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Abstract. This paper presents an analysis of models for Japanese short-term inter-
est rate. The models are constructed based on mean reverting model using Bayesian
method to capture the dynamics of short-term interest rate. The parameters of our
models are estimated by marginal likelihood and posterior expectation and we shall
make model selection using the information criterion EIC(extended information cri-
terion). An application of the models will be implemented using weekly Japanese
average interest rates on certificates of deposit (new issues) less than 30 days in the
period from January 2001 to December 2008.

1 Introduction Correct modeling of the short-term interest rate is essential in finace, as
it is this rate that is fundamental to the pricing of securities and important for risk man-
agement. In the study of the short-term interest rate dynamics, various models have been
suggested. There are examples of these models, such as Vasicek model by Vasicek(1977),
CIR model by Cox, Ingersoll and Ross(1985) and so on. An empirical comparison of these
models was made by Chan, Karolyi, Longstaff and Sanders(1992). In the paper, the param-
eters are estimated by generalized method of moments(GMM) and they implemented the
hypothesis testing methods developed by Newey and West for evaluation of the models. In
the parameter estimation of mean reverting model using GMM, it is known that the results
are easy to be influenced by an initial values, and it becomes often unstable.

Recently, Ahangarani(2005) employed maximum likelihood method for parameter esti-
mation and log likelihood ratio test for model selection, and Kawada(2007) implemented
GMM and made model selection using the information criterion EIC(extended information
criterion) for various short-term interest rate models. Another articles of the interest rate
model, using Bayesian framework, Jones(2003) published study about nonlinear drift of the
interest rate model in detail, and Gray(2005) studied continuous time short rate models
and the parameters estimated by Markov chain Monte Carlo(MCMC) method. Sanford
and Martin(2006) made estimation using MCMC algorithm and model selection is made
by Bayes factors for each model calculated using Savage-Dickey density ratio. In addition,
a recent study by Hong and Lin(2006) examined a variety of short-term interest rate mod-
els including the single-factor diffusion models, GARCH models, Markov regime-switching
models and jump-diffusion models for Chinese rates.

However, more useful models which capture the dynamics of the short-term interest rate
are needed. In this paper, we suggest two hierarchical Bayes models based on mean reverting
model. The parameters of the models are treated as random variables so that we have to
consider appropriate prior distributions for them. By regarding parameters as random
variables, we can consider that model construction and estimation involve necessarily some
uncertainty and utilize the prior information of interest rate. In the first hierarchical Bayes
model, we assume that volatility is constant, and in the second one, it depends on the
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interest rate. Recently, MCMC has been widely used in model estimation because of its
usability, but it takes much time for calculation. Instead, we suggest parameter estimation
of our hierarchical Bayes models using its marginal likelihood and posterior expectation,
whose computation time is very short.

Although the issue of comparison of the models is important, it is difficult to evaluate
relative performance of models in a consistent way. In this paper, we shall make model
selection by the information criterion EIC. Using EIC, we can evaluate the model perfor-
mance involving bias of model estimation. Our method of analysis of the interest rate is
applied to Japanese short-term interest rate data.

This paper is structured as follows. In section 2, we review mean reverting model in
discrete-time and construct two hierarchical Bayes models. Section 3 gives methods of pa-
rameter estimation for three models. Firstly, we outline GMM for mean reverting model
following Chan et al.(1992). Secondly, we derive marginal likelihood and posterior expecta-
tions of hierarchical Bayes models. In section 4, we estimate these models with simulation
data generated from our hierarchical Bayes models, and in section 5, the methodologies
are applied to Japanese short-term interest rate data series. Summary and conclusions are
made in section 6.

2 Models

2.1 Mean Reverting Model In the mean reverting model, it seems that the short-term
interest rate has a long-term mean and moves to revert the mean. Consider a discrete-time
econometric specification and let rt be the short-term interest rate at time t. A dynamics
for rt which has the mean reverting property can be nested within the following equation,

rt+1 = rt + α+ βrt + εt+1, t = 1, 2, · · · ,(1)
εt+1 = σrr

γ
t zt; zt ∼ N(0, 1),

E[εt+1] = 0, E[ε2t+1] = σ2
rr

2γ
t .(2)

Many well known interest rate models such as CIR model and Vasicek model can be obtained
from this model by giving the restrictions on the four parameters α, β, σ2

r , and γ.
Now we consider about a difference of the short-term interest rate between time t + 1

and t, and develop its distribution.

Proposition 2.1. Let yt be

yt = rt+1 − rt,(3)

then yt is conditionally normally distributed N(α+ βrt, σ
2
rr

2γ
t ).

Proof. From equation (1), yt = α+βrt+ εt+1, E[yt] = α+βrt and V ar[yt] = σ2
rr

2γ
t . Since

yt is a linear combination of zt, yt is N(α+ βrt, σ
2
rr

2γ
t ). �

We call α+ βrt drift term and σ2
r volatility. Let parameter vector be θ = [α, β, σ2

r , γ]�,
likelihood of yt with n observations is derived as follows:

l(θ) =
n∏
t=1

1√
2πσ2

rr
2γ
t

exp
[
− (yt − α− βrt)2

2σ2
rr

2γ
t

]
.
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2.2 Hierarchical Bayes Model I As a special case of mean reverting model, we now
assume that parameter γ in equation (2) equals to 0 and construct hierarchical Bayes model.
Consider mean and variance in equation (1) are random variables and yt is N(µt, σ2), then
describe the probability density of yt with

f(yt|µt, σ2) =
1√

2πσ2
exp

[
− (yt − µt)2

2σ2

]
.(4)

Further assume that the prior distribution for µt is N(ψt, σ2
0), and the prior distribution of

two types of uniform and inverse gamma with scale parameter ν0/2 and shape parameter
λ0/2 in σ2 + σ2

0 . These probability densities are written

g1(µt|ψt, σ2
0) =

1√
2πσ2

0

exp
[
− (µt − ψt)2

2σ2
0

]
, ψt = a1 + b1rt,(5)

h1(σ2 + σ2
0) =

1
k
,(6)

h2(σ2 + σ2
0) =

(λ0
2 )

ν0
2

Γ (ν02 )
(σ2 + σ2

0)−(
ν0
2 +1) exp

[
− λ0

2(σ2 + σ2
0)

]
,(7)

k1 : k2 = σ2 : σ2
0 ,

where Γ(·) is gamma function, and λ0, ν0, k1 and k2 are hyper parameters and given as a
prior information.(See Kawada(2008) about the detail of the model.)

2.3 Hierarchical Bayes Model II We constructed the hierarchical Bayes model I whose
volatility’s fluctuation is not influenced by the interest rate. However, it is generally known
that the volatility is influenced by the interest rate, and it is thought that the model which
includes influence of the interest rate may capture the dynamics of the interest rate in
volatility well.

Therefore, we construct the model that depends upon influence of the interest rate in
volatility term as hierarchical Bayes model II. Now we assume that the prior of normal
distribution N(ϕt, σ2

0) in µt and inverse gamma distribution which has shape parameter c
and scale parameter e−prt in σ2 + σ2

0 . In addition, we also assume uniform distribution as
the prior in the shape parameter c. These probability densities are written as

g2(µt|ϕt, σ2
0) =

1√
2πσ2

0

exp
[
− (µt − ϕt)2

2σ2
0

]
, ϕt = a2 + b2rt,(8)

h3(σ2 + σ2
0 |c, e−prt) =

(e−prt)
c

Γ(c)
(σ2 + σ2

0)−(c+1) exp
[
− e−prt

σ2 + σ2
0

]
, k3 : k4 = σ2 : σ2

0 ,(9)

κ(c) =
1
l
,(10)

where the ratio k3 and k4 are given as a prior information.

3 Method of Parameter Estimation In this paper, we use GMM for mean reverting
model, and marginal likelihood and posterior expectation for our hierarchical Bayes models
to estimate the parameters. This section provides the details of the method of parameter
estimation for the models.
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3.1 GMM(Generalized Method of Moments) Using GMM, we estimate the param-
eters of mean reverting model (1) and (2). For the estimation, now we rewrite the equation
(1),

εt+1 = rt+1 − rt − α− βrt,

and define the vector ft(θ) be

ft(θ) ≡

⎡
⎢⎢⎣

εt+1

εt+1rt
ε2t+1 − σ2

rr
2γ
t

(εt+1 − σ2
rr

2γ
t )rt

⎤
⎥⎥⎦ .

If the parameter of a model assuming is correct, we have E[ft(θ)] = ∅ from (1) and (2). The
GMM procedure consists of replacing E[ft(θ)] with its sample counterpart, gn(θ), using
the n observations where

gn(θ) =
1
n

n∑
t=1

ft(θ),

and then choosing parameter estimators that minimize the quadratic form,

Jn(θ) = g�
n (θ)Wngn(θ) =

4∑
i=1

4∑
j=1

gni (θ)wnijg
n
j (θ),

where Wn = (wnij) is a positive-definite symmetric weighting matrix, gni (θ) is ith element
of vector gn(θ) and 4 is the number of parameters. See Chan et al.(1992) about selection
of weighting matrix Wn.

3.2 Marginal Likelihood and Posterior Expectations of Hierarchical Bayes
Model I We estimate the parameters in hierarchical Bayes model (4), (5), (6) and (7)
using marginal likelihood and posterior expectation.

Proposition 3.1. The posterior distribution for µt of hierarchical Bayes model I in
equation (5) is

µt|ψt, σ2 + σ2
0 , yt ∼ N

(
ψtσ

2 + ytσ
2
0

σ2 + σ2
0

,
σ2σ2

0

σ2 + σ2
0

)
,(11)

and its posterior expectation is

E[µt|ψt, σ2 + σ2
0 , yt] =

ψtσ
2 + ytσ

2
0

σ2 + σ2
0

.(12)

Proof. Using the following Bayesian law, we can derive

p(µt|ψt, σ2 + σ2
0 , yt) =

f(yt|µt, σ2)g1(µt|ψt, σ2
0)∫ ∞

−∞ f(yt|µt, σ2)g1(µt|ψt, σ2
0)dµt

=
D1

D2
.(13)
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We divide this expression into a numerator and a denominator for the advantage of the
calculation. The numerator is developed as follows:

D1 =
1√

2πσ2
√

2πσ2
0

exp
[
− (yt − µt)2

2σ2
− (µt − ψt)2

2σ2
0

]

=
1

2πσσ0
× exp

⎡
⎢⎣−(σ2 + σ2

0)
{
µt − (ψtσ

2+ytσ
2
0)

σ2+σ2
0

}2

+ (ψtσ
2+ytσ

2
0)2

σ2+σ2
0

− (ψ2
t σ

2 + y2
t σ

2
0)

2σ2σ2
0

⎤
⎥⎦ ,

and we set

Σ = σ2 + σ2
0 ,

R0 =
(ψtσ2 + ytσ

2
0)2

σ2 + σ2
0

− (ψ2
t σ

2 + y2
t σ

2
0),

then we have the numerator of the equation of the posterior distribution of µt

D1 =
1

2πσσ0
exp

[
−Σ{µt − (ψtσ

2+ytσ
2
0)

Σ }2 −R0

2σ2σ2
0

]

=

√
Σ

2πσ2σ2
0

exp

[
−Σ{µt − (ψtσ

2+ytσ
2
0)

Σ }2

2σ2σ2
0

]
1√
2πΣ

exp
(

R0

2σ2σ2
0

)
.

(14)

The denominator is also rewritten as

D2 =
1√
2πΣ

exp
(

R0

2σ2σ2
0

)
×

∫ ∞

−∞

√
Σ

2πσ2σ2
0

exp

[
−Σ{µt − (ψtσ

2+ytσ
2
0)

Σ }2

2σ2σ2
0

]
dµt

=
1√
2πΣ

exp
(

R0

2σ2σ2
0

)
.

(15)

By the result of (14) and (15), we can rewrite equation (13) as follows:

p(µt|ψt, σ2 + σ2
0 , yt) =

√
Σ

2πσ2σ2
0

exp

[
−Σ{µt − (ψtσ

2+ytσ
2
0)

Σ }2

2σ2σ2
0

]
.

Further we transform the equation,

σ2
B =

σ2σ2
0

Σ
,

Λµ =
ψtσ

2 + ytσ
2
0

Σ
,

then we have

p(µt|ψt, σ2 + σ2
0 , yt) =

1√
2πσ2

B

exp
[
− (µt − Λµ)2

2σ2
B

]
.

We find that this is the density of normal distribution which has mean Λµ and variance σ2
B.

Therefore the posterior distribution of µt of hierarchical Bayes model I in equation (5) is

µt|ψt, σ2 + σ2
0 , yt ∼ N

(
ψtσ

2 + ytσ
2
0

σ2 + σ2
0

,
σ2σ2

0

σ2 + σ2
0

)
,
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and its posterior expectation is

E[µt|ψt, σ2 + σ2
0 , yt] =

ψtσ
2 + ytσ

2
0

σ2 + σ2
0

. �

We estimate the parameters a1 and b1 in ψt = a1 + b1rt using marginal likelihood
l1(σ2 + σ2

0) of σ2 + σ2
0 in hierarchical Bayes model I and σ2 + σ2

0 using its posterior expec-
tation.

Lemma 3.1. The marginal likelihood, l1(σ2 + σ2
0) which is used in estimation with

n observations yn = [y1, · · · , yn] is written as

l1(σ2 + σ2
0) = {2π(σ2 + σ2

0)}−n
2 × exp

[
− 1

2(σ2 + σ2
0)

n∑
t=1

(yt − ψt)2
]
.(16)

Proof. Likelihood has the information of parameters depending on data, and marginal
likelihood is provided by erasing unnecessary parameters using integral calculus from its
likelihood. The marginal likelihood l1(σ2 + σ2

0) (16) is derived as follows:

l1(σ2 + σ2
0) =

n∏
t=1

∫ ∞

−∞
f(yt|µt, σ2)g1(µt|ψt, σ2

0)dµt.

Using the result of (15) in proposition 3.1 and we have

l1(σ2 + σ2
0) =

n∏
t=1

1√
2π(σ2 + σ2

0)
× exp

[
1

2σ2σ2
0

{
(ψtσ2 + ytσ

2
0)2

σ2 + σ2
0

− (ψ2
t σ

2 + y2
t σ

2
0)

}]

=
n∏
t=1

1√
2π(σ2 + σ2

0)
× exp

[
1

2σ2σ2
0

{
(ψtσ2 + ytσ

2
0)2 − (ψ2

t σ
2 + y2

t σ
2
0)(σ

2 + σ2
0)

σ2 + σ2
0

}]

=
n∏
t=1

1√
2π(σ2 + σ2

0)
×

exp
[

1
2σ2σ2

0

{
(ψ2
t σ

4 + y2
t σ

4
0 + 2ψtytσ2σ2

0) − (ψ2
t σ

4 + y2
tσ

4
0 + ψ2

t σ
2σ2

0 + y2
t σ

2σ2
0)

σ2 + σ2
0

}]

=
n∏
t=1

1√
2π(σ2 + σ2

0)
× exp

[
− 1

2σ2σ2
0

{
y2
t σ

2σ2
0 − 2ψtytσ2σ2

0 + ψ2
t σ

2σ2
0

σ2 + σ2
0

}]

=
n∏
t=1

1√
2π(σ2 + σ2

0)
× exp

[
− 1

2σ2σ2
0

{
(yt − ψt)2σ2σ2

0

σ2 + σ2
0

}]

=
n∏
t=1

1√
2π(σ2 + σ2

0)
× exp

[
− 1

2(σ2 + σ2
0)

(yt − ψt)2
]

= {2π(σ2 + σ2
0)}−

n
2 × exp

[
− 1

2(σ2 + σ2
0)

n∑
t=1

(yt − ψt)2
]
. �

(17)



A BAYESIAN ANALYSIS FOR SHORT-TERM INTEREST RATE 565

In estimation, we choose the parameters a1, b1 and σ2 + σ2
0 to maximize this marginal

likelihood. However, seeing this marginal likelihood, we find that it maximizes if we esti-
mate ψt = a1 +b1rt, t = 1, · · · , n minimizing a value of

∑n
t=1(yt−ψt)2 regardless of σ2 +σ2

0 .
Therefore, we estimate only a1 and b1 in this marginal likelihood and σ2 + σ2

0 is estimated
using posterior expectation. Next, we develop the posterior distribution of σ2 +σ2

0 to obtain
its expectation.

Proposition 3.2.(a). Using n observations vector yn = [y1, · · · , yn] the posterior
distribution for σ2 + σ2

0 with the prior (6) is derived

σ2 + σ2
0 |yn ∼ Ga−1

(
n

2
− 1,

∑n
t=1(yt − ψt)2

2

)
,(18)

where Ga−1 describe inverse gamma distribution. The posterior expectation for the distri-
bution (18) is calculated as

E
[
σ2 + σ2

0 |yn
]

=

�n
t=1(yt−ψt)

2

2
n
2 − 2

.(19)

Proof. See Appendix A.1.1. �

Proposition 3.2.(b). The posterior distribution for σ2 + σ2
0 with the prior (7) is

derived

σ2 + σ2
0 |yn ∼ Ga−1

(
n+ ν0

2
,

∑n
t=1(yt − ψt)2 + λ0

2

)
,(20)

and the posterior expectation for the distribution (20) is calculated as

E
[
σ2 + σ2

0 |yn
]

=

�n
t=1(yt−ψt)

2+λ0

2
n+ν0

2 − 1
.(21)

Proof. See Appendix A.1.2. �

Because ψt = a1+b1rt, substituting the estimators of a1 and b1 into each of the posterior
expectation of σ2 + σ2

0 , we have the estimators of σ2 + σ2
0 .

3.3 Marginal Likelihood and Posterior Expectations of Hierarchical Bayes
Model II The parameters of hierarchical Bayes Model II are also estimated by its marginal
likelihood and posterior expectation. We derive the marginal likelihood and the posterior
distributions.

Proposition 3.3. The posterior distribution for µt of hierarchical Bayes model II in
equation (8) is

µt|ϕt, σ2 + σ2
0 , yt ∼ N

(
ϕtσ

2 + ytσ
2
0

σ2 + σ2
0

,
σ2σ2

0

σ2 + σ2
0

)
,(22)
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and its posterior expectation is

E[µt|ϕt, σ2 + σ2
0 , yt] =

ϕtσ
2 + ytσ

2
0

σ2 + σ2
0

.(23)

Proof. This proof can lead similarly Proposition 3.1 using Bayesian law. �

We need to develop the posterior distribution of σ2 + σ2
0 in equation (9) because it is

estimated using posterior expectation.

Proposition 3.4. The posterior distribution of σ2 + σ2
0 is derived by following

Bayesian law,

p(σ2 + σ2
0 |c, e−prt ,yn) =

l2(σ2 + σ2
0)h3(σ2 + σ2

0)∫ ∞
0
l2(σ2 + σ2

0)h3(σ2 + σ2
0)d(σ2 + σ2

0)
,(24)

where l2(σ2 + σ2
0) is marginal likelihood of σ2 + σ2

0 in hierarchical Bayes model II. We have

σ2 + σ2
0 |c, e−prt ,yn ∼ Ga−1

(
n

2
+ c,

∑n
t=1(yt − ϕt)2

2
+ e−prt

)
,(25)

and find that the expectation

E
[
σ2 + σ2

0 |c, e−prt ,yn
]

=

�n
t=1(yt−ϕt)

2

2 + e−prt

n
2 + c− 1

,(26)

where ϕt = a2 + b2rt.

Proof. This proof can lead similarly Lemma 3.1 and Proposition 3.2.(b) using Bayesian
law. �

The parameters a2, b2, c and p are estimated by marginal likelihood of c and e−prt in
hierarchical Bayes model II.

Proposition 3.5. The marginal likelihood l(c, e−prt) is derived as follows:

l(c, e−prt) =

[
Γ

(
c+ 1

2

)
Γ(c)

]n
(2π)−

n
2

n∏
t=1

(e−prt)c
[

2
(yt − ϕt)2 + 2e−prt

](c+ 1
2 )

,(27)

for convenience of estimation,

log l(c, e−prt) = −n
2

log(2π) + n log
Γ(c+ 1

2 )
Γ(c)

+
n∑
t=1

[
c(−prt) +

(
c+

1
2

)
log

{
2

(yt − ϕt)2 + 2e−prt

}]
,(28)

Proof. See Appendix A.2. �

In estimation, we choose the parameters a2, b2, c and p to maximize this marginal
likelihood. Substituting (a2, b2, c, p) estimated in (28) into the posterior expectations (26)
and we have a estimator of σ2 + σ2

0 in hierarchical Bayes model II.
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4 Simulation Analysis In this section, we show the effectiveness and the validity of
usage of marginal likelihood and posterior expectation in parameter estimation and the
information criterion EIC for model selection. We generate simulation data from the models
that we suggested and implement the parameter estimation of each model for the simulation
data. Using the estimators, we calculate EIC and choose the model that the value is smallest
as the most suitable one for the data which we analyzed. (See Ishiguro, Sakamoto and
Kitagawa(1997) about the detail of EIC.) We generate 1000 simulation data for three of
hierarchical Bayes models.

For the comparison, we also estimate mean reverting model (1) and (2) using GMM
for the simulation data. Estimation results are shown in from Table 1 to Table 3. The
hierarchical Bayse models used in the simulation are as follows.

(i)Simulation data 1Fhierarchical Bayes model I(h1) with uniform distribution (see (4),
(5) and (6))

yt ∼ N(µt, σ2),
µt ∼ N(a1 + b1rt, σ

2
0),

σ2 + σ2
0 ∼ Uni(0, k), σ2 : σ2

0 = k1 : k2,

a1 = 1.6, b1 = −0.2, k = 1.0, k1 : k2 = 7 : 3.

The estimation result is given in Table 1. It is shown that the most suitable model is hier-
archical Bayes model I(h2), though the true model is hierarchical Bayes model I(h1). This
can be considered due to the estimation bias.

(ii)Simulation data 2Fhierarchical Bayes model I(h2) with inverse gamma distribution
(see (4), (5) and (7))

yt ∼ N(µt, σ2),
µt ∼ N(a1 + b1rt, σ

2
0),

σ2 + σ2
0 ∼ Ga−1

(
ν0
2
,
λ0

2

)
, σ2 : σ2

0 = k1 : k2,

a1 = 0.6, b1 = −0.15, ν0 = 3.0, λ0 = 6.0, k1 : k2 = 7 : 3.

The estimation result is given in Table 2. It is shown that the most suitable model is hier-
archical Bayes model I(h2).

(iii)Simulation data 3Fhierarchical Bayes model II (see (4), (8), (9) and (10))

yt ∼ N(µt, σ2),
µt ∼ N(a2 + b2rt, σ

2
0),

σ2 + σ2
0 ∼ Ga−1

(
c, e−prt

)
, σ2 : σ2

0 = k3 : k4,

c ∼ Uni(0, l)

a2 = 0.7, b2 = −0.2, p = 0.1, l = 10.0, k3 : k4 = 8 : 2.

The estimation result is given in Table 3. It is shown that the most suitable model is
hierarchical Bayes model II.

Note that the estimate of σ2 + σ2
0 in hierarchical Bayes model II depends on time t and

we have estimates of the same number as the data, therefore it is described as expectation.
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5 Data Analysis The weekly Japanese average interest rates on certificates of deposit
(new issues) less than 30 days in the period from January 2001 to December 2008 which is
418 observations are used in this practical analysis. Figure 1 shows the data rt and Figure
2 shows yt = rt+1 − rt. Because the values of the data are so small, we extend the data
100 times and use it for the analysis. In this estimation, the values of hyper parameter are
λ0 = 1.0, ν0 = 5.0, k1 = k3 = 0.8, and k2 = k4 = 0.2 respectively. The result is shown in
Table 4, in which the most suitable model is hierarchical Bayes model II.
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Index

DAT
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Figure 1: Short-Term Interest Rate Data
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Figure 2: First Differenced Rate Data

6 Summary and Conclusions In this paper, we constructed more useful models based
on mean reverting model to express the dynamics of short-term interest rate using hierarchi-
cal Bayes method. We further suggested a method of parameter estimation for the models
using its marginal likelihood and posterior expectation and made model selection by EIC. In
adopting Bayesian approach uncertainty relative to all unkown parameters is infered from
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likelihood and posterior probabilities, which reflect both data and prior information about
the interest rate process.

Simulation results showed that our method is effective and valid in the modeling of the
short-term interest rate and estimation. Seeing the estimation results of Japanese interest
rate data, we found that our models are more suitable than the mean reverting model for
the interest rate data which we analyzed in the model selection using EIC. In comparison
with GMM and MCMC, large reduction of calculation time is realized by using marginal
likelihood and posterior expectation for estimation. And we can apply the information
criterion EIC that is an inclusive model evaluation method.

Hierarchical Bayes method allows to infer an influence of drift and volatility in the
interest rate at each hierarchy. For future prospects, it is necessary to consider more useful
models of drift term, and to further examine how to take in influence of the interest rate in
volatility.

A Appendix

A.1 Proof of Proposition 3.2 In this Appendix, we develop the posterior distributions
and expectations of σ2 + σ2

0 of hierarchical Bayes model I in proposition 3.2.

A.1.1 Proof of Proposition 3.2.(a) Firstly, we consider the posterior distribution of σ2+σ2
0

which has uniform distribution as the prior in equation (6). It is derived using following
Baysian law:

p(σ2 + σ2
0 |yn) =

l1(σ2 + σ2
0)h1(σ2 + σ2

0)∫ ∞
0
l1(σ2 + σ2

0)h1(σ2 + σ2
0)d(σ2 + σ2

0)
=
D3

D4
,(29)

where l(σ2+σ2
0) is the marginal likelihood in Lemma 3.1. We divide this expression into nu-

merator and denominator for the advantage of the calculation. The denominator advanced
as follows:

D4 =
∫ ∞

0

{2π(σ2 + σ2
0)}−

n
2 × 1

k
× exp

[
− 1

2(σ2 + σ2
0)

n∑
t=1

(yt − ψt)2
]
d(σ2 + σ2

0)

= −(2π)−
n
2 × 1

k
×

∫ ∞

0

(σ2
0 + σ2)−

n
2 × exp

[
− 1

2(σ2 + σ2
0)

n∑
t=1

(yt − ψt)2
]
d(σ2 + σ2

0).

Now we set

P =
1

σ2 + σ2
0

,

dP = − 1
σ2 + σ2

0

d(σ2 + σ2
0), d(σ2 + σ2

0) = −P−2dP,

T =
n∑
t=1

(yt − ψt)2,

then we rewrite

D4 = −(2π)−
n
2 × 1

k

∫ ∞

0

P
n
2 −2e−

T
2 P dP.
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Futher we set

Q =
T

2
P,

dQ =
T

2
dP,

then

D4 = −(2π)−
n
2 × 1

k

∫ ∞

0

(
2
T
Q

)( n
2 −2)

e−Q ×
(

2
T

)
dQ

= −(2π)−
n
2 ×

(
2
T

)n
2 −1

× 1
k

∫ ∞

0

Q( n
2 −1)−1e−QdQ,

we find that ∫ ∞

0

Q( n
2 −1)−1e−QdQ = Γ

(n
2
− 1

)
.

Therefore we have

D4 = −(2π)−
n
2 ×

(
2
T

)n
2 −1

× 1
k
× Γ

(n
2
− 1

)
.

Do it likewise, the numerator is rewritten as follows:

D3 = (2π)−
n
2 × 1

k
× P

n
2 −1 × exp

[
−T

2
P

]
.

Consequently, the equation of the posterior distribution of σ2 + σ2
0 is

D3

D4
=

−(2π)−
n
2 × 1

k × P
n
2 −1 × exp

[−T
2 P

]
−(2π)−

n
2 × ( 2

T )
n
2 −1 × 1

k × Γ (n2 − 1)

=
(
T

2

)n
2 −1

× 1
Γ (n2 − 1)

× P
n
2 −2 × e−

T
2 P .

We set

s =
n

2
− 1,

u =
T

2
,

then it is rewritten as follows:

D3

D4
=

us

Γ (s)
P s−1e−uP

=
us

Γ (s)
(σ2 + σ2

0)−(s+1)e
− u

σ2+σ2
0 ,

We find that this is the density of inverse gamma Ga−1(s, u), therefore the posterior distri-
bution of σ2 + σ2

0 is derived as follows:

σ2 + σ2
0 |yn ∼ Ga−1

(
n

2
− 1,

∑n
t=1(yt − ψt)2

2

)
.
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Because of the expectation of inverse gamma distribution Ga−1(s, u) is u/(s − 1), the
posterior expectation of (18) is

E
[
σ2 + σ2

0 |yn
]

=

�n
t=1(yt−ψt)

2

2
n
2 − 2

.

A.1.2 Proof of Proposition 3.2.(b) Secondly, we consider the posterior distribution of σ2 +
σ2

0 which has the prior distribution of inverse gamma in equation (7). The Bayesian law is
applied to this derivation:

p(σ2 + σ2
0 |yn) =

l1(σ2 + σ2
0)h2(σ2 + σ2

0)∫ ∞
0
l1(σ2 + σ2

0)h2(σ2 + σ2
0)d(σ2 + σ2

0)
=
D5

D6
.(30)

The numerator is derived as follows:

D5 = {2π(σ2 + σ2
0)}−n

2 × exp
[
−

∑n
t=1(yt − ψ)2

2(σ2 + σ2
0)

]

× (λ0
2 )

ν0
2

Γ (ν02 )
(σ2 + σ2

0)
−(

ν0
2 +1) exp

[
− λ0

2(σ2 + σ2
0)

]
,

and the denominator is derived as follows:

D6 =
∫ ∞

0

{2π(σ2 + σ2
0)}−

n
2 × exp

[
−

∑n
t=1(yt − ψ)2

2(σ2 + σ2
0)

]

× (λ0
2 )

ν0
2

Γ (ν02 )
(σ2 + σ2

0)−(
ν0
2 +1) exp

[
− λ0

2(σ2 + σ2
0)

]
d(σ2 + σ2

0)

= (2π)−
n
2 × (λ0

2 )
ν0
2

Γ (ν02 )

∫ ∞

0

P
n+ν0

2 +1 exp
[
−T + λ0

2
P

]
× (−P 2)dP

= −(2π)−
n
2 × (λ0

2 )
ν0
2

Γ (ν02 )

∫ ∞

0

P
n+ν0

2 −1 exp
[
−T + λ0

2
P

]
dP.

Now we set for advantage,

M =
T + λ0

2
P,

P =
2

T + λ0
M,

dP =
2

T + λ0
dM,

then we have

D6 = −(2π)−
n
2 × (λ0

2 )
ν0
2

Γ (ν02 )
×

∫ ∞

0

(
2

T + λ0
M

)n+ν0
2 −1

e−M
2

T + λ0
dM

= −(2π)−
n
2 × (λ0

2 )
ν0
2

Γ
(
ν0
2

) ×
(

2
T + λ0

)n+ν0
2

×
∫ ∞

0

M
n+ν0

2 −1e−MdM

= −(2π)−
n
2 ×

(
λ0
2

) ν0
2

Γ
(
ν0
2

) ×
(

2
T + λ0

)n+ν0
2

× Γ

(
n+ ν0

2

)
.
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Do it likewise, we rewrite the equation of the numerator and have

D5 = −(2π)−
n
2 × (λ0

2 )
ν0
2

Γ (ν02 )
P

n+ν0
2 −1 × exp

[
−T + λ0

2
P

]
.

Therefore, the equation of the posterior distribution of σ2 + σ2
0 which has the prior distri-

bution of inverse gamma,

D5

D6
=

−(2π)−
n
2 × (

λ0
2 )

ν0
2

Γ (
ν0
2 )

× P
n+ν0

2 −1 × exp
[−T+λ0

2 P
]

−(2π)−
n
2 × (

λ0
2 )

ν0
2

Γ (
ν0
2 )

× ( 2
T+λ0

)
n+ν0

2 × Γ (n+ν0
2 )

=
(
T + λ0

2

)n+ν0
2

× 1
Γ (n+ν0

2 )
× P

n+ν0
2 −1 × exp

[
−T + λ0

2
P

]
.

Setting

s′ =
n+ ν0

2
,

u′ =
T + λ0

2
,

then we have

D5

D6
=

u′s
′

Γ (s′)
× P s

′−1 × eu
′P

=
u′s

′

Γ (s′)
× (σ2 + σ2

0)
−(s′+1) × e

− u′
σ2+σ2

0 .

This is the density of inverse gamma distribution Ga−1(s′, u′), and we find that the posterior
distribution of σ2 + σ2

0 which has the prior distribution of inverse gamma is

σ2 + σ2
0 |yn ∼ Ga−1

(
n+ ν0

2
,

∑n
t=1(yt − ψt)2 + λ0

2

)
.

Consequently, we find that the posterior expectation of σ2 + σ2
0 in (20) is

E[σ2 + σ2
0 |yn] =

�n
t=1(yt−ψt)

2+λ0

2
n+ν0

2 − 1
.

A.2 Proof of Proposition 3.5 The marginal likelihood l(c, e−prt) of hierarchical Bayes
model II is derived as follows:

l(c, e−prt) =
n∏
t=1

∫ ∞

0

∫ ∞

−∞
f(yt|µt, σ2)g2(µt|ϕt, σ2

0)h3(σ2 + σ2
0 |c, e−prt)dµtd(σ2 + σ2

0).(31)

Firstly, we consider the integral in equation (31).∫ ∞

0

∫ ∞

−∞
f(yt|µt, σ2)g2(µt|ϕt, σ2

0)h3(σ2 + σ2
0 |c, e−prt)dµtd(σ2 + σ2

0)

=
∫ ∞

0

∫ ∞

−∞

1√
2πσ2

exp
[
− (yt − µt)2

2σ2

]

× 1√
2πσ2

0

exp
[
− (µt − ϕt)2

2σ2
0

]

× (e−prt)c

Γ(c)
(σ2 + σ2

0)−(c+1) exp
[
− e−prt

σ2 + σ2
0

]
dµtd(σ2 + σ2

0) = D7.
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In proposition 3.1, we found that

D2 =
∫ ∞

−∞
f(yt|µt, σ2)g2(µt|ϕt, σ2

0)dµt

=
∫ ∞

−∞

1√
2πσ2

exp
[
− (yt − µt)2

2σ2

]
× 1√

2πσ2
0

exp
[
− (µt − ϕt)2

2σ2
0

]
dµt

=
1√

2π(σ2 + σ2
0)

exp
[
− 1

2(σ2 + σ2
0)

(yt − ϕt)2
]
,

substituting this into D7 and we have

D7 =
∫ ∞

0

1√
2π(σ2 + σ2

0)
× exp

[
− 1

2(σ2 + σ2
0)

(yt − ϕt)2
]

× (e−prt)c

Γ(c)
(σ2 + σ2

0)−(c+1) exp
[
− e−prt

σ2 + σ2
0

]
d(σ2 + σ2

0)

=
(e−prt)c

Γ(c)
(2π)−

1
2

∫ ∞

0

(σ2 + σ2
0)−

1
2 (σ2 + σ2

0)
−(c+1)

× exp
[
− (yt − ϕt)2

2(σ2 + σ2
0)

− e−prt

σ2 + σ2
0

]
d(σ2 + σ2

0)

=
(e−prt)c

Γ(c)
(2π)−

1
2

∫ ∞

0

(σ2 + σ2
0)−(c+ 3

2 ) exp
[
− (yt − ϕt)2 + 2e−prt

2(σ2 + σ2
0)

]
d(σ2 + σ2

0).

Secondly, setting

1
σ2 + σ2

0

= L,
−1

(σ2 + σ2
0)2

d(σ2 + σ2
0) = dL,

− 1
L2
dL = d(σ2 + σ2

0),

(yt − ϕt)2 + 2e−prt = M,

then

D7 =
(e−prt)c

Γ(c)
(2π)−

1
2

∫ 0

∞
L(c+ 3

2 ) exp
[
−ML

2

]
× (− 1

L2
)dL

=
(e−prt)c

Γ(c)
(2π)−

1
2

∫ ∞

0

L(c− 1
2 ) exp

[
−ML

2

]
dL.

Futher we set

ML

2
= N, L =

2N
M

, dL =
2
M
dN,

and transform the equation as follows:

D7 =
(e−prt)c

Γ(c)
(2π)−

1
2

∫ ∞

0

(
2N
M

)(c− 1
2 )

e−N
(

2
M

)
dN

=
(e−prt)c

Γ(c)
(2π)−

1
2

(
2
M

)(c+ 1
2 ) ∫ ∞

0

N (c+ 1
2 )−1e−NdN,
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the integral is gamma function and it is rewritten as∫ ∞

0

N (c+ 1
2 )−1e−NdN = Γ

(
c+

1
2

)
.

Substituting it into the integral of the marginal likelihood,

D7 =
∫ ∞

0

∫ ∞

−∞
f(yt|µt, σ2)g2(µt|ϕt, σ2

0)h3(σ2 + σ2
0 |c, e−prt)dµtd(σ2 + σ2

0)

=
(e−prt)c

Γ(c)
(2π)−

1
2

(
2
M

)(c+ 1
2 )

Γ
(
c+

1
2

)

=
(e−prt)c

Γ(c)
(2π)−

1
2

[
2

(yt − ϕt)2 + 2e−prt

](c+ 1
2 )

Γ
(
c+

1
2

)

=
Γ

(
c+ 1

2

)
Γ(c)

(2π)−
1
2 (e−prt)c

[
2

(yt − ϕt)2 + 2eprt

](c+ 1
2 )

,

then

l(c, e−prt) =
n∏
t=1

∫ ∞

0

∫ ∞

−∞
f(yt|µt, σ2)g2(µt|a2, b2, σ

2
0)h3(σ2 + σ2

0 |c, p)dµtd(σ2 + σ2
0)

=
n∏
t=1

Γ
(
c+ 1

2

)
Γ(c)

(2π)−
1
2 (e−prt)c

[
2

(yt − ϕt)2 + 2e−prt

](c+ 1
2 )

=

[
Γ

(
c+ 1

2

)
Γ(c)

]n
(2π)−

n
2

n∏
t=1

(e−prt)c
[

2
(yt − ϕt)2 + 2e−prt

](c+ 1
2 )

.(32)

We take a logarithm of (32) and have

log l(c, e−prt) = −n
2

log(2π) + n log
Γ(c+ 1

2 )
Γ(c)

+
n∑
t=1

{
c(−prt) +

(
c+

1
2

)
log

[
2

(yt − ϕt)2 + 2e−prt

]}
.
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Table 1: Estimation Result of Simulation data 1 (k = 1.0, k1 : k2 = 7 : 3)

True mean reverting Bayes Bayes Bayes
values model model I(h1) model I(h2) model II

α 1.2356
β -0.1658
σ2
r 0.292
γ -0.1295
a1 1.6 1.5485 1.5485
b1 -0.2 -0.2084 -0.2084

σ2 + σ2
0 0.1753 0.1785

a2 1.5086
b2 -0.2025
c 1.3773
p 0.3164

E[σ2 + σ2
0 ] 0.1750

EIC 1113.775 1105.908 1096.829 1111.197

Table 2: Estimation Result of Simulation data 2 (ν0 = 3.0, λ0 = 6.0, k1 : k2 = 7 : 3)

True mean reverting Bayes Bayes Bayes
values model model I(h1) model I(h2) model II

α 0.5734
β -0.1304
σ2
r 1.6036
γ -0.6532
a1 0.6 0.6144 0.6144
b1 -0.15 -0.1386 -0.1386

σ2 + σ2
0 0.2291 0.2322

a2 0.6211
b2 -0.1404
c 3.8289
p 0.1061

E[σ2 + σ2
0 ] 0.2287

EIC 1430.378 1391.636 1364.476 1368.669
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Table 3: Estimation Result of Simulation data 3 (l = 10.0, k3 : k4 = 8 : 2)

True mean reverting Bayes Bayes Bayes
values model model I(h1) model I(h2) model II

α 0.5577
β -0.1630
σ2
r 0.3825
γ -0.4638
a1 0.5583 0.5583
b1 -0.1607 -0.1607

σ2 + σ2
0 0.1208 0.1243

a2 0.7 0.5640
b2 -0.2 -0.1649
c 3.6597
p 0.1 0.3584

E[σ2 + σ2
0 ] 0.1206

EIC 774.511 736.478 725.966 723.830

Table 4: Estimation Result of Short-Term Interest Rate Data

mean reverting Bayes Bayes Bayes
model model I(h1) model I(h2) model II

α 0.1925
β -0.0101
σ2
r 0.0510
γ 0.7334
a1 0.1490 0.1490
b1 -0.0077 -0.0077

σ2 + σ2
0 6.3939 6.2902

a2 0.1039
b2 -0.0072
c 1.4542
p -0.0522

E[σ2 + σ2
0 ] 6.3729

EIC 2883.2780 1975.1840 1970.6630 1785.5820
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