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Abstract. In this article the notion of weak mutual associativity (w.m.a.) and the
necessary and sufficient condition for a (L, Γ)-associated hypersemigroup (H, ∗) derived
from some family of �-preordered semigroups to be a hypergroup, are given.

1 Introduction The first step in the history of the development of hyperstructures the-
ory was the 8th congress of scandinavian mathematicians from 1934, when Marty [6] intro-
duced the notion of hypergroup, analyzed its properties and applied them to noncommuta-
tive groups, algebraic functions and rational fractions. Nowadays hypergroups are studied
from the theoretical point of view and for their applications to many subjects of pure and
applied mathematics: geometry, topology, cryptography and coding theory, graphs and hy-
pergraphs, probability theory, binary relations, theory of fuzzy and rough sets and automata
theory, hyperalgebras and hyper-coalgebras, etc. (see [3, 4]).

The correspondence between hyperstructures and binary relations is implicitly contained
in Nieminen [8] who associated hypergroups to connected simple graphs. Next, Chvalina [1]
found a correspondence between partially ordered sets and hypergroups, then a construction
of hypergroups from ordered structure has been introduced by D.A. Hort [5]. In this paper,
first we introduce the weak mutual associativity of two hyperoperations and then we intro-
duce a construction of hypergroups from a family of weak mutual associative preordered
semigroups. In [3], the mutual associativity of two hyperoperations has been introduced
by P. Corsini.

In the current section we give the preliminaries which will be used throughout this
article.

Definition 1.1. Consider some set P and a binary relation � on P . Then � is a
preorder, if it is reflexive and transitive, i.e., for all x, y and z in P , we have that: (a) x � x
(reflexivity);

(b) if x � y and y � z, then x � z (transitivity).
A set that is equipped with a preorder is called a preordered set.

Definition 1.2. A hypergroupoid is a nonempty set H together with a map
∗ : H × H �� P ∗(H) which is called hyperoperation, where P ∗(H) denotes the set
of all non-empty subsets of H .

Remark 1.3. A hyperoperation ∗ : H × H �� P ∗(H) yields an operation

× : P ∗(H) × P ∗(H) �� P ∗(H) , defined by A × B =
⋃

a∈A,b∈B

a ∗ b. Conversely an

operation on P ∗(H) yields a hyperoperation on H , defined by x ∗ y = {x} × {y}.
Definition 1.4. (i) A hypersemigroup is a hypergroupoid (H, ∗) such that for all a, b

and c in H we have (a ∗ b) ∗ c = a ∗ (b ∗ c).
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(ii) A quasihypergroup is a hypergroupoid (H, ∗) which satisfies the reproductive law,
i.e., for all a ∈ H , H ∗ a = a ∗ H = H , where H ∗ a =

⋃
h∈H

h ∗ a (resp. a ∗ H).

(iii) A hypergroup is a hypersemigroup which is also a quasihypergroup.

Definition 1.5. (i) A hypersemigroup (H, ∗) is called commutative if for all a, b ∈ H
we have a ∗ b = b ∗ a.

(ii) A hypersemigroup (H, ∗) is called complete if for all (x1, x2, ..., xn) ∈ Hn and
(y1, y2, ..., ym) ∈ Hm where n, m � 2 we have the following implication:

n∏

i=1

xi

⋂ m∏

j=1

yj �= ∅ ⇒
n∏

i=1

xi =
m∏

j=1

yj

where
n∏

i=1

xi = x1 ∗
n∏

i=2

xi.

The notion of complete hypergroup is defined by Migliorato [7] and was studied by many
other researchers (see [3]).

Theorem 1.6. A hypersemigroup (H, ∗) is complete if H =
⋃

s∈S

As, where S and As

satisfy the conditions: (1) (S, ·) is a semigroup;
(2) for all s, t ∈ S2 where s �= t we have As

⋂
At = ∅;

(3) if (a, b) ∈ As × At, then a ∗ b = As· t.

Definition 1.7. Let (H, ∗) be a hypergroup and b ∈ H . The element b is called a left
scalar if for all x ∈ H , b ∗ x is a singleton set and b is called a two-sided scalar or simply
scalar if it is a left and a right scalar.

Theorem 1.8. Let (H, ∗) be a hypergroup, b ∈ H a scalar element. Then the set of all
scalar elements is a group.

Definition 1.9. We say that two binary hyperoperations 〈 ∗1 〉, 〈 ∗2 〉 on the same set
H are mutually associative (m.a.) if for all (x, y, z) ∈ H3, we have:

(x ∗1 y) ∗2 z = x ∗1 (y ∗2 z) and (x ∗2 y) ∗1 z = x ∗2 (y ∗1 z)
Mutual associativity for the class of hypergroupoids was introduced by Corsini (see [3]).

Definition 1.9. Suppose (H, ◦) and (H, ◦′) are two hypersemigroups. A function
f : H �� H ′ is called a homomorphism if f(x ◦ y) ⊆ f(x) ◦′ f(y) for all x and y in
H . We call f a good homomorphism if for all x and y in H f(x ◦ y) = f(x) ◦′ f(y).

2 A construction of hypersemigroups from some semigroups
In this section we introduce the notion of weak mutual associativity and construct a

hyperoperation from the family of weak mutual associative preordered semigroups.

Definition 2.1. Suppose that ∗1 and ∗2 are two hyperoperations on H . We say that ∗1

and ∗2 are weak mutually associative (for simplicity we say ∗1 and ∗2 are w.m.a) if for all
x, y and z in H we have:

⋃

x,y,z∈H

{(x ∗1 y) ∗2 z, (x ∗2 y) ∗1 z} =
⋃

x,y,z∈H

{x ∗1 (y ∗2 z), x ∗2 (y ∗1 z)}.

We also say that the pair ((H, ∗1), (H, ∗2)) is weak mutually associative (or for simplicity
w.m.a ).
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Definition 2.2. We say (H, ◦, �) is a �-preordered groupoid (or semigroup) where
(H, ◦) is a groupoid (or semigroup) and (H,�) is a preordered set such that for all x, y and
z in H the following axioms are fulfilled:

(i) x � y implies x ◦ z � y ◦ z;
(ii) x � y implies z ◦ x � z ◦ y.

Definition 2.3. Suppose that (H,�) is a preordered set, for x ∈ H we define:

L(x) :def= {h ∈ H | h � x} and U(x) :def= {h ∈ H | x � h} and;

∅ �= X ⊆ H, L(X) :def=
⋃

x∈X

L(x) and U(X) :def=
⋃

x∈X

U(x).

Lemma 2.4. Suppose that Γ is a family of �-preordered semigroups such that every
pair ((H, ◦1), (H, ◦2)) ∈ Γ2 is weak mutually associative. Then the following equality for all
a, b and c in H holds:

⋃

(H, ◦)∈ Γ

{L(t ◦ c)| t ∈
⋃

L(a ◦ b)} =
⋃

(H, ◦)∈ Γ

{L(a ◦ s)| s ∈
⋃

L(b ◦ c)}.

Proof: Suppose that (H, ◦) ∈ Γ and x ∈ ⋃
t∈�L(a◦b)

L(t ◦ c) are given. So x � t0 ◦ c for

an appropriate t0 � a ◦′ b where t0 ∈ H and (H, ◦′) ∈ Γ thus by Definition 2.2, we have
x � (a ◦′ b) ◦ c. Since the pair ((H, ◦), (H, ◦′)) belongs to Γ2, then it is w.m.a and we have
(a◦′b)◦c = a◦′(b◦c) or (a◦′b)◦c = a◦(b◦′c). First suppose (a◦′b)◦c = a◦′(b◦c). Put d :def= b◦c,
so x � a◦′ d and hence x ∈ L(a◦′ d) ⊆ ⋃

s∈� b ◦ c

L(a◦s). Now suppose (a◦′ b)◦c = a◦ (b◦′ c).

Put u :def= b ◦′ c, so we have x � a ◦ u and hence x ∈ L(a ◦ u) ⊆ ⋃
s∈� b ◦ c

L(a ◦ s). Similarly

we have the opposite assertion.

Proposition 2.5. Suppose that Γ is a family of �-preordered semigroups such that
every pair ((H, ◦1), (H, ◦2)) ∈ Γ2 is w.m.a. The hyperoperation ∗ on H where a ∗ b :def=⋃
(H,◦)∈Γ

L(a ◦ b) gives a hypersemigroup (H, ∗) and we say (H, ∗) is a (L, Γ)-associative

hypersemigroup.

Proof: It is easy to see that ∗ is a well-defined map so we must show that ∗ is an
associative hyperoperation. For all (H, ◦) ∈ Γ and a, b and c in H we have (a ∗ b) ∗ c =⋃
t∈�L(a ◦ b)

L(t ◦ c), so by Lemma 2.4., we have (a ∗ b) ∗ c =
⋃

s∈�L(b ◦ c)

L(a ◦ s) = a ∗ (b ∗ c).

Proposition 2.6. Suppose that Γ is a family of �-preordered semigroups and that
every pair ((H, ◦1), (H, ◦2)) ∈ Γ2 is w.m.a. The binary hyperoperation � on H defined by
a�b :def=

⋃
(H,◦)∈Γ

U(a◦b) gives a hypersemigroup (H, �) and we say (H, �) is a (U, Γ)-associative

hypersemigroup.

Proof: The proof is similar to Proposition 2.5.

Theorem 2.7. Suppose that Γ is a family of �-preordered semigroups such that every
pair ((H, ◦1), (H, ◦2)) ∈ Γ2 is w.m.a. Then the following conditions are equivalent:

(i) for all (a, b) ∈ H2 there exist (c, c′) ∈ H2 and a pair ((H, ◦1), (H, ◦2)) ∈ Γ2 such that
a � b ◦1 c and a � c′ ◦2 b;
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(ii) a (L, Γ)-associated hypersemigroup (H, ∗) satisfies the reproductive law (i.e., (H, ∗)
is a hypergroup).

Proof: (i) ⇒ (ii) Suppose that t ∈ H is given, so the inclusions t∗H ⊆ H and H ∗t ⊆ H
are obviously fulfilled. We must prove the opposite inclusion. Let s ∈ H be an arbitrary
element. For any s, t ∈ H there exist c, c′ ∈ H and a pair ((H, ◦1), (H, ◦2)) ∈ Γ2 such that
s � t ◦1 c and s � c′ ◦2 t, so we have:

s ∈ L(t ◦1 c) ⊆ t ∗ c ⊆ t ∗ H and s ∈ L(c′ ◦2 t) ⊆ c′ ∗ t ⊆ H ∗ t

and consequently H ⊆ t ∗ H and H ⊆ H ∗ t.
(ii) ⇒ (i) Let (H, ∗) be a hypergroup and a, b ∈ H arbitrary elements, so b∗H = H ∗b =

H and it follows that a ∈ b∗H =
⋃

t∈H

b∗H which means a ∈ b∗c for an appropriate element

c ∈ H , i.e., a � b ◦ c. Similarly a ∈ H ∗ b which implies a � c′ ◦ b for an appropriate element
c′ ∈ H .

Theorem 2.8. Suppose that Γ is a family of commutative �-preordered semigroups such
that every pair ((H, ◦1), (H, ◦2)) ∈ Γ2 is w.m.a. Then the (L, Γ)-associated hypersemigroup
(H, ∗) (and similarly (U, Γ)-associated hypersemigroup (H, �)) is commutative.

Proof: The proof is straightforward.

Theorem 2.9. Let Γ = {(H, ◦)} be a singleton �-preordered semigroup and (H, ∗) be
(L, Γ)-associated hypersemigroup. We have the following:

(i) for all (x, y, z, t) ∈ H4 if x ◦ y ∈ z ∗ t, then x ∗ y ⊆ z ∗ t;
(ii) for all nonempty subset A of H define mA :def= Max{card(a ∗ b) : a, b ∈ A} where

card(a∗ b) means the cardinal number of the subsets a∗ b. If H =
⋃

a,b∈A

a∗ b and mA exists,

then for all (x, y) ∈ H2, card(x ∗ y) � mA.

Proof: (i) Let u ∈ x ∗ y so u � x ◦ y. Since x ◦ y ∈ z ∗ t, then x ◦ y � z ◦ t. Thus
u � x ◦ y � z ◦ t, by transitivity it follows u � z ◦ t. Therefore u ∈ z ∗ t.

(ii) Since x ◦ y ∈ x ∗ y ⊆ H , then there exist a and b in A such that x ◦ y ∈ a ∗ b and by
(i) we have x ∗ y ⊆ a ∗ b. So card(x ∗ y) � card(a ∗ b) � mA.

Corollary 2.10. Let Γ = {(H, ◦)} be a �-preordered semigroup. If (H, ∗) is a (L, Γ)-
associated hypergroup and b ∈ H is a left scalar element, then (H, ∗) is a group.

Theorem 2.11. Every complete hypersemigroup is derived from a �-preordered semi-
group.

Proof: Let (H, ∗) be a complete hypersemigroup. According to the Theorem 1.6.,
we have H =

⋃
s∈S

As where S is a semigroup and {As}s∈S is a nonempty family of sets

which are mutually disjoint. Consider the choice function C over the set {As| s ∈ S}, i.e.,
C : {As| s ∈ S} → ⋃

s∈S

As = H , where C(As) ∈ As. It is easy to see that:

(i) H endowed with the operation ”◦ ” that defined by a ◦ b :def= C(Ast) for all (a, b) ∈
As × At and s, t ∈ S, is a semigroup;

(ii) the relation � over H defined by:
(1) for all a ∈ H , a � a;
(2) for all s, t ∈ S and (a, b) ∈ As × At and for all x ∈ Ast, a ◦ b � x
is a preorder relation on H and the (L, Γ)-associated hypersemigroup, where Γ =

{(H, ◦)}, is (H, ∗).
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Examples
(1) Suppose that H = {e, a, b} and the preorder relation � on H is discrete relation.

Let Γ = {(H, ◦1), (H, ◦2)} be a �-preordered hypersemigroup where ◦1 and ◦2 are hyper-
operations on H ; see Table 1.

◦1 e a b
e e e e
a e e {e, a}
b e a b

◦2 e a b
e e e e
a e e a
b e {e, a} b

Table 1: The hyperoperations of H

The pair ((H, ◦1), (H, ◦2)) is w.m.a (in fact mutual associative)and non of the hyper-
semigroups (H, ◦1) and (H, ◦2) is commutative. The operation of the (L, Γ)-associative
hypersemigroup (H, ∗) is given by the following table:

∗ e a b
e e e e
a e e {e, a}
b e {e, a} b

Table 2: The hyperoperation of H

(2) Suppose that H = {e, a, b} and (H,�) is a partially preorder set as follows:

a

id
��

e

id

��
•

•��

b

id

��
•

Let Γ′ = {(H, ◦}) be the set of the following �-preordered semigroup:

◦ e a b
e e e e
a e e a
b e a b

Table 3: The operation of H

The (L, Γ′)-associative hypersemigroup (H, ∗′) is the same with (H, ∗) at Example 1.
The following tables show that we cannot produce any associated hypersemigroup with

a singleton �-preordered semigroup.
(3) Suppose that H = {e, a, b, c} and that the preorder relation � on H is the discrete

relation. Let Γ = {(H, ◦1), (H, ◦2)} be the set of the following �-preordered semigroups:
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◦1 e a b c
e e a b c
a a b c e
b b c e a
c c e a b

◦2 e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Table 4: The operations of H

We can see that the pair ((H, ◦1), (H, ◦2)) is w.m.a which is not mutual associative and
(H, ∗) is (L, Γ)-associative; see Table 5.

∗ e a b c
e e a b c
a a {e, b} c {e, b}
b b c e a
c c {e, b} a {e, b}

Table 5: The hyperoperation of H

By Corollary 2.10, we conclude that we cannot produce (H, ∗) with a singleton �-
preordered semigroup.

3 On morphisms of some associated hypersemigroups
In this section we give a connection between morphisms of some associated hypersemi-

groups and morphisms of preordered structures.

Proposition 3.1. Let f : H1
�� H2 be a mapping of a preordered set (H1, �1) into

another one (H2, �2). The following conditions are equivalent:
(i) f is monotone,
(ii) f(L(x)) ⊆ L(f(x)) for all x ∈ H1,
(iii) L(f−1(f(x))) ⊆ f−1(L(f(x))) for all x ∈ H1.

Proof: (i) ⇒ (ii) Let x ∈ H1 be an arbitrary element and suppose that y ∈ f(L(x)).
Then there exists z ∈ L(x), i.e., z �1 x such that y = f(z). Since f is a monotone,
f(z) �2 f(x) which implies y ∈ L(f(x)). Thus f(L(x)) ⊆ L(f(x)).

(ii) ⇒ (iii) Let x ∈ H1 be an arbitrary element. Suppose that y ∈ L(f−1(f(x))). Then
there exists z ∈ f−1(f(x)), i.e., f(z) = f(x) such that y �1 z which means y ∈ L(z).
Therefore f(y) ∈ f(L(z)) ⊆ L(f(z)) = L(f(x)) and hence y ∈ f−1(f(y)) ⊆ f−1(L(f(x))).
Consequently L(f−1(f(x))) ⊆ f−1(L(f(x))).

(iii) ⇒ (i) Suppose that x, y ∈ H1 and x �1 y are given. Since y ∈ f−1(f(y)), we have
x ∈ L(y) ⊆ L(f−1(f(y))) ⊆ f−1(L(f(yσ))). Thus f(x) ∈ L(f(y)) and hence f(x) �2 f(y).

Theorem 3.2. Let (H1, ◦1, �1) and (H2, ◦2, �2) be perordered semigroups and further-
more let f : (H1, ◦1) �� (H2, ◦2) be a homomorphism. Then f is a homomorphism of
associated hypersemigroups (H1, ∗1) and (H2, ∗2).

Proof: For any x, y ∈ H1 there exists an unique element z ∈ H1 such that x ◦1 y = z.
With respect to Proposition 3.1 we have:
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f(x ∗1 y) = f(L(x ◦1 y))
= f(L(z))
⊆ L(f(z))
= L(f(x ◦1 y))
= L(f(x) ◦2 f(y))
= f(x) ∗2 f(y).

Proposition 3.3. Let f : H1
�� H2 be mapping of an preordered set (H1, �1) into

another one (H2, �2). The following conditions are equivalent:
(i) f is a strongly monotone mapping,
(ii) f(L(x)) = L(f(x)) for all x in H .

Proof: (i) ⇒ (ii) For an strongly monotone mapping f it is enough to prove that
set inclusion L(f(x)) ⊆ f(L(x)) because of the Proposition 3.1. Suppose y ∈ L(f(x))
is an arbitrary element, then y �2 f(x). Since the mapping f is strongly monotone,
there exists such x′ ∈ H1 that x′ �1 x and f(x′) = y. Therefore x′ ∈ L(x) and hence
y = f(x′) ∈ f(L(x)) which means L(f(x)) ⊆ f(L(x)).

(ii) ⇒ (i) Let x1 ∈ H1 and x2 ∈ H2 be such elements that x2 �2 f(x1). Since x2 ∈
L(f(x1)) = f(L(x1)), there exists x′

1 ∈ L(x1), i.e., x′
1 �1 x1 such that f(x′

1) = x2. On the
other hand if there exists x′

1 ∈ H1 such that x′
1 �1 x1 and f(x′

1) = x2, then x′
1 ∈ L(x1) and

f(x′
1) ∈ f(L(x1)) = L(f(x1)) which implies x2 ∈ L(f(x1)) and consequently x2 �2 f(x1).

Theorem 3.4. Let (H1, ◦1, �1) and (H2, ◦2, �2) be preordered semigroups and further
let f : (H1, ◦1) �� (H2, ◦2) be a homomorphism which is strongly monotone. Then f is
a good homomorphism of associated hypersemigroups (H1, ∗1) and (H2, ∗2).

Proof: As in the proof of the Proposition 3.3, let x, y and z in H1 with xy = z be given.
With respect to Proposition 3.1, we have:

f(x ∗1 y) = f(L(x ◦1 y))
= f(L(z))
= L(f(z))
= L(f(x ◦1 y))
= L(f(x) ◦2 f(y))
= f(x) ∗2 f(y).
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