GIAMBELLI'S FORMULA AND THE BEST CONSTANT OF SOBOLEV INEQUALITY IN ONE DIMENSIONAL EUCLIDEAN SPACE

Yoshinori Kametaka, Atsushi Nagai ${ }^{\dagger}$, Kohtaro Watanabe ${ }^{\ddagger}$, Kazuo Takemura ${ }^{\S}$ and Hiroyuki Yamagishi ${ }^{〔}$

Received March 14, 2008; revised April 20, 2009

Abstract

The best constant of Sobolev inequality associated with $2 N$-th order Hurwitz-type differential operator is computed. Giambelli's formula which appears in representation theory of finite groups plays an important role.

1 Conclusion

For $N=1,2,3, \cdots$, we introduce the following characteristic polynomial with real coefficients.

$$
\begin{equation*}
Q(z)=\prod_{j=0}^{N-1}\left(z+a_{j}\right)=\sum_{j=0}^{N} q_{j} z^{N-j} \tag{1.1}
\end{equation*}
$$

We impose the following three equivalent assumptions.
Assumption 1.1 $Q(z)$ is Hurwitz polynomial with distinct characteristic roots.
Assumption 1.2 Suppose that $N=L+2 M(L, M=0,1,2, \cdots)$

$$
\begin{aligned}
& a_{i} \neq a_{j} \quad(i \neq j), \quad a_{j}>0 \quad(0 \leq j \leq L-1) \\
& a_{L+j}=\bar{a}_{L+M+j}, \quad \operatorname{Re} a_{L+j}>0, \quad \operatorname{Im} a_{L+j}>0
\end{aligned} \quad(0 \leq j \leq M-1)
$$

Assumption 1.3

$$
\text { G.C.D. }\left(Q(z), Q^{\prime}(z)\right)=1, \quad\left|q_{-i+2 j+1}\right|_{0 \leq i, j \leq k-1}>0 \quad(k=1,2, \cdots, N)
$$

where $q_{k}=0(k<0$ or $k>N)$.
In relation to $Q(z)$, we introduce another polynomial $P(z)$ defined by

$$
\begin{equation*}
P(z)=\prod_{j=0}^{N-1}\left(z+a_{j}^{2}\right)=\sum_{j=0}^{N} p_{j} z^{N-j} \tag{1.2}
\end{equation*}
$$

which satisfies $P\left(-z^{2}\right)=Q(-z) Q(z)$. The following relations hold

$$
p_{k}=\sum_{j=0}^{2 k}(-1)^{k+j} q_{j} q_{2 k-j} \quad(0 \leq k \leq N)
$$

[^0]where $q_{j}=0(N+1 \leq j<\infty)$. From Assumption 1.3 we have $q_{j}>0(0 \leq j \leq N-1)$. We also have $p_{0}=1, p_{N}=\prod_{j=0}^{N-1} a_{j}^{2}>0$ from (1.2).

We introduce Sobolev space

$$
\begin{equation*}
H=H(N)=\left\{u(x) \mid u^{(i)}(x) \in L^{2}(-\infty, \infty) \quad(0 \leq i \leq N)\right\} \tag{1.3}
\end{equation*}
$$

equipped with Sobolev inner product

$$
\begin{equation*}
(u, v)_{H}=\int_{-\infty}^{\infty}(Q(D) u(x)) \overline{(Q(D) v(x))} d x \tag{1.4}
\end{equation*}
$$

In section $4,(\cdot, \cdot)_{H}$ is shown to be an inner product of H and rewritten as

$$
\begin{equation*}
(u, v)_{H}=\int_{-\infty}^{\infty} \sum_{j=0}^{N} p_{j} u^{(N-j)}(x) \bar{v}^{(N-j)}(x) d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P\left(\xi^{2}\right) \widehat{u}(\xi) \widehat{\hat{v}}(\xi) d \xi \tag{1.5}
\end{equation*}
$$

where $D=d / d x$ and $\widehat{u}(\xi)$ is Fourier transform of $u(x)$,

$$
\widehat{u}(\xi)=\int_{-\infty}^{\infty} e^{-\sqrt{-1} \xi x} u(x) d x \quad(-\infty<\xi<\infty)
$$

We also introduce Sobolev energy

$$
\begin{align*}
& \|u\|_{H}^{2}=(u, u)_{H}=\int_{-\infty}^{\infty}|Q(D) u(x)|^{2} d x= \\
& \int_{-\infty}^{\infty} \sum_{j=0}^{N} p_{j}\left|u^{(N-j)}(x)\right|^{2} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P\left(\xi^{2}\right)|\widehat{u}(\xi)|^{2} d \xi \tag{1.6}
\end{align*}
$$

The purpose of this paper is to find the supremum of Sobolev functional given by

$$
\begin{equation*}
S(u)=\left(\sup _{-\infty<y<\infty}|u(y)|\right)^{2} /\|u\|_{H}^{2} \tag{1.7}
\end{equation*}
$$

In our previous paper [1], we have obtained the supremum of $S(u)$ under the assumption that $P(z)=\sum_{j=0}^{N} p_{j} z^{N-j}$ is factorized as follows.

$$
P(z)=\prod_{j=0}^{N-1}\left(z+a_{j}\right), \quad 0<a_{0}<a_{1}<\cdots<a_{N-1}
$$

We extend the above result in the case $P(z)$ is given by (1.2), where not all the coefficients $p_{j}(0 \leq j \leq N-1)$ are positive.

We introduce a function $G(x, y)=G(x-y)$ defined by

$$
\begin{equation*}
G(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{\sqrt{-1} x \xi} \widehat{G}(\xi) d \xi \quad(-\infty<x<\infty) \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\widehat{G}(\xi)=\frac{1}{P\left(\xi^{2}\right)} \quad(-\infty<\xi<\infty) \tag{1.9}
\end{equation*}
$$

As is shown later in section 2 , the above function $G(x-y)$ is Green function of the boundary value problem for $2 N$-th order differential operator $P\left(-D^{2}\right)$. We remark that the inequality

$$
\begin{equation*}
\delta\left(\xi^{2 N}+1\right)^{-1} \leq \widehat{G}(\xi) \leq \delta^{-1}\left(\xi^{2 N}+1\right)^{-1} \tag{1.10}
\end{equation*}
$$

holds for suitable number $\delta>0$, which follows from

$$
\begin{aligned}
& P\left(\xi^{2}\right)=|Q(\sqrt{-1} \xi)|^{2}=\prod_{j=0}^{L-1}\left(\xi^{2}+a_{j}^{2}\right) \prod_{j=0}^{M-1}\left[\left(\xi+\operatorname{Im} a_{L+j}\right)^{2}+\left(\operatorname{Re} a_{L+j}\right)^{2}\right]^{2} \\
& (-\infty<\xi<\infty)
\end{aligned}
$$

Our conclusion is as follows.
Theorem $1.1(1) \quad C(N)=\sup _{u \in H, u \neq 0} S(u)$ is given by $C(N)=G(0)$. For any real number y and complex number c, we have $S(c G(x-y))=C(N)$.
(2) $\inf _{u \in H, u \neq 0} S(u)=0$

The above theorem (1) is equivalently rewritten as follows.
Theorem 1.2 For any function $u(x) \in H$, there exists a positive constant C which is independent of $u(x)$ such that the following Sobolev inequality holds.

$$
\begin{equation*}
\left(\sup _{-\infty<y<\infty}|u(y)|\right)^{2} \leq C \int_{-\infty}^{\infty} \sum_{j=0}^{N} p_{j}\left|u^{(N-j)}(x)\right|^{2} d x \tag{1.12}
\end{equation*}
$$

Among such C the best constant $C(N)$ is the same as that in Theorem 1.1(1). If we replace C by $C(N)$ in (1.12), the equality holds for

$$
\begin{equation*}
u(x)=c G(x-y) \quad(-\infty<x<\infty) \tag{1.13}
\end{equation*}
$$

where y is an arbitrary real number and c is an arbitrary complex number.
The engineering meaning of Sobolev inequality is that the square of the maximum bending of a string $[2](N=1)$ or a beam $(N=2)$ is estimated from above by the constant multiple of the potential energy.
Theorem 1.3 The best constant $C(N)$ of Sobolev inequality is expressed in the following two ways.
(1) $\quad C(1)=\frac{1}{2 a_{0}}$

$$
C(N)=\frac{(-1)^{N+1}}{2 a_{0} \cdots a_{N-1}}\left|\begin{array}{lll}
& a_{j}^{2 i+1} & \tag{1.14}\\
\cdots & 1 & \cdots
\end{array}\right| / a_{j}^{2 i} \quad(N=2,3,4, \cdots)
$$

In the numerator of the right hand side of (1.14), we have $0 \leq i \leq N-2,0 \leq j \leq N-1$ and in the denominator $0 \leq i, j \leq N-1$.
(2) $\quad C(1)=\frac{1}{2 q_{1}}$

$$
\begin{align*}
& C(2)=\frac{1}{2 q_{1} q_{2}} \\
& C(N)=\frac{1}{2 q_{N}}\left|q_{N-2-2 i+j}\right| /\left|q_{N-1-2 i+j}\right| \quad(N=3,4,5, \cdots) \tag{1.15}
\end{align*}
$$

In the numerator of the right hand side of (1.15), we have $0 \leq i, j \leq N-3$ and in the denominator $0 \leq i, j \leq N-2$.

We here list explicit forms of $C(N)(N=1,2,3,4,5)$.

$$
\begin{aligned}
& C(1)=\frac{1}{2 a_{0}}=\frac{1}{2 q_{1}} \\
& C(2)=-\frac{1}{2 a_{0} a_{1}}\left|\begin{array}{cc}
a_{0} & a_{1} \\
1 & 1
\end{array}\right| /\left|\begin{array}{cc}
1 & 1 \\
a_{0}^{2} & a_{1}^{2}
\end{array}\right|=\frac{1}{2 a_{0} a_{1}\left(a_{0}+a_{1}\right)}=\frac{1}{2 q_{1} q_{2}} \\
& C(3)=\frac{1}{2 a_{0} a_{1} a_{2}}\left|\begin{array}{ccc}
a_{0} & a_{1} & a_{2} \\
a_{0}^{3} & a_{1}^{3} & a_{2}^{3} \\
1 & 1 & 1
\end{array}\right| /\left|\begin{array}{ccc}
1 & 1 & 1 \\
a_{0}^{2} & a_{1}^{2} & a_{2}^{2} \\
a_{0}^{4} & a_{1}^{4} & a_{2}^{4}
\end{array}\right|= \\
& \frac{a_{0}+a_{1}+a_{2}}{2 a_{0} a_{1} a_{2}\left(a_{0}+a_{1}\right)\left(a_{0}+a_{2}\right)\left(a_{1}+a_{2}\right)}=\frac{1}{2 q_{3}} q_{1} /\left|\begin{array}{ll}
q_{2} & q_{3} \\
q_{0} & q_{1}
\end{array}\right|=\frac{q_{1}}{2 q_{3}\left(q_{1} q_{2}-q_{3}\right)} \\
& C(4)=-\frac{1}{2 a_{0} a_{1} a_{2} a_{3}}\left|\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
a_{0}^{3} & a_{1}^{3} & a_{2}^{3} & a_{3}^{3} \\
a_{0}^{5} & a_{1}^{5} & a_{2}^{5} & a_{3}^{5} \\
1 & 1 & 1 & 1
\end{array}\right| /\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
a_{0}^{2} & a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\
a_{0}^{4} & a_{1}^{4} & a_{2}^{4} & a_{3}^{4} \\
a_{0}^{6} & a_{1}^{6} & a_{2}^{6} & a_{3}^{6}
\end{array}\right|= \\
& \frac{1}{2 q_{4}}\left|\begin{array}{cc}
q_{2} & q_{3} \\
q_{0} & q_{1}
\end{array}\right| /\left|\begin{array}{ccc}
q_{3} & q_{4} & 0 \\
q_{1} & q_{2} & q_{3} \\
0 & q_{0} & q_{1}
\end{array}\right|=\frac{q_{1} q_{2}-q_{3}}{2 q_{4}\left(q_{1} q_{2} q_{3}-q_{3}^{2}-q_{1}^{2} q_{4}\right)} \\
& C(5)= \\
& \frac{1}{2 a_{0} a_{1} a_{2} a_{3} a_{4}}\left|\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} \\
a_{0}^{3} & a_{1}^{3} & a_{2}^{3} & a_{3}^{3} & a_{4}^{3} \\
a_{0}^{5} & a_{1}^{5} & a_{2}^{5} & a_{3}^{5} & a_{4}^{5} \\
a_{0}^{7} & a_{1}^{7} & a_{2}^{7} & a_{3}^{7} & a_{4}^{7} \\
1 & 1 & 1 & 1 & 1
\end{array}\right| \quad\left|\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
a_{0}^{2} & a_{1}^{2} & a_{2}^{2} & a_{3}^{2} & a_{4}^{2} \\
a_{0}^{4} & a_{1}^{4} & a_{2}^{4} & a_{3}^{4} & a_{4}^{4} \\
a_{0}^{6} & a_{1}^{6} & a_{2}^{6} & a_{3}^{6} & a_{4}^{6} \\
a_{0}^{8} & a_{1}^{8} & a_{2}^{8} & a_{3}^{8} & a_{4}^{8}
\end{array}\right|= \\
& \frac{1}{2 q_{5}}\left|\begin{array}{ccc}
q_{3} & q_{4} & q_{5} \\
q_{1} & q_{2} & q_{3} \\
0 & q_{0} & q_{1}
\end{array}\right| /\left|\begin{array}{cccc}
q_{4} & q_{5} & 0 & 0 \\
q_{2} & q_{3} & q_{4} & q_{5} \\
q_{0} & q_{1} & q_{2} & q_{3} \\
0 & 0 & q_{0} & q_{1}
\end{array}\right|= \\
& \frac{q_{1} q_{2} q_{3}-q_{3}^{2}-q_{1}^{2} q_{4}+q_{1} q_{5}}{2 q_{5}\left(q_{1} q_{2} q_{3} q_{4}-q_{3}^{2} q_{4}-q_{1}^{2} q_{4}^{2}-q_{1} q_{2}^{2} q_{5}+q_{2} q_{3} q_{5}+2 q_{1} q_{4} q_{5}-q_{5}^{2}\right)}
\end{aligned}
$$

This paper is organized as follows. In section 2 , we consider the $2 N$-th order boundary value problem and find its Green function $G(x)$. In section 3, we give expressions of $G(0)$, where Giambelli's formula [3, 4] plays an important role. In section 4, it is shown that Green function is a reproducing kernel for H and $(\cdot, \cdot)_{H}$. The section 5 and 6 are devoted to proofs of the main Theorems 1.2 and $1.1(2)$, respectively. Finally, in section 7, we consider the special case of Theorem $1.2(N=1,2,3)$.

2 Green function

We consider the following boundary value problem for a $2 N$-th order linear ordinary differential operator $P\left(-D^{2}\right)=Q(-D) Q(D)$.
$\operatorname{BVP}(N)$

$$
\begin{cases}P\left(-D^{2}\right) u=f(x) & (-\infty<x<\infty) \tag{2.1}\\ u^{(i)}(x) \in L^{2}(-\infty, \infty) & (0 \leq i \leq 2 N)\end{cases}
$$

Concerning the uniqueness and existence of the solution to $\operatorname{BVP}(N)$, we have the following theorem.

Theorem 2.1 For any function $f(x) \in L^{2}(-\infty, \infty), \operatorname{BVP}(N)$ has a unique solution $u(x)$ expressed as

$$
\begin{equation*}
u(x)=\int_{-\infty}^{\infty} G(x, y) f(y) d y \quad(-\infty<x<\infty) \tag{2.3}
\end{equation*}
$$

where $G(x, y)=G(x-y)(-\infty<x, y<\infty)$ is Green function given by (1.8). It also has the following equivalent expressions.

$$
\begin{align*}
& G(x)=\sum_{j=0}^{N-1} \frac{1}{P^{\prime}\left(-a_{j}^{2}\right)} G_{j}(x) \tag{1}\\
& G_{j}(x)=\frac{1}{2 a_{j}} e^{-a_{j}|x|} \quad(0 \leq j \leq N-1, \quad-\infty<x<\infty) \tag{2.4}
\end{align*}
$$

(2)

$$
\begin{equation*}
G(x)=(-1)^{N+1}\left|\frac{a_{j}^{2 i}}{G_{j}(x)}\right| /\left|\quad a_{j}^{2 i}\right| \tag{2.5}
\end{equation*}
$$

In the numerator of the right hand side of (2.5), we have $0 \leq i \leq N-2,0 \leq j \leq N-1$ and in the denominator $0 \leq i, j \leq N-1$.
(3) $\quad G(x)=\left(G_{0} * \cdots * G_{N-1}\right)(x)$
where $*$ denotes the convolution operator defined by

$$
\begin{equation*}
(f * g)(x)=\int_{-\infty}^{\infty} f(x-y) g(y) d y \quad(-\infty<x<\infty) \tag{2.7}
\end{equation*}
$$

From (3), in the case of $a_{j}>0(0 \leq j \leq N-1)$, we have $G(x)>0$.
In order to prove Theorem 2.1(2), we prepare the following well-known fact.

Lemma 2.1 For any $N \times N$ regular matrix \boldsymbol{A} and $N \times 1$ matrices \boldsymbol{b} and \boldsymbol{c}, we have the following equality.

$$
{ }^{t} \boldsymbol{b} \boldsymbol{A}^{-1} \boldsymbol{c}=-\left|\begin{array}{c|c}
\boldsymbol{A} & \boldsymbol{c} \\
\hline{ }^{t} \boldsymbol{b} & 0
\end{array}\right||\boldsymbol{A}|
$$

Proof of Theorem 2.1 (2.3) is obtained by considering Fourier transform of (2.1). We here show (1), (2) and (3). From the partial fraction expansion

$$
\frac{1}{P(z)}=\sum_{j=0}^{N-1} \frac{1}{P^{\prime}\left(-a_{j}^{2}\right)}\left(z+a_{j}^{2}\right)^{-1}
$$

we have

$$
\widehat{G}(\xi)=\frac{1}{P\left(\xi^{2}\right)}=\sum_{j=0}^{N-1} \frac{1}{P^{\prime}\left(-a_{j}^{2}\right)} \widehat{G}_{j}(\xi) \quad(-\infty<\xi<\infty)
$$

where $\widehat{G}_{j}(\xi)=\left(\xi^{2}+a_{j}^{2}\right)^{-1}(-\infty<\xi<\infty, 0 \leq j \leq N-1)$. This shows (1). Using well-known fact

$$
\left(\frac{1}{P^{\prime}\left(-a_{i}^{2}\right)}\right)=\left(\quad\left(-a_{j}^{2}\right)^{i}\right)^{-1}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

we have

$$
\widehat{G}(\xi)=\left(\begin{array}{ll}
& \widehat{G}_{j}(\xi) \quad
\end{array}\right)\binom{0}{\left(-a_{j}^{2}\right)^{i}}^{-1}\left(\begin{array}{c}
0 \\
0 \\
1
\end{array}\right)=
$$

$$
\left.-\left|\begin{array}{c|c}
& \left.\begin{array}{c}
0 \\
\vdots \\
\left(-a_{j}^{2}\right)^{i} \\
0 \\
1 \\
\hline
\end{array} \right\rvert\,
\end{array}\right| \quad\left(-a_{j}^{2}\right)^{i} \right\rvert\,=
$$

$$
(-1)^{N+1}\left|\frac{a_{j}^{2 i}}{\widehat{G}_{j}(\xi)}\right| /\left|\quad a_{j}^{2 i}\right|
$$

This shows (2). (3) follows immediately from

$$
\widehat{G}(\xi)=\prod_{j=0}^{N-1} \widehat{G}_{j}(\xi) \quad(-\infty<\xi<\infty)
$$

which completes the proof of Theorem 2.1.

Theorem 2.2 Green function $G(x, y)=G(N ; x, y)$ satisfies the following properties.

$$
\begin{equation*}
P\left(-\partial_{x}^{2}\right) G(x, y)=Q\left(-\partial_{x}\right) Q\left(\partial_{x}\right) G(x, y)=0 \quad(-\infty<x, y<\infty, \quad x \neq y) \tag{1}
\end{equation*}
$$

(2) $\quad \xi^{i} \widehat{G}(\xi) \in L^{\infty}(-\infty, \infty) \quad(0 \leq i \leq 2 N)$
(3) $\left.\quad \partial_{x}^{i} G(x, y)\right|_{y=x-0}-\left.\partial_{x}^{i} G(x, y)\right|_{y=x+0}= \begin{cases}0 & (0 \leq i \leq 2 N-2) \\ (-1)^{N} & (i=2 N-1) \quad(-\infty<x<\infty)\end{cases}$
(4)

$$
\left.\partial_{x}^{i} G(x, y)\right|_{x=y+0}-\left.\partial_{x}^{i} G(x, y)\right|_{x=y-0}= \begin{cases}0 & (0 \leq i \leq 2 N-2) \tag{2.10}\\ (-1)^{N} & (i=2 N-1) \quad(-\infty<y<\infty)\end{cases}
$$

The condition (2) assures that for every $f(x) \in L^{2}(-\infty, \infty)$ we have $\partial_{x}^{i}(G * f)(x) \in$ $L^{2}(-\infty, \infty)(0 \leq i \leq 2 N)$.

Proof of Theorem 2.2 If $x \neq y$, we have

$$
\begin{aligned}
& P\left(-\partial_{x}^{2}\right) G(x, y)=\prod_{k=0}^{N-1}\left(-\partial_{x}^{2}+a_{k}^{2}\right) \sum_{j=0}^{N-1} \frac{1}{P^{\prime}\left(-a_{j}^{2}\right)} G_{j}(x-y)= \\
& \sum_{j=0}^{N-1} \frac{1}{P^{\prime}\left(-a_{j}^{2}\right)} \prod_{k=0}^{N-1}\left(-\partial_{x}^{2}+a_{k}^{2}\right) G_{j}(x-y)= \\
& \sum_{j=0}^{N-1} \frac{1}{2 a_{j} P^{\prime}\left(-a_{j}^{2}\right)} \prod_{k=0}^{N-1}\left(-a_{j}^{2}+a_{k}^{2}\right) e^{-a_{j}|x-y|}=0,
\end{aligned}
$$

which proves (1). (2) is obvious from (1.9). Next we show (3), the left-hand side of which is written as

$$
\left.\partial_{x}^{k} G(x, y)\right|_{y=x-0}-\left.\partial_{x}^{k} G(x, y)\right|_{y=x+0}=
$$

$\left.(-1)^{N+1}\left|-\frac{a_{j}^{2 i}}{\left.\partial_{x}^{k} G_{j}(x-y)\right|_{y=x-0} ^{-\left.\partial_{x}^{k} G_{j}(x-y)\right|_{y=x+0}} \mid}\right| \quad a_{j}^{2 i} \right\rvert\,$

$$
(0 \leq k \leq 2 N-1, \quad-\infty<x<\infty)
$$

Employing the fact

$$
\begin{aligned}
& \left.\partial_{x}^{k} G_{j}(x-y)\right|_{y=x-0}-\left.\partial_{x}^{k} G_{j}(x-y)\right|_{y=x+0}=-\frac{1}{2}\left(1-(-1)^{k}\right) a_{j}^{k-1}= \\
& \left\{\begin{array}{ll}
0 & (k=2 l) \\
-a_{j}^{2 l} & (k=2 l+1)
\end{array}(0 \leq l \leq N-1) \quad(-\infty<x<\infty)\right.
\end{aligned}
$$

we have (3). (4) follows from (3). This completes the proof of Theorem 2.2.

3 The best constant of Sobolev inequality

In this section, we prove the equivalence between (1.14) and (1.15) in Theorem 1.3.

Putting $x=0$ in (2.5) and employing $G_{j}(0)=\left(2 a_{j}\right)^{-1}(0 \leq j \leq N-1)$, we have

$$
\begin{aligned}
& \left.G(0)=(-1)^{N+1}\left|\frac{a_{j}^{2 i}}{\left(2 a_{j}\right)^{-1}}\right| / a_{j}^{2 i} \right\rvert\,= \\
& (-1)^{N+1} \frac{1}{2 a_{0} \cdots a_{N-1}}\left|\frac{a_{j}^{2 i+1}}{1}\right| /\left|\begin{array}{l}
a_{j}^{2 i}
\end{array}\right|
\end{aligned}
$$

from which we obtain (1.14). Changing the row of the above determinant, we have

$$
\begin{equation*}
G(0)=\frac{1}{2 q_{N}}\left|\frac{a_{j}^{2 N-3-2 i}}{1}\right| /\left|a_{j}^{2(N-1-i)}\right| \tag{3.1}
\end{equation*}
$$

where $q_{N}=a_{0} \cdots a_{N-1}$.
Here we introduce two partitions of natural numbers

$$
\lambda=\left(\lambda_{0}, \lambda_{1}, \cdots, \lambda_{N-1}\right) \quad \text { and } \quad \mu=\left(\mu_{0}, \mu_{1}, \cdots, \mu_{N-1}\right)
$$

where λ_{i} and μ_{i} are given as follows.

$$
\begin{aligned}
& \lambda_{i}=N-1-i \\
& \mu_{i}= \begin{cases}\lambda_{i}-1 & (0 \leq i \leq N-1) \\
0 & (i=N \leq N-2)\end{cases}
\end{aligned}
$$

By using the above λ and $\mu,(3.1)$ is rewritten as follows.

$$
\begin{equation*}
G(0)=\frac{1}{2 q_{N}}\left|a_{j}^{N-1-i+\mu_{i}}\right| /\left|a_{j}^{N-1-i+\lambda_{i}}\right|=\frac{1}{2 q_{N}} S_{\mu}(a) / S_{\lambda}(a) \tag{3.2}
\end{equation*}
$$

In the above expression, $S_{Y}(a)$ denotes Schur polynomial associated with a partition $Y=$ $\left(Y_{0}, Y_{1}, \cdots, Y_{N-1}\right) \quad\left(Y_{0} \geq Y_{1} \geq \cdots \geq Y_{N-1} \geq 0\right)$, which is defined by

$$
S_{Y}(a)=S_{Y}\left(a_{0}, \cdots, a_{N-1}\right)=\left|a_{j}^{N-1-i+Y_{i}}\right| /\left|a_{j}^{N-1-i}\right|
$$

The following statement is the most important lemma in this paper.

Lemma 3.1 (Giambelli [4]) For a partition

$$
\begin{equation*}
Y=\left(Y_{0}, Y_{1}, \cdots, Y_{N-1}\right) \quad\left(Y_{0} \geq Y_{1} \geq \cdots \geq Y_{N-1} \geq 0\right) \tag{3.3}
\end{equation*}
$$

of a natural number, let \widehat{Y} be a conjugate of Y defined by

$$
\begin{equation*}
\widehat{Y}=\left(\widehat{Y}_{0}, \widehat{Y}_{1}, \cdots, \widehat{Y}_{N-1}\right) \quad \widehat{Y}_{i}=\#\left\{j \mid Y_{j} \geq i+1\right\} \quad(0 \leq i \leq N-1) \tag{3.4}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
S_{Y}(a)=\left|q_{j-i+\widehat{Y}_{i}}\right|_{0 \leq i, j \leq N-1} \tag{3.5}
\end{equation*}
$$

where $q_{j}(1 \leq j \leq N)$ is the j-th fundamental symmetric polynomial of $a=\left(a_{0}, \cdots, a_{N-1}\right)$. We also assume that $q_{0}=1$ and $q_{j}=0$ for $j<0$ or $j>N$.

Applying Giambelli's formula to (3.2) and considering that $\widehat{\lambda}_{i}=\lambda_{i}$ and $\widehat{\mu}_{i}=\mu_{i}$, we have the following equality.

$$
\begin{aligned}
& G(0)=\frac{1}{2 q_{N}}\left|q_{j-i+\widehat{\mu}_{i}}\right|_{0 \leq i, j \leq N-1} /\left|q_{j-i+\hat{\lambda}_{i}}\right|_{0 \leq i, j \leq N-1}= \\
& \frac{1}{2 q_{N}}\left|\begin{array}{cccccc}
q_{N-2} & q_{N-1} & \cdots & q_{2 N-4} & q_{2 N-3} \\
q_{N-4} & q_{N-3} & \cdots & q_{2 N-6} & q_{2 N-5} \\
\vdots & \vdots & & \vdots & \vdots \\
q_{-N+2} & q_{-N+3} & \cdots & q_{0} & q_{1} \\
q_{-N+1} & q_{-N+2} & \cdots & q_{-1} & q_{0}
\end{array}\right| / \\
& \left|\begin{array}{cccccc}
q_{N-1} & q_{N} & \cdots & q_{2 N-3} & q_{2 N-2} \\
q_{N-3} & q_{N-2} & \cdots & q_{2 N-5} & q_{2 N-4} \\
\vdots & \vdots & & \vdots & \vdots \\
q_{-N+3} & q_{-N+4} & \cdots & q_{1} & q_{2} \\
q_{-N+1} & q_{-N+2} & \cdots & q_{-1} & q_{0}
\end{array}\right|= \\
& \frac{1}{2}\left|\begin{array}{ccccc}
q_{N-2} & q_{N-1} & \cdots & q_{2 N-5} \\
q_{N-4} & q_{N-3} & \cdots & q_{2 N-7} \\
\vdots & \vdots & & \vdots \\
2 q_{N} \\
q_{-N+4} & q_{-N+5} & \cdots & q_{1}
\end{array}\right| /\left|\begin{array}{cccc}
q_{N-1} & q_{N} & \cdots & q_{2 N-3} \\
q_{N-3} & q_{N-2} & \cdots & q_{2 N-5} \\
\vdots & \vdots & & \vdots \\
q_{-N+3} & q_{-N+4} & \cdots & q_{1}
\end{array}\right|
\end{aligned}
$$

where we have used the fact $q_{0}=1$ and $q_{-j}=0(j \geq 1)$. Thus we proved that (1.14) is equivalent to (1.15).

4 Reproducing kernel

In this section, we show that Green function $G(x, y)$ is a reproducing kernel for a set of Hilbert space H and its inner product $(\cdot, \cdot)_{H}$ introduced in section 1.

We first show that $(\cdot, \cdot)_{H}$ is positive definite. Applying Parseval equality to (1.4), we have

$$
\begin{align*}
& (u, v)_{H}=\int_{-\infty}^{\infty}(Q(D) u(x)) \overline{(Q(D) v(x))} d x= \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty}(Q(\sqrt{-1} \xi) \widehat{u}(\xi)) \overline{(Q(\sqrt{-1} \xi) \widehat{v}(\xi))} d \xi=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|Q(\sqrt{-1} \xi)|^{2} \widehat{u}(\xi) \overline{\widehat{v}}(\xi) d \xi \tag{4.1}
\end{align*}
$$

Sobolev energy $(u, u)_{H}$ is calculated as

$$
\|u\|_{H}^{2}=(u, u)_{H}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|Q(\sqrt{-1} \xi)|^{2}|\widehat{u}(\xi)|^{2} d \xi
$$

By the inequality (1.10) we have

$$
\|u\|_{H}^{2} \geq \frac{\delta}{2 \pi} \int_{-\infty}^{\infty}\left(\xi^{2 N}+1\right)|\widehat{u}(\xi)|^{2} d \xi
$$

from which it is concluded that $(\cdot, \cdot)_{H}$ is positive definite.

Moreover, the right-hand side of (4.1) is expanded as follows.

$$
\begin{aligned}
& (u, v)_{H}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P\left(\xi^{2}\right) \widehat{u}(\xi) \overline{\hat{v}}(\xi) d \xi=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{j=0}^{N} p_{j} \xi^{2(N-j)} \widehat{u}(\xi) \overline{\hat{v}}(\xi) d \xi= \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{j=0}^{N} p_{j}\left((\sqrt{-1} \xi)^{N-j} \widehat{u}(\xi)\right) \overline{\left((\sqrt{-1} \xi)^{N-j} \widehat{v}(\xi)\right)} d \xi= \\
& \int_{-\infty}^{\infty} \sum_{j=0}^{N} p_{j} u^{(N-j)}(x) \bar{v}^{(N-j)}(x) d x
\end{aligned}
$$

Theorem 4.1 (1) For any $u(x) \in H$, we have the following reproducing relation.

$$
\begin{equation*}
u(y)=(u(x), G(x, y))_{H} \quad(-\infty<y<\infty) \tag{4.2}
\end{equation*}
$$

This means that Green function $G(x, y)=G(x-y)$ is a reproducing kernel for H with the inner product $(\cdot, \cdot)_{H}$.
(2) $\quad G(0)=G(y, y)=(G(x, y), G(x, y))_{H} \quad(-\infty<y<\infty)$

Proof of Theorem 4.1 We note that

$$
G(x-y) \quad \widehat{\longrightarrow} \quad e^{-\sqrt{-1} y \xi} \widehat{G}(\xi)
$$

Using Parseval equality, we have

$$
\begin{aligned}
& (u(x), G(x, y))_{H}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P\left(\xi^{2}\right) \widehat{u}(\xi) \overline{e^{-\sqrt{-1} y \xi} \widehat{G}(\xi)} d \xi= \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{\sqrt{-1} y \xi} \widehat{u}(\xi) d \xi=u(y)
\end{aligned}
$$

where we have used the fact

$$
P\left(\xi^{2}\right) \widehat{G}(\xi)=1 \quad(-\infty<\xi<\infty)
$$

(2) is shown by putting $u(x)=G(x, y)$ in (4.2). This completes the proof of Theorem 4.1.

5 Sobolev inequality and the best constant

In this section, we prove Theorem 1.2.
Proof of Theorem 1.2 Applying Schwarz inequality to (4.2) and using (4.3), we have

$$
|u(y)|^{2} \leq\|u\|_{H}^{2}\|G(x, y)\|_{H}^{2}=G(0)\|u\|_{H}^{2}
$$

Taking the supremum with respect to $y(-\infty<y<\infty)$, we have

$$
\left(\sup _{-\infty<y<\infty}|u(y)|\right)^{2} \leq G(0)\|u\|_{H}^{2}
$$

Hence, we can take a positive constant C such that the following Sobolev inequality holds for any function $u(x) \in H$.

$$
\begin{equation*}
\left(\sup _{-\infty<y<\infty}|u(y)|\right)^{2} \leq C\|u\|_{H}^{2} \tag{5.1}
\end{equation*}
$$

The best constant $C(N)$ among such C obviously satisfies

$$
\begin{equation*}
C(N) \leq G(0) \tag{5.2}
\end{equation*}
$$

In the second place, for any fixed $y_{0}\left(-\infty<y_{0}<\infty\right)$, we apply this inequality (5.1) to $u(x)=G\left(x, y_{0}\right) \in H$ and have

$$
\left(\sup _{-\infty<y<\infty}\left|G\left(y, y_{0}\right)\right|\right)^{2} \leq C(N)\left\|G\left(x, y_{0}\right)\right\|_{H}^{2}=C(N) G(0)
$$

Combining this and trivial inequality

$$
G(0)^{2}=\left|G\left(y_{0}, y_{0}\right)\right|^{2} \leq\left(\sup _{-\infty<y<\infty}\left|G\left(y, y_{0}\right)\right|\right)^{2}
$$

we have $G(0) \leq C(N)$. Together with (5.2), it is concluded that $C(N)=G(0)$ and that $G\left(x, y_{0}\right)$ is a best function for arbitrarily fixed y_{0}, that is,

$$
\left(\sup _{-\infty<y<\infty}\left|G\left(y, y_{0}\right)\right|\right)^{2}=C(N)\left\|G\left(x, y_{0}\right)\right\|_{H}^{2}
$$

This proved Theorem 1.2.

6 Infimum of Sobolev functional

In this section, we prove Theorem 1.1(2) concerning the infimum of Sobolev functional $S(u)$.
Proof of Theorem 1.1(2) Let $h(x, t)$ be a heat kernel given as follows.

$$
h(x, t)=\frac{1}{\sqrt{4 \pi t}} \exp \left(-x^{2} /(4 t)\right) \quad(-\infty<x<\infty, \quad 0<t<\infty)
$$

It is easy to see that

$$
\sup _{-\infty<y<\infty}|h(y, t)|=h(0, t)=\frac{1}{\sqrt{4 \pi t}}
$$

holds. Since Fourier transform of $h(x, t)$ is given by

$$
\widehat{h}(\xi, t)=e^{-\xi^{2} t} \quad(-\infty<\xi<\infty, \quad 0<t<\infty)
$$

its Sobolev energy is calculated as

$$
\begin{aligned}
& \|h(x, t)\|_{H}^{2}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} P\left(\xi^{2}\right) e^{-2 \xi^{2} t} d \xi=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \sum_{j=0}^{N} p_{j} \xi^{2(N-j)} e^{-2 \xi^{2} t} d \xi= \\
& \frac{1}{2 \pi} \sum_{j=0}^{N} p_{j}\left(-\frac{1}{2} \partial_{t}\right)^{N-j} \int_{-\infty}^{\infty} e^{-2 \xi^{2} t} d \xi=\frac{1}{2 \sqrt{2 \pi}} \sum_{j=0}^{N} p_{j}\left(-\frac{1}{2} \partial_{t}\right)^{N-j} t^{-1 / 2}
\end{aligned}
$$

Hence we have

$$
S(h(x, t))=\left(\frac{1}{4 \pi t}\right) /\left(\frac{1}{2 \sqrt{2 \pi}} \sum_{j=0}^{N} p_{j}\left(-\frac{1}{2} \partial_{t}\right)^{N-j} t^{-1 / 2}\right) \longrightarrow 0 \quad(t \rightarrow+0)
$$

which completes the proof of Theorem 1.1(2).
Another proof of Theorem 1.1(2) For $A>0$, we introduce a function

$$
u(A ; x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{\sqrt{-1} x \xi} \widehat{u}(A ; \xi) d \xi \quad(-\infty<x<\infty)
$$

where

$$
\widehat{u}(A ; \xi)= \begin{cases}\widehat{G}(\xi) & (|\xi| \geq A) \\ 0 & (|\xi|<A)\end{cases}
$$

It is easy to see

$$
\sup _{-\infty<y<\infty}|u(A ; y)|=u(A ; 0)=\frac{1}{2 \pi} \int_{|\xi| \geq A} \widehat{G}(\xi) d \xi
$$

On the other hand, we have

$$
\|u(A ; x)\|_{H}^{2}=\frac{1}{2 \pi} \int_{|\xi| \geq A} P\left(\xi^{2}\right)|\widehat{u}(A ; \xi)|^{2} d \xi=\frac{1}{2 \pi} \int_{|\xi| \geq A} \widehat{G}(\xi) d \xi=u(A ; 0)
$$

Considering that $\widehat{G}(\xi) \in L^{1}(-\infty, \infty)$, we conclude that

$$
S(u(A ; x))=u(A ; 0) \quad \longrightarrow \quad 0 \quad(A \rightarrow \infty)
$$

7 Explicit forms of best constants and functions

In this section, we find explicit forms the best constants $C(N)$ and best functions in simple cases $N=1,2,3$. Although some of the results, where all the characteristic roots a_{j} are real, are obtained in our previous paper [1], we also list them for the sake of selfcontainedness.

In the simplest case $N=1$, or equivalently $(L, M)=(1,0)$, Sobolev space is given as follows.

$$
\begin{equation*}
H=H(1)=\left\{u(x) \mid u(x), u^{\prime}(x) \in L^{2}(-\infty, \infty)\right\} \tag{7.1}
\end{equation*}
$$

Corresponding Sobolev inner product is

$$
\begin{equation*}
(u, v)_{H}=\int_{-\infty}^{\infty}\left[u^{\prime}(x) \bar{v}^{\prime}(x)+p_{1} u(x) \bar{v}(x)\right] d x \tag{7.2}
\end{equation*}
$$

where $p_{1}=a_{0}^{2}$. Moreover we note that $q_{1}=a_{0}$. We here rewrite $a_{0}=a(0<a<\infty)$ for the sake of simplicity.

As a special case of Theorem 1.2 we have the next theorem.
Theorem 7.1 For any function $u(x) \in H(1)$, there exists a positive constant C which is independent of $u(x)$ such that the following Sobolev inequality holds.

$$
\begin{equation*}
\left(\sup _{-\infty<y<\infty}|u(y)|\right)^{2} \leq C \int_{-\infty}^{\infty}\left[\left|u^{\prime}(x)\right|^{2}+p_{1}|u(x)|^{2}\right] d x \tag{7.3}
\end{equation*}
$$

Among such C the best constant is

$$
\begin{equation*}
C(1)=\frac{1}{2 a}=\frac{1}{2 q_{1}} \tag{7.4}
\end{equation*}
$$

If we replace C by $C(1)$ in (7.3), the equality holds for $u(x)=c G(x-y)(-\infty<x<\infty)$ where y is an arbitrary real number and c is an arbitrary complex number.

Green function $G(x)$ is given by the following formula.

$$
\begin{equation*}
G(x)=\frac{1}{2 a} e^{-a|x|} \quad(-\infty<x<\infty) \tag{7.5}
\end{equation*}
$$

In the second place, we treat the case $N=2$, or equivalently $(L, M)=(2,0)$ or $(0,1)$. In these cases, we consider Sobolev space

$$
\begin{equation*}
H=H(2)=\left\{u(x) \mid u(x), u^{\prime}(x), u^{\prime \prime}(x) \in L^{2}(-\infty, \infty)\right\} \tag{7.6}
\end{equation*}
$$

Sobolev inner product

$$
\begin{equation*}
(u, v)_{H}=\int_{-\infty}^{\infty}\left[u^{\prime \prime}(x) \bar{v}^{\prime \prime}(x)+p_{1} u^{\prime}(x) \bar{v}^{\prime}(x)+p_{2} u(x) \bar{v}(x)\right] d x \tag{7.7}
\end{equation*}
$$

where $p_{1}=a_{0}^{2}+a_{1}^{2}, p_{2}=a_{0}^{2} a_{1}^{2}$. We note that $q_{1}=a_{0}+a_{1}, q_{2}=a_{0} a_{1}$.
In the case $(L, M)=(2,0)$, we put $a_{0}=a, a_{1}=b(0<a<b)$, then we have

$$
p_{1}=a^{2}+b^{2}, \quad p_{2}=a^{2} b^{2}, \quad q_{1}=a+b, \quad q_{2}=a b
$$

In the case $(L, M)=(0,1)$, we put $a_{0}=a+\sqrt{-1} b, a_{1}=a-\sqrt{-1} b(0<a, b)$, then we have

$$
p_{1}=2\left(a^{2}-b^{2}\right), \quad p_{2}=\left(a^{2}+b^{2}\right)^{2}, \quad q_{1}=2 a, \quad q_{2}=a^{2}+b^{2}
$$

As a special case of Theorem 1.2 we have the next theorem.
Theorem 7.2 For any function $u(x) \in H(2)$, there exists a positive constant C which is independent of $u(x)$ such that the following Sobolev inequality holds.

$$
\begin{equation*}
\left(\sup _{-\infty<y<\infty}|u(y)|\right)^{2} \leq C \int_{-\infty}^{\infty}\left[\left|u^{\prime \prime}(x)\right|^{2}+p_{1}\left|u^{\prime}(x)\right|^{2}+p_{2}|u(x)|^{2}\right] d x \tag{7.8}
\end{equation*}
$$

Among such C the best constant is

$$
\begin{align*}
& C(2)=\frac{1}{2 a_{0} a_{1}\left(a_{0}+a_{1}\right)}=\frac{1}{2 q_{1} q_{2}}= \\
& \begin{cases}\frac{1}{2 a b(a+b)} & (L, M)=(2,0) \\
\frac{1}{4 a\left(a^{2}+b^{2}\right)} & (L, M)=(0,1)\end{cases} \tag{7.9}
\end{align*}
$$

If we replace C by $C(2)$ in (7.8), the equality holds for $u(x)=c G(x-y)(-\infty<x<\infty)$ where y is an arbitrary real number and c is an arbitrary complex number.

Green function $G(x)$ is given by the following formula.

$$
\begin{align*}
& G(x)=\frac{1}{a_{1}^{2}-a_{0}^{2}}\left[\frac{1}{2 a_{0}} e^{-a_{0}|x|}-\frac{1}{2 a_{1}} e^{-a_{1}|x|}\right]= \\
& \begin{cases}\frac{1}{b^{2}-a^{2}}\left[\frac{1}{2 a} e^{-a|x|}-\frac{1}{2 b} e^{-b|x|}\right] & (L, M)=(2,0) \\
\frac{1}{4 a b\left(a^{2}+b^{2}\right)} e^{-a|x|}[a \sin (b|x|)+b \cos (b|x|)] & (L, M)=(0,1) \\
(-\infty<x<\infty)\end{cases}
\end{align*}
$$

Finally, we treat the case $N=3$, or equivalently $(L, M)=(3,0)$ or $(1,1)$. In these cases, we consider Sobolev space

$$
\begin{equation*}
H=H(3)=\left\{u(x) \mid u(x), u^{\prime}(x), u^{\prime \prime}(x), u^{\prime \prime \prime}(x) \in L^{2}(-\infty, \infty)\right\} \tag{7.11}
\end{equation*}
$$

Sobolev inner product

$$
\begin{equation*}
(u, v)_{H}=\int_{-\infty}^{\infty}\left[u^{\prime \prime \prime}(x) \bar{v}^{\prime \prime \prime}(x)+p_{1} u^{\prime \prime}(x) \bar{v}^{\prime \prime}(x)+p_{2} u^{\prime}(x) \bar{v}^{\prime}(x)+p_{3} u(x) \bar{v}(x)\right] d x \tag{7.12}
\end{equation*}
$$

where $p_{1}=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}, p_{2}=a_{0}^{2} a_{1}^{2}+a_{1}^{2} a_{2}^{2}+a_{2}^{2} a_{0}^{2}, p_{3}=a_{0}^{2} a_{1}^{2} a_{2}^{2}$.
In the case $(L, M)=(3,0)$, we put $a_{0}=a, a_{1}=b, a_{2}=c(0<a<b<c)$, then we have

$$
p_{1}=a^{2}+b^{2}+c^{2}, \quad p_{2}=a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}, \quad p_{3}=a^{2} b^{2} c^{2}
$$

In the case $(L, M)=(1,1)$, we put $a_{0}=a, a_{\left\{\frac{1}{2}\right.}=b \pm \sqrt{-1} c(0<a, b, c)$, then we have

$$
p_{1}=a^{2}+2 b^{2}-2 c^{2}, \quad p_{2}=b^{4}+c^{4}+2 a^{2} b^{2}+2 b^{2} c^{2}-2 c^{2} a^{2}, \quad p_{3}=a^{2}\left(b^{2}+c^{2}\right)^{2}
$$

As a special case of Theorem 1.2 we have the next theorem.
Theorem 7.3 For any function $u(x) \in H(3)$, there exists a positive constant C which is independent of $u(x)$ such that the following Sobolev inequality holds.

$$
\begin{align*}
& \left(\sup _{-\infty<y<\infty}|u(y)|\right)^{2} \leq \\
& C \int_{-\infty}^{\infty}\left[\left|u^{\prime \prime \prime}(x)\right|^{2}+p_{1}\left|u^{\prime \prime}(x)\right|^{2}+p_{2}\left|u^{\prime}(x)\right|^{2}+p_{3}|u(x)|^{2}\right] d x \tag{7.13}
\end{align*}
$$

Among such C the best constant is

$$
\begin{align*}
& C(3)=\frac{a_{0}+a_{1}+a_{2}}{2 a_{0} a_{1} a_{2}\left(a_{0}+a_{1}\right)\left(a_{1}+a_{2}\right)\left(a_{2}+a_{0}\right)}= \\
& \begin{cases}\frac{a+b+c}{2 a b c(a+b)(b+c)(c+a)} & (L, M)=(3,0) \\
\frac{a+2 b}{4 a b\left(b^{2}+c^{2}\right)\left(a^{2}+b^{2}+c^{2}+2 a b\right)} & (L, M)=(1,1)\end{cases} \tag{7.14}
\end{align*}
$$

If we replace C by $C(3)$ in (7.13), the equality holds for $u(x)=c G(x-y)(-\infty<x<\infty)$ where y is an arbitrary real number and c is an arbitrary complex number.

If $(L, M)=(3,0)$, Green function $G(x)$ is given by

$$
\begin{align*}
& G(x)=\frac{1}{2 a\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)} e^{-a|x|}+ \\
& \quad \frac{1}{2 b\left(b^{2}-a^{2}\right)\left(b^{2}-c^{2}\right)} e^{-b|x|}+\frac{1}{2 c\left(c^{2}-a^{2}\right)\left(c^{2}-b^{2}\right)} e^{-c|x|} \quad(-\infty<x<\infty) \tag{7.15}
\end{align*}
$$

and if $(L, M)=(1,1)$

$$
\begin{align*}
& G(x)=\frac{1}{\left(a^{2}+b^{2}+c^{2}+2 a b\right)\left(a^{2}+b^{2}+c^{2}-2 a b\right)}\left[\frac{1}{2 a} e^{-a|x|}+\right. \\
& \left.\frac{1}{4 b c\left(b^{2}+c^{2}\right)} e^{-b|x|}\left\{c\left(a^{2}-3 b^{2}+c^{2}\right) \cos (c|x|)+b\left(a^{2}-b^{2}+3 c^{2}\right) \sin (c|x|)\right\}\right] \\
& \quad(-\infty<x<\infty) \tag{7.16}
\end{align*}
$$

References

[1] Y. Kametaka, K. Watanabe, A. Nagai and S. Pyatkov, The best constant of Sobolev inequality in an n dimensional Euclidean space, Scientiae Mathematicae Japonicae Online e-2004 (2004), 295-303.
[2] Y. Kametaka, K. Watanabe, A. Nagai, H. Yamagishi and K.Takemura, The best constant of Sobolev inequality which corresponds to a bending problem of a string with periodic boundary condition, Scientiae Mathematicae Japonicae Online, e-2007 (2007), 283-300.
[3] Y. Kametaka, K. Takemura, H. Yamagishi, A. Nagai and K. Watanabe, Heaviside cable, Thomson cable and the best constant of a Sobolev-type inequality, Scientiae Mathematicae Japonicae Online, e-2007 (2007), 739-755.
[4] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press (1995).

* 58-16, Shirihori-cho, Kawashima, Nishikyo-ku, Kyoto 615-8196, Japan

E-mail address: kametaka@sigmath.es.osaka-u.ac.jp
${ }^{\dagger}$ Liberal Arts and Basic Sciences, College of Industrial Technology Nihon University, 2-11-1 Shinei, Narashino 275-8576, Japan
E-mail address: nagai.atsushi@nihon-u.ac.jp
${ }^{\ddagger}$ Department of Computer Science, National Defense Academy 1-10-20 Yokosuka 239-8686, Japan
E-mail address: wata@nda.ac.jp
${ }^{\S}$ Liberal Arts and Basic Sciences, College of Industrial Technology Nihon University, 2-11-1 Shinei, Narashino 275-8576, Japan
E-mail address: takemura.kazuo@nihon-u.ac.jp
ब Tokyo Metropolitan College of Industrial Technology
1-10-40 Higashi-ooi, Shinagawa Tokyo 140-0011, Japan
E-mail address: yamagisi@s.metro-cit.ac.jp

[^0]: 2000 Mathematics Subject Classification. 46E35, 41A44, 34B27.
 Key words and phrases. Green function, Sobolev inequality, Giambelli's formula, Hurwitz polynomial, Schur polynomial .
 *He has retired at March 2004, and now he is an emeritus professor of Osaka University.

