9 (i-1)). Therefore, we have that $con-\beta ch(X;\tau) \subseteq con-st-\pi\beta h(X;\tau)$ and so the required implication.

(ii-1) (ii-2) Let $A := V^{-}(2s) \cup V^{+}(2s+2)$, where $s \in \mathbb{Z}$. Then, the subset A is β -open (also it is β -closed) (cf. Example 5.5 (iii)) and $f_{2m+1}^{-1}(A) = V^{+}(2u) \cup V^{-}(2u+4)$ is not β -closed and it is β -open (cf. Example 5.5 (iv)), where u := s - m - 1 and so 2u = 2s - (2m+1) - 1, 2u + 4 = 2s + 2 - (2m+1) + 1. Therefore, f_{2m+1} is not contra- β -irresolute; f_{2m+1} is not β -irresolute. and hence $f_{2m+1} \notin con-\beta ch(\mathbb{Z};\kappa)$; $f_{2m+1} \notin \beta ch(\mathbb{Z};\kappa)$.

(iii) Let A be a β -open set of (\mathbb{Z}, κ) . First, suppose that $A_{\mathcal{F}} \neq \emptyset$. Using Theorem 5.7 (i-1), we put $A = V_A \cup A_{\kappa}$. For a point $x = 2s \in A_{\mathcal{F}}$, where $s \in \mathbb{Z}$, we set $B := f_{2m+1}^{-1}(A)$. Then, we have that if $x + 1 \in A$, then $f_{2m+1}^{-1}(V_A(x)) = \{x - (2m + 1), x + 1 - (2m + 1)\} = \{2(s - m) - 1, 2(s - m)\} = V^+(2(s - m) - 1) = V_B(f_{2m+1}^{-1}(x)); \text{ if } x + 1 \notin A, \text{ then } f_{2m+1}^{-1}(V_A(x)) = \{x - 1 - (2m + 1), x - (2m + 1)\} = \{2(s - m - 1), 2(s - m) - 1\} = \{2(s - m - 1), 2(s - m) - 1\} = \{2(s - m - 1), 2(s - m) - 1\} = \{2(s - m - 1), 2(s - m) - 1\}$ $V^{-}(2(s-m)-1) = V_{B}(f_{2m+1}^{-1}(x))$. Using Theorem 5.7 (i-1) and Lemma 5.8 (i-2),(vii), we have that

(*) $f_{2m+1}^{-1}(A) = (f_{2m+1}^{-1}(V_A)) \cup (f_{2m+1}^{-1}(A))_{\mathcal{F}}$ and (**) $f_{2m+1}^{-1}(V_A)$ is a stably $\pi\beta$ -set.

Since the subset $(f_{2m+1}^{-1}(A))_{\mathcal{F}}$ is closed (cf. [13, Lemma 2.6 (ii)]), it is β -closed. Thus, it follows from (*) and (**) that the above subset $f_{2m+1}^{-1}(A)$ is a stably $\pi\beta$ -set. Finally, suppose that $A_{\mathcal{F}} = \emptyset$. Then, $A = A_{\kappa}$ holds (\mathbb{Z}, κ) (cf. Theorem 5.7 (ii)). We have that, by Lemma 5.8 (i-2), $f_{2m+1}^{-1}(A) = f_{2m+1}^{-1}(A_{\kappa}) = (f_{2m+1}^{-1}(A))_{\mathcal{F}}$ and so $f_{2m+1}^{-1}(A)$ is a closed set (cf. [13, Lemma 2.6 (ii)]); thus $f_{2m+1}^{-1}(A)$ is a stably $\pi\beta$ -set. For both cases above, $f_{2m+1}^{-1}(A)$ is a stably $\pi\beta$ -set for every β -open set A. Namely,

 f_{2m+1} is stably $\pi\beta$ -continuous. Since f_{2m+1} is bijective and $(f_{2m+1})^{-1} = f_{-(2m+1)}$ holds, $f_{2m+1}: (\mathbb{Z}, \kappa) \to (\mathbb{Z}, \kappa)$ is a contra-stably $\pi\beta$ -homeomorphism.

(iv) Let $a, b \in T^e(\mathbb{Z}; \kappa)$. Then, there exist integers m and s such that $a = f_{2m}$ and b = f_{2s} . Since the binary operation $W_{\mathbb{Z}}: h(\mathbb{Z};\kappa) \times h(\mathbb{Z};\kappa) \to h(\mathbb{Z};\kappa)$ is defined by $W_{\mathbb{Z}}(a',b') :=$ $b' \circ a'$ for every $a', b' \in h(\mathbb{Z}; \kappa)$ and $T^e(\mathbb{Z}; \kappa) \subset h(\mathbb{Z}; \kappa)$ (cf. (ii-3) above), we have that $W_{\mathbb{Z}}(a, b^{-1}) = (f_{2s})^{-1} \circ f_{2m} = f_{2(m-s)} \in T^e(\mathbb{Z}; \kappa)$. Moreover, $f_0 = 1_{\mathbb{Z}} \in T^e(\mathbb{Z}; \kappa) \neq \emptyset$ hold and so $T^e(\mathbb{Z};\kappa)$ is a subgroup of $h(\mathbb{Z};\kappa)$.

(v) Let $a, b \in T^e(\mathbb{Z}; \kappa) \cup T^o(\mathbb{Z}; \kappa)$. Then, if $a, b \in T^e(\mathbb{Z}; \kappa)$, then $b \circ a \in T^e(\mathbb{Z}; \kappa)$; if $a \in T^{o}(\mathbb{Z};\kappa)$ and $b \in T^{o}(\mathbb{Z};\kappa)$, then $b \circ a \in T^{o}(\mathbb{Z};\kappa)$; if $a \in T^{o}(\mathbb{Z};\kappa)$ and $b \in T^{e}(\mathbb{Z};\kappa)$. then $b \circ a \in T^o(\mathbb{Z};\kappa)$; if $a, b \in T^o(\mathbb{Z};\kappa)$, then $b \circ a \in T^e(\mathbb{Z};\kappa)$. Thus, a binary operation $W'_{\mathbb{Z}}: T(\mathbb{Z};\kappa) \times T(\mathbb{Z};\kappa) \to T(\mathbb{Z};\kappa)$ is well defined by the composition of functions. It is obviously $T(\mathbb{Z};\kappa)$ forms a group. Let $f \in T(\mathbb{Z};\kappa)$; then if $f \in T^e(\mathbb{Z};\kappa)$, then $f \in h(\mathbb{Z};\kappa)$ (cf. (iv) above); if $f \in T^0(\mathbb{Z};\kappa)$, then $f \in con-st-\pi\beta h(\mathbb{Z};\kappa)$ (cf. (iii) above). Therefore, we have $T(\mathbb{Z};\kappa) \subseteq h(\mathbb{Z};\kappa) \cup con\text{-}st\text{-}\pi\beta h(\mathbb{Z};\kappa)$ as subset.

References

- [1] M.E. Abd El-Monsef, S.N.El-Deeb and R.A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12(1983), 77-90.
- [2] D. Andrijević, Semi-preopen sets, Mat. Vesnik, 38(1986), 24–32.
- [3] G. Aslim, A. Cakshu Guler and T. Noiri, On πgs -closed sets in topological spaces, Acta. Math. Hungar., **112**(4) (2004), 275–283.
- [4] M. Caldas and S. Jafari, Weak and strong form of β -irresoluteness, Arabian J. Sci. Engrg., **31** 1A(2006), 31-39.
- [5] J.Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser.A, (Math.), 16(1995), 35-48.
- [6] M. Fujimoto, S. Takigawa, J. Dontchev, T. Noiri and H. Maki, The topological structure and groups of digital n-spaces, Kochi J. Math., 1(2006), 31-55.
- [7] E.D.Khalimsky, Applications of connected ordered topological spaces in topology, Conference of Math. Department of Povolosia, (1970).
- [8] E.D.Khalimsky, R.Kopperman and P.R.Meyer, Computer graphics and connected topologies in finite ordered sets, Topology Appl., **36**(1990), 1–17.
- [9] T.Y.Kong, R.Kopperman and P.R.Meyer, A topological approach to digital topology, Amer. Math. Monthly, **98**(1991), 901–917.
- [10] V. Kovalevsky and R.Kopperman, Some topology-based image processing algorithms, Ann. New York Acad. Sci., Papers on General Topology and Applications, 728(1994), 174–182.

- [11] R.A Mahmoud and M.E.Abd El-Monsef, β-irresolute and β-topological invariant, Proc. Pakistan Acad. Sci., 27(1990), 285-296.
- [12] S. Tahiliani, On $\pi g\beta$ -closed sets in topological spaces (accepted for publication, Note di Math.)
- [13] S. Takigawa and H. Maki, Every nonempty open set of the digital n-space is expressible as the union of finitely many nonempty regular open sets, Sci. Math. Jpn., 67(3)(2008), 395– 376;e2007, 601-612.
- [14] S. Takigawa, On characterizations on preopen sets and semi-open sets of digital n-spaces (preparing).
- [15] S. Takigawa, M. Ganster, H. Maki, T. Noiri and M. Fujimoto, *The digital n-space is quasi-submaximal*, Questions Answers Gen. Topology, 26(2008), 45–52.

S.C. ARORA: Sanjay TAHILIANI: (Affiliation) Department of Mathematics Delhi University, Delhi-110007, India (e-mail address):scrora@maths.du.ac.in (e-mail address):sanjaytahiliani@yahoo.com

Haruo MAKI: (Postal address) Wakagi-dai 2-10-13, Fukutsu-shi Fukuoka-ken, 811-3221 Japan (e-mail address):makih@pop12.odn.ne.jp