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Abstract. The primary aim of the paper is to prove, within Bishop-style constructive
mathematics and by elementary means (that is, without employing the full functional
calculus), that under suitable conditions on the Banach algebra, its positive elements
have positive square roots. This requires careful definition of such notions as positivity
for Banach-algebra elements. The results are then applied to a problem about principal
ideals in a Banach algebra.

1 Introduction Throughout this paper, the term Banach algebra refers to a separable
commutative Banach algebra with an identity element. Our primary aim is to prove, within
Bishop-style constructive mathematics1 and by elementary means (that is, without employ-
ing the full functional calculus), that under suitable conditions on the Banach algebra, its
positive elements have positive square roots. Of course, this requires us to define carefully
what we mean by positive for Banach-algebra elements. We then apply our results to a
problem about principal ideals in a Banach algebra.

In passing, we observe that the typical classical proof of the existence of square roots of
positive elements of a Banach algebra uses either the (non-elementary) functional calculus
or else some kind of iteration which involves the (non-constructive) monotone convergence
theorem for real sequences.

We shall need some background in the constructive theory of Banach algebras. Let B
be such an object, with identity e, and let B′ denote the dual of B, which we endow with
the weak∗ topology. The multiplicative linear functionals on B, also known as characters
of B, form the spectrum ΣB, or character space, of B. Constructively, the (classically
valid) weak∗ compactness of ΣB is not generally provable; essentially, this is a consequence
of the fact (revealed by a recursive example due to Metakides et al. [13]) that when we
carry out a Hahn-Banach extension of a linear functional, the best we can hope for is to
increase the norm by an arbitrarily small positive quantity, rather than by 0. However,
adapting proofs from Chapter 11 of [3], we see that if (xn)n�1 is a dense sequence in B,
then for all but countably many t > 0 the set

Σt
B = {u ∈ B′ : |u (xixj) − u(xi)u(xj)| � t (1 � i, j � n) and |1 − u(e)| � t}

is (inhabited and) compact (cf. (1.3) and (2.7) in Chapter 11 of [3]). Instead of working
with ΣB, we work with the sets Σt

B for carefully chosen t, as is exemplified by two important
results from Chapter 11 of [3]:

Proposition 1 If a1, . . . , an are elements of B, and t, ε are positive numbers such that

|u(a1)| + · · · + |u(an)| � ε
(
u ∈ Σt

B

)
,
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1By constructive mathematics we mean mathematics carried out with intuitionistic logic and based
on an appropriate corresponding foundation such as the Aczel-Myhill-Rathjen CST [1, 14]. Background
material on constructive analysis can be found in [2, 3, 9, 16] or the more recent monograph [10].
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then there exist b1, . . . , bn in B such that a1b1 + · · · + anbn = e.

Proposition 2 Let (εn)n�1 be a strictly decreasing sequence of positive numbers converging
to 0, such that Σεn

B is compact for each n. For each x ∈ B and each n define

‖x‖Σεn
B

= sup {|u(x)| : u ∈ Σεn

B } .

Then the sequences
(
‖x‖Σεn

B

)
n�1

and
(
‖xn‖1/n

)
n�1

are equiconvergent, in the sense that

for each term am of one sequence and each ε > 0 there exists N such that bn < am + ε
whenever bn is a term of the other sequence and n � N .

In reading this last proposition, observe that the spectral radius

r(x) = inf ‖xn‖1/n = lim
n→∞ ‖xn‖1/n

may not exist constructively. Nevertheless, it is convenient for us to adopt, for example,
the notation r(x) < t to signify that ‖xn‖1/n

< t for all sufficiently large n.
By a state of B we mean a linear functional f on B such that f(e) = 1 = ‖f‖. As was

the case for the spectrum, there is no guarantee that the state space

VB = {f ∈ B′ : f(e) = 1 = ‖f‖} .

of B is weak∗ compact (or even inhabited) as it is classically. For this reason we introduce,
for each t > 0, the approximation

V t
B = {f ∈ B′ : ‖f‖ � 1, |1 − f(e)| � t}

to VB. Applying the Hahn-Banach theorem with X = B, Y = Ce, and v (λe) = λ, we see
that V t

B is inhabited (that is, contains a constructible element). In fact, since the mapping
f � |1 − f (e)| is weak∗ uniformly continuous on the unit ball B′

1 of B′ ([3], page 351,
(6.3)), V t

B is weak∗ compact for all but countably many t > 0 ([3], page 98, (4.9)). We
say that t > 0 is admissible if V t

B is weak∗ compact. If (εn)n�1 is a strictly decreasing
sequence of admissible numbers converging to 0, then

VB =
⋂
n�1

V εn

B ,

the intersection of a descending sequence of inhabited, weak∗ compact sets. Hence VB is
weak∗ complete. We say that VB is firm if2

� it is weak∗-compact and

� for each ε > 0 and each x ∈ B, there exists t > 0 such that if 0 < t′ � t and f ∈ VB ,
then there exists g ∈ V t′

B with |f(x) − g(x)| < ε.

Classically, VB is always firm.
We say that x ∈ B is

� Hermitian if for each ε > 0 there exists t > 0 such that |Im f(x)| < ε for all f ∈ V t
B ;

2In [8], firmness is expressed in terms of the so-called double norm on B′. Our current notion of firmness
is equivalent to the one therein.
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� positive if for each ε > 0 there exists t > 0 such that Re f(x) � −ε and |Im f(x)| � ε
for every f ∈ V t

B.

Every positive element is Hermitian. The identity e of B is positive: for each t ∈ (0, 1) and
each f ∈ V t

B we have |Re f(e)| � |f(e)| � 1 and

Re (1 − f(e))2 + Im f(e)2 = |1 − f(e)|2 � t2,

from which it follows that Re f(e) > 1 − t > 0 and |Im f(e)| � t. We write x � y, or
equivalently y � x, to denote that x − y is positive.

Every element f of the state space of B is positive, in the sense that f(x) � 0 whenever
x � 0. If B is generated by Hermitian elements and has firm state space, then the character
space of every separable commutative unital Banach subalgebra of B is inhabited ([8],
Corollary 3.5).

We will need Sinclair’s theorem: If x is Hermitian, then ‖xn‖1/n = ‖x‖ for each
positive integer n. A constructive proof of this theorem is found in [7] and [12].

Consider the relation between our constructive notion of positivity and the classical
one, in which x � 0 means that f(x) � 0 for all f ∈ VB . If x is positive in our sense,
then since VB ⊂ V t

B for each t > 0, x is certainly classically positive (although, of course,
we have no constructive guarantee that VB is inhabited). Suppose, conversely, that x is
classically, but not constructively, positive. Arguing with classical logic, we see that there
exists α > 0 such that for each positive integer n there exists fn ∈ V

1/n
B such that either

Re fn(x) < −α or |Im fn(x)| > α. Since B′
1 is weak∗ compact, there exists a subsequence

(fnk
)k�1 of (fn)n�1 that converges to a limit f ∈ B′

1. Passing to a subsequence, if necessary,
we may assume that either Re fnk

(x) < −α for all k or else |Im fnk
(x)| > α for all k. In the

first case,

0 � f(x) = Re f(x) = lim
k→∞

Re fnk
(x) � −α,

contrary to the classical positivity of f ; in the second case we have

|Im f(x)| = lim
k→∞

|Im fnk
(x)| � α,

which is absurd since f(x) is real. Thus the two notions of positivity are classically equiv-
alent.

2 Extracting square roots in B We say that B is semi-simple if it has the following
property: for each x ∈ B, if for each ε > 0 there exists t > 0 such that |u(x)| < ε for every
u ∈ Σt

B, then x = 0. In symbols, semi-simplicity reads like this:

∀x∈B

(
∀ε>0∃t>0∀u∈Σt

B
(|u(x)| � ε) ⇒ x = 0

)
.

An argument like that used in the final paragraph of the preceding section shows that our
notion of semi-simplicity is classically equivalent to the standard classical one (namely, that
if u(x) = 0 for all u ∈ ΣB , then x = 0). Our aim in this section is to prove

Theorem 3 Let B be a semi-simple Banach algebra that has firm state space, and let a be
a positive element of B such that ‖a‖ � 1. Then there exists a unique positive element b of
B such that b2 = a. Moreover, b is in the closed ideal of B generated by a.

We first establish some basic results on positivity.
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Lemma 4 If x � 0, then ‖x‖ e � x and e − x � e.

Proof. Fix εn and Σεn

B as in Proposition 2. Given ε > 0, choose N such that

� 0 < εN < (1 + ‖x‖)−1
ε/2 and

� Re f(x) � −ε/2 and |Im f(x)| � ε/2 whenever n � N and f ∈ V εn

B .

Then for n � N and f ∈ V εn

B we have

Re f(‖x‖ e − x) = ‖x‖Re f(e) − Re f(x) � ‖x‖ (1 − εn) − ‖x‖
= −εn ‖x‖ � −εN ‖x‖ > −ε

and

|Im f(‖x‖ e − x)| � ‖x‖ |Im f(e)| + |Im f(x)| < ‖x‖ εn +
ε

2
< ε.

Thus ‖x‖ e − x � 0 and therefore ‖x‖ e � x. On the other hand, since e − (e − x) = x � 0,
we have e � e − x.

Lemma 5 Let x be a positive element of B such that ‖x‖ � 1. Then e − x is positive and
‖e − x‖ � 1.

Proof. By Sinclair’s theorem, r(x) = ‖x‖. With εn and ΣBn as in Proposition 2, it follows
from that proposition that for each ε > 0 there exists N1 such that

‖x‖ΣBn
< ‖x‖ + ε � 1 + ε (n � N1) .

On the other hand, since x � 0, there exists N2 such that for each n � N2,

• εn < ε and

• Re f(x) � −εn and |Im f(x)| < εn for all f ∈ V εn

B .

If n � max {N1, N2} and f ∈ V εn

B , then

Re f (e − x) = Re f(e) − Re f(x)
� (1 − εn) − |f(x)|
� 1 − εn − 1 > −ε

and

|Im f (e − x)| � |Im f(e)| + |Im f(x)|
< |Im (1 − f(e))| + εn � 2εn < 2ε.

Since ε > 0 is arbitrary, it follows that e − x � 0. Also, for each n � max {N1, N2} and
each u ∈ ΣBn , since u ∈ V εn

B we have

−ε < Re u(e − x) = Re u(e) − Re u(x)
� 1 + εn − (−εn) = 1 + 2εn < 1 + 2ε,

the first inequality coming from the first estimate in the sentence before last. Hence

|u(e − x)| � |Reu(e − x)| + |Im u(e − x)| < 1 + 4ε.

Thus ‖e − x‖ΣBn
< 1 + 4ε for all n � max {N1, N2}. It follows from Sinclair’s theorem and

Proposition 2 that ‖e − x‖ � 1.

In order to extract square roots in B, we need a few more preliminaries. Surprisingly,
the first of these does not appear explicitly in the constructive literature.
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Proposition 6 Let U ⊂ C be a connected open set, f : U → C a differentiable function,
and K an infinite compact set well contained in U , such that f(z) = 0 for each z ∈ K.
Then f(z) = 0 for all z ∈ U.

Proof. Suppose that f(ζ) �= 0 for some ζ ∈ U . By Theorem (5.13) on page 159 of [3],
either

inf
z∈K

|f(z)| > 0,

which is absurd, or else, as must be the case, there exist finitely many points z1, . . . , zn of
U and an analytic function g on U such that

f(z) = (z − z1) · · · (z − zn) g(z) (z ∈ U)

and g is nonvanishing on K. Since K is an infinite set, we can find z0 ∈ K such that z0 �= zj

(1 � j � n). Then f(z0) �= 0, a contradiction. We conclude that f(z) = 0 for all z ∈ U .

Lemma 7 Let c0 = 1 and, for n � 1,

cn = − (2nn!)−1 1 · 3 · 5 · · · · · (2n − 3) .

Then the series
∑∞

n=0 cnzn converges absolutely and uniformly on the closed unit disc D of
C, and

( ∞∑
n=0

cnzn

)2

= 1 − z

for each z ∈ D.

Proof. It is shown on pages 104–105 of [3] that the real series
∑∞

n=0 cntn converges to
(1 − t)1/2 on the interval [−1, 1]. For each z ∈ B and for N � 1 we have

∞∑
n=N+1

|cn| |z|n �
∞∑

n=N+1

|cn| = −
∞∑

n=N+1

cn → 0 as N → ∞.

Hence the series
∑∞

n=0 cnzn converges absolutely and uniformly on D. It follows that

f(z) ≡
( ∞∑

n=0

cnzn

)2

− (1 − z)

defines an analytic function on B. Since f(z) = 0 for all z in the infinite compact set[− 1
2 , 1

2

]
, which is well contained in the open unit disc D◦, we see from Lemma 6 that

f(z) = 0 for all z ∈ D◦ and hence, by continuity, for all z ∈ D.

Our next proposition is closely related to Theorem 4.2 of [8].

Proposition 8 If B has firm state space, then an � 0 for each positive element a of B.

Proof. Let a be a positive (and hence Hermitian) element of B, and A the commutative
Banach algebra generated by e and a. By Proposition 2.4 of [8], the state space VA of A is
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firm. By Corollary 3.5 of that same paper, for each f ∈ VA there exist characters u1, . . . , um

of A, and nonnegative numbers λ1, . . . , λm, such that
∑m

i=1 λi = 1 and∣∣∣∣∣f(an) −
m∑

i=1

λiui(an)

∣∣∣∣∣ < ε.

Since ui ∈ ΣA ⊂ VA, Lemma 4.1 of [8] shows that ui(an) = ui(a)n � 0. Hence

Re f(an) � Re
m∑

i=1

λiui(an) −
∣∣∣∣∣f(an) −

m∑
i=1

λiui(an)

∣∣∣∣∣
> Re

m∑
i=1

λiui(a)n − ε � −ε

and therefore Re f(an) � 0. It follows from Lemma 4.1 of [8] that an � 0.

Proposition 9 Let B be semi-simple with firm state space. Let a be a positive element of
B such that ‖a‖ � 1, and for each n � 0 let cn be as in Lemma 7. Then

∑∞
n=0 cnan is the

unique positive element of B whose square equals e − a.

Proof. By Lemma 7, the series
∑∞

n=0 cn ‖a‖n converges absolutely. Noting Sinclair’s
theorem, we see that

∞∑
n=0

‖cnan‖ =
∞∑

n=0

|cn| ‖an‖ =
∞∑

n=0

|cn| ‖a‖n

= 1 −
∞∑

n=1

cn ‖a‖n = 2 − (1 − ‖a‖)1/2 � 2.

Hence the series
∑∞

n=0 cnan converges absolutely to an element x of A with ‖x‖ � 2.
Given ε > 0, choose N such that

∞∑
n=N+1

|cn| < ε.(1)

We first consider the case ‖a‖ < 1. Writing

α ≡ 1
2

(1 + ‖a‖) ,

we see from Sinclair’s theorem that ‖an‖ = ‖a‖n
< αn < 1 for each n. By Proposition 2,

there exists t > 0 such that

• Σt
B is compact and inhabited,

• ‖a‖Σt
B

< α, and

• for each u ∈ Σt
B, ∣∣u(x2) − u(x)2

∣∣ < ε,

|u(e − a) − (1 − u(a))| < ε,

and

|u(an) − u(a)n| <
ε

(N + 1) |cn| (0 � n � N) .
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For each u ∈ Σt
B we have |u(a)| < α < 1; whence, by Lemma 7, the series

∑∞
n=0 cnu(a)n

converges absolutely. Moreover,∣∣∣∣∣
∞∑

n=0

cnu(a)n

∣∣∣∣∣ = (1 − u(a))1/2 � 2.

For each u ∈ Σt
B, since (by Lemma 7)( ∞∑

n=0

cnu(a)n

)2

= 1 − u(a),

we have ∣∣u(x2 − (e − a))
∣∣ � ∣∣∣u (x)2 − (1 − u(a))

∣∣∣+ ∣∣u (x2
)− u(x)2

∣∣
+ |u(e − a) − (1 − u(a))|

<

∣∣∣∣∣∣
(

u

( ∞∑
n=0

cnan

))2

−
( ∞∑

n=0

cnu(a)n

)2
∣∣∣∣∣∣+ 2ε(2)

But ∣∣∣∣∣∣
(

u

( ∞∑
n=0

cnan

))2

−
( ∞∑

n=0

cnu(a)n

)2
∣∣∣∣∣∣

=

∣∣∣∣∣u
( ∞∑

n=0

cnan

)
+

∞∑
n=0

cnu(a)n

∣∣∣∣∣
∣∣∣∣∣u
( ∞∑

n=0

cnan

)
−

∞∑
n=0

cnu(a)n

∣∣∣∣∣
�
(∥∥∥∥∥

∞∑
n=0

cnan

∥∥∥∥∥+

∣∣∣∣∣
∞∑

n=0

cnu(a)n

∣∣∣∣∣
) ∣∣∣∣∣u

( ∞∑
n=0

cnan

)
−

∞∑
n=0

cnu(a)n

∣∣∣∣∣
� 4

∣∣∣∣∣
∞∑

n=0

cnu (an) −
∞∑

n=0

cnu(a)n

∣∣∣∣∣
� 4

∞∑
n=0

|cn| |u(an) − u(a)n|

= 4
N∑

n=0

|cn| |u(an) − u(a)n| + 4
∞∑

n=N+1

|cn| |u(an) − u(a)n|

� 4
N∑

n=0

|cn| ε

(N + 1) |cn| + 4
∞∑

n=N+1

2 |cn| < 12ε.

It follows from this and (2) that ∣∣u(x2 − (e − a))
∣∣ < 14ε

for each u ∈ Σt
b. Since ε > 0 is arbitrary and B is semi-simple, we conclude that x2 = e−a.

To prove that x is positive, fix ε > 0 and let N be as in (1). By Proposition 8,
an is positive for each positive integer n. We can therefore choose t ∈ (0, ε) such that
|Im u(an)| < ε for all u ∈ V t

B and all n ∈ {1, . . . , N}. For each u ∈ V t
B we have

t2 > |1 − u(e)|2 = (1 − Re u(e))2 + (Imu(e))2 .
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Noting that (
∑∞

n=0 cn)2 = 1 − 1 = 0, we compute

Re u(x) = Reu(e) +
∞∑

n=1

cn Re u(an)

> 1 − t −
∞∑

n=1

|cn| = 1 − t +

( ∞∑
n=0

cn − 1

)
= −t > −ε.

Also,so

|Im u(x)| � |Im u(e)| +
∞∑

n=1

|cn| |Im u(an)|

< t +
N∑

n=1

|cn| ε +
∞∑

n=N+1

|cn|

<

(
2 +

∞∑
n=1

|cn|
)

ε.

Since ε > 0 is arbitrary, we conclude from all these computations that x � 0.
Now consider the general case where ‖a‖ � 1. With N as at (1) pick δ ∈ (0, 1) such that

1 − δN <
ε∑N

n=1 |cn|
.

Then δa � 0 and ‖δa‖ < 1, so, by the foregoing,

xδ ≡
∞∑

n=0

cn (δa)n

is positive and satisfies x2
δ = e − δa. Also,

‖x − xδ‖ �
N∑

n=1

|cn| (1 − δn) ‖a‖n +
∞∑

n=N+1

|cn|

�
(
1 − δN

) N∑
n=1

|cn| + ε < 2ε

Since ε > 0 is arbitrary, we conclude that

x = lim
δ→1−

xδ.

By the continuity of the squaring function on B,

x2 = lim
δ→1−

x2
δ = lim

δ→1−
(e − δa) = e − a,

as required.
It remains to prove the uniqueness of x. Suppose, then, that y2 = e−a for some positive

element y of B. Given ε > 0, this time pick t > 0 such that for all u ∈ Σt
B,∣∣u(x2) − u(x)2

∣∣ < ε2 and
∣∣u(y2) − u(y)2

∣∣ < ε2,
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and such that for all f ∈ V t
B,

min {Re f(x),Re f(y)} � −ε and max {|Im f(x)| , |Im f(y)|} � ε.

Then for u ∈ Σt
B we have

|u(x − y)| |u(x) + u(y)|
=
∣∣u(x)2 − u(y)2

∣∣
�
∣∣u(x2 − y2)

∣∣+ ∣∣u(x2) − u(x)2
∣∣+ ∣∣u(y2) − u(y)2

∣∣ < 2ε2.

Either |u(x − y)| < 2ε or |u(x − y)| > ε. In the latter case, |u (x + y)| < 2ε, so |Reu(x) + Reu(y)| <
2ε. Suppose that Re u(x) > 3ε. Then

Re u(y) < 2ε − Re u(x) < −ε,

which, since u ∈ V t
B , contradicts our choice of t. Hence −ε � Re u(x) � 3ε and therefore

|Reu(x)| � 3ε; whence

|u(x)|2 = (Reu(x))2 + (Imu(x))2 � 10ε2

and therefore |u(x)| � √
10ε. Likewise, |u(y)| � √

10ε. It follows that

|u(x − y)| � 2
√

10ε,

an inequality that holds also in the case |u(x − y)| < 2ε. Since ε > 0 and u ∈ Σt
B are

arbitrary, we conclude from the semi-simplicity of B that x − y = 0.

We now give the proof of Theorem 3.

Proof. To prove the existence of the square root, first take ‖a‖ � 1. By Lemma 5, e−a � 0
and ‖e − a‖ � 1. It follows from Proposition 9 that

b ≡
∞∑

n=0

cn (e − a)n

is the unique positive b ∈ B such that b2 = e − (e − a) = a. For each N write

bN ≡
N∑

n=0

cn (e − a)n =
N∑

n=0

cne + apN (a),

where pN (a) is a polynomial in a of degree N − 1. Fix ε > 0. Choose N such that
‖b − bN‖ < ε/2 and

∣∣∣∑N
n=0 cn

∣∣∣ < ε/2 (remember,
∑∞

n=0 cn = 0). Then

‖b − apN (a)‖ � ‖b − bN‖ +

∥∥∥∥∥
(

N∑
n=0

cn

)
e

∥∥∥∥∥
<

ε

2
+

∣∣∣∣∣
N∑

n=0

cn

∣∣∣∣∣ < ε.

Since ε > 0 is arbitrary, we conclude that b lies in the closed ideal of B generated by a.
For the general case, choose δ > 0 such that ‖δa‖ < 1. By the first part of the proof,

there exists a unique bδ � 0 in B such that b2
δ = δa; moreover, bδ belongs to the closed

ideal of B generated by δa and hence by a. Then δ−1/2bδ is in the closed ideal generated
by a, δ−1/2bδ � 0, and

(
δ−1/2bδ

)2
= a; moreover, if b � 0 and b2 = a, then δ1/2b � 0

and
(
δ1/2b

)2
= δa, so (by the uniqueness of the positive square root of δa) δ1/2b = bδ and

therefore b = δ−1/2bδ.
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3 An application: principal ideals The following result—classically vacuous, but con-
structively nontrivial—appears in [6] (Corollary 13):

(*) If the principal ideal generated by the element a of a Banach algebra is
closed, then either a = 0 or a �= 0.

Here, a �= 0 means that ‖a‖ > 0, a constructively stronger statement than ¬ (a = 0) . Fred
Richman, in a private communication, pointed out to us that the only closed principal ideals
of the Banach algebra C(X), where X is a compact metric space, are those generated by an
idempotent—in other words, a continuous mapping of X into {0, 1} ; and that since, by the
classical Gelfand-Naimark theorem ([15], page 289), C(X) is the generic B∗-algebra, there
may be little else to say constructively about closed principal ideals in a B∗-algebra.

From a constructive viewpoint the Gelfand-Naimark theorem is rather problematic,
since we cannot prove the weak∗ compactness of the spectrum. Nevertheless, as we now
show at the end of this section, for a certain class of Banach algebras we can prove a nice
generalisation of (*). First, though, we define firmness for the spectrum: we say that ΣB is
firm if

� it is weak∗-compact and

� for each ε > 0 and each x ∈ B, there exists t > 0 such that if 0 < t′ � t and v ∈ Σt′
B ,

then there exists u ∈ ΣB with |u(x) − v(x)| < ε.

The second of these conditions is classically equivalent to the statement ρ (Σt
B, ΣB) → 0 as

t → 0, where ρ denotes the Hausdorff metric on the set of weak∗-compact subsets of the
unit ball of the dual B′.

Proposition 10 Suppose that ΣB is firm. If a1, . . . , an are elements of B,and ε is a
positive numbers such that

|u(a1)| + · · · + |u(an)| � ε (u ∈ ΣB) ,

then there exist b1, . . . , bn in B such that a1b1 + · · · + anbn = e.

Proof. By firmness, there exists t > 0 such that for each u ∈ ΣB, there exists v ∈ Σt
B with

|u(a) − v(a)| < ε/2. Then

|u(a1)| + · · · + |u(an)| � ε

2
(
u ∈ Σt

B

)
,

so the required elements bk of B exists, by Proposition 1.

The radical of B is the set

rad(B) ≡
⋂

{ker(u) : u ∈ ΣB} .

If ΣB is inhabited, then rad(B) is an ideal.

Proposition 11 Suppose that ΣB is firm. Then B is semi-simple if and only if rad(B) =
{0}.
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Proof. Consider any x ∈ rad(B). Given ε > 0, we use the firmness of ΣB to obtain t > 0
such that if v ∈ Σt

B, then there exists u ∈ ΣB with

|v(x)| = |u(x) − v(x)| < ε.

Since ε > 0 is arbitrary, it follows that if B is semi-simple, then x = 0 for each x ∈ rad (B).
Conversely, suppose that rad(B) = {0}. Consider any x ∈ B with the following property:

for each ε > 0 there exists t > 0 such that |u(x)| < ε for every u ∈ Σt
B. Then, since

ΣB ⊂ Σt
B, it follows that for each u ∈ ΣB, |u(x)| < ε; whence, ε > 0 being arbitrary, we

have u(x) = 0. Thus x ∈ rad(B) and so x = 0.

The argument in the proof of our final theorem is lifted from that in the special case
proved by Richman (see page 107 of [6]).

Theorem 12 Let B be a commutative, separable, semi-simple Banach algebra. Suppose
that the spectrum of B is firm and connected, and that the state space is firm. Let a be a
positive element of B, and let I be the principal ideal I of B generated by a. If I is closed,
then either a is invertible or a ∈ rad(B).

Proof. By Proposition 9 and Theorem 3,

b ≡
∞∑

n=0

cn (e − a)n

is the unique positive square root of a in B, and b lies in the closed ideal I. Hence there
exists g ∈ B such that b = ga. Let M ≡ 1 + ‖g‖. For each u ∈ ΣB, either |u(a)| < 1/M2

or |u(a)| > 1/2M 2. In the former case, if u(a) �= 0, then since

u(a) = u(b2) = u(b)2 = u(g)2u(a)2,

we have

|u(g)|2 =
1

|u(a)| > M2,

which is absurd; whence u(a) = 0. It follows that

ΣB = {u ∈ ΣB : u(a) = 0} ∪
{

u ∈ ΣB : u(a) >
1

2M 2

}
,

where the two constituent subsets of ΣB are open and clearly disjoint. Since ΣB is con-
nected, either u(a) = 0 for all u ∈ ΣB and therefore a ∈ rad(B); or else |u(a)| > 1/2M 2 for
all u ∈ ΣB, and therefore, by Proposition 10, a is invertible.

Corollary 13 Under the hypotheses of Theorem 12, either a = 0 or a is invertible.

Proof. This follows from Theorem 12 and Proposition 11.
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