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ON DUPLICATIVE ALGEBRAS
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Abstract. In this paper we introduce a class of binary systems (groupoids, algebras)
(X; ∗) on a set X for which x∗y = (x∗z)∗(y∗z) holds for all x, y, z ∈ X. These duplicative
algebras include surprisingly large classes of examples, including the B-algebras which
are closely related to groups as well as the left zero semigroup. In order to study the
structure theory of such algebras, we introduce a graph ΓD(X) whose components have
right ideal characteristics and which determine certain related subalgebras which are

B-algebras.

1. Introduction

The BCK and BCI-algebras were originally introduced by Y. Imai and K. Iséki as alge-
braic structures for abstract algebras ([1, 2]). It has been founded that that the class of
BCK-algebras is a proper subclass of the class of BCI-algebras ([5]). In [3, 4], Q. P. Hu and
X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that
the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [7], J. Neg-
gers and H. S. Kim introduced the notion of d-algebras, i.e., (I) x∗x = 0; (IV) 0∗x = 0; (V)
x∗y = 0 and y∗x = 0 imply x = y, which is another useful generalization of BCK-algebras,
and then they investigated several relations between d-algebras and BCK-algebras as well
as some other interesting relations between d-algebras and oriented digraphs. Y. B. Jun,
E. H. Roh and H. S. Kim introduced a new notion, called an BH-algebra, i.e., (I), (II)
x ∗ 0 = x and (V), which is a generalization of BCH/BCI/BCK-algebras ([6]). They also
defined the notions of ideals and boundedness in BH-algebras, and showed that there is a
maximal ideal in bounded BH-algebras. Recently, J. Neggers and H. S. Kim introduced
the notion of B-algebras, i.e., (I), (II) x ∗ 0 = x and (III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)) for
all x, y, z in X , and established some of its fundamental properties ([8]). In this paper we
introduce a class of algebras which is related to the class of B-algebras but which is also a
vast generation determined by a single law. As we shall see, it turns out that it is possible
to define a related graph whose components have right ideal characteristics including that
of being subalgebras with some other special properties noted below.

2. Duplicative Algebras

An algebra (X ; ∗) is said to be a duplicative algebra if for any x, y, z ∈ X ,

(2.1) x ∗ y = (x ∗ z) ∗ (y ∗ z)

Obviously, there is a dual duplicative law:

x ∗ y = (z ∗ x) ∗ (z ∗ y)
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for any x, y, z ∈ X , but the corresponding theory will mostly be analogous to the discussion
we shall develop in the case of duplicative algebras.

Example 2.1. If (X ; ∗) is the left zero semigroup, i.e., x ∗ y = x for all x, y ∈ X , then
also x ∗ y = (x ∗ z) ∗ (y ∗ z) for any x, y, z ∈ X , i.e., the left zero semigroup is a duplicative
algebra.

Example 2.2. If (X ; ·) is a group, and if (X ; ∗) is defined by x ∗ y := x · y−1, then
(x∗z)∗(y∗z) = (x·z−1)·(y·z−1)−1 = x·z−1 ·z·y−1 = x∗y, and (X ; ∗) is a duplicative algebra.

The following proposition immediately follows from Example 2.2.

Proposition 2.3. Let (G; ·) be a group and α ∈ G (fixed). If we define x ∗ y := xy−1α,
x, y ∈ X, then (G; ∗) is a duplicative algebra.

Proof. Straightforward.

Example 2.4. Let R be the set of all real numbers except for a negative integer −n.
Define a binary operation ∗ on R by

x ∗ y :=
n(x − y)

n + y

Then (R; ∗) is a duplicative algebra.

Example 2.5. Let X := {0, 1, 2} be a set with the following table:

∗ 0 1 2
0 0 0 0
1 0 0 0
2 2 2 2

Then (X; ∗) is a duplicative algebra.

Example 2.6. Let R be a set of all real numbers and x, y ∈ R. If we define x ∗ y :=
x − y +

√
3, then (R; ∗) is a duplicative algebra.

Given a duplicative algebra (X ; ∗), define the graph ΓD(X) to consist of a vertex set
V = X and (x, y) ∈ E an edge, provided x ∗ X ∩ y ∗ X �= ∅. Thus, in Example 2.1,
x ∗ X = {x} for any x ∈ X , and (x, y) ∈ E if and only if x = y. On the other hand,
in Example 2.2, for any x, y ∈ X , x ∗ ((e ∗ y) ∗ (e ∗ x)) = x((ey−1)(ex−1)−1)−1 = y and
x ∗ X = X so that x ∗ X ∩ y ∗ X �= ∅ and (x, y) ∈ E. In the one case we have ΓD(X) with
singleton components, while in the second case ΓD(X) is a complete graph (including loops
at vertices). Moreover, the graph ΓD(X) of Example 2.5 is one of the form:
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� 2

0 � � 1

If X is finite, then the incidence matrix of ΓD(X) in Example 2.1 is the identity matrix,
while the incidence matrix in Example 2.2 is the matrix U = (uij) where uij = 1 for all i
and j. A graph Γ is duplicative if it is ΓD(X) for some duplicative algebra (X ; ∗).

Proposition 2.7. Let ΓD(X) be a duplicative graph of a duplicative algebra (X ; ∗). If
(x, y) is an edge in ΓD(X), i.e., (x, y) ∈ E, then x ∗ x = y ∗ y.

Proof. If (x, y) ∈ E, then there exists an u ∈ X such that x ∗ a = y ∗ b = u for some
a, b ∈ X . Since X is duplicative, x∗x = (x∗a)∗(x∗a) = u∗u and y∗y = (y∗b)∗(y∗b) = u∗u,
proving that x ∗ x = y ∗ y.

Hence, if x and y are in the same connected component Γi of ΓD(X), then there exists a
path (x, t1), (t1, t2), · · · , (tn, y) connecting x and y, so that x∗x = t1∗t1 = · · · = tn∗tn = y∗y.
Let θi be this common element for the ith component Γi of ΓD(X).

Proposition 2.8. If Γi and Γj are components of ΓD(X) and x ∈ Γi, y ∈ Γj, then
x ∗ y = (x ∗ y) ∗ θj = θi ∗ (y ∗ x).

Proof. Since x ∗ x = θi and y ∗ y = θj , we have x ∗ y = (x ∗ x) ∗ (y ∗ x) = θi ∗ (y ∗ x) and
x ∗ y = (x ∗ y) ∗ (y ∗ y) = (x ∗ y) ∗ θj .

Corollary 2.9. Let Γi be a component of ΓD(X). If x, y ∈ Γi, then x∗ y = θi ∗ (y ∗x) =
(x ∗ y) ∗ θi.

Proposition 2.10. Let Γi be a component of ΓD(X). If x ∈ Γi, then (x, θi) ∈ E.

Proof. If x ∈ Γi, then θi = x ∗ x = (x ∗ x) ∗ (x ∗ x) = θi ∗ θi ∈ θi ∗X . Since x ∗ x ∈ x ∗X ,
(x ∗ X) ∩ (θi ∗ X) �= ∅, proving that (x, θi) ∈ E.

Proposition 2.11. If Γi is a component of a duplicative graph ΓD(X) then Γi∗X ⊆ Γi.

Proof. If x ∈ Γi then θi = x ∗ x = (x ∗ z) ∗ (x ∗ z) for any z ∈ X . This means that
(x ∗ X) ∩ ((x ∗ z) ∗ X) �= ∅, i.e., (x, x ∗ z) ∈ E, proving that x ∗ z ∈ Γi.

It follows from Proposition 2.11 that Γi ∗ Γi ⊆ Γi, i.e., (Γi; ∗) is a duplicative algebra
which contains a special element θi such that y ∗ y = θi for all y ∈ Γi. Furthermore,
u ∗ v = θi ∗ (v ∗ u) = (u ∗ v) ∗ θi for all u, v ∈ Γi. We denote Ci := {u ∗ v |u, v ∈ Γi}. Since
Ci ∗ Ci ⊆ Ci ⊆ Γi and θi ∗ θi = θi, (Ci; ∗) is a subalgebra of a duplicative algebra (Γi; ∗)
containing θi.
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Proposition 2.12. If x ∈ Ci, then x ∗ θi = x.

Proof. If x ∈ Ci, then x = u ∗ v for some u, v ∈ Γi. It follows from Proposition 2.8 that
x ∗ θi = (u ∗ v) ∗ θi = u ∗ v = x.

Consider the following identity:

(2.2) (x ∗ y) ∗ z = ((x ∗ y) ∗ w) ∗ (z ∗ w),

where x, y, z ∈ Ci and w ∈ X . If we let w := x ∗ y in (2.2), then

(2.3) (x ∗ y) ∗ z = ((x ∗ y) ∗ (x ∗ y)) ∗ (z ∗ (x ∗ y))

= θi ∗ (z ∗ (x ∗ y))

If we let z := θi in (2.3) then by Corollary 2.9 we have

(2.4) (x ∗ y) ∗ θi = θi ∗ (θi ∗ (x ∗ y)) = x ∗ y

If we let y := θi in (2.4) then

x = x ∗ θi [ by Proposition 2.12]
= (x ∗ θi) ∗ θi [ by Corollary 2.9]
= θi ∗ (θi ∗ (x ∗ θi)) [ by (2.4)]
= θi ∗ (θi ∗ x) [ by Proposition 2.12]

If we let w := θi ∗ y in (2.2), then

(x ∗ y) ∗ z = ((x ∗ y) ∗ (θi ∗ y)) ∗ (z ∗ (θi ∗ y))

= (x ∗ θi) ∗ (z ∗ (θi ∗ y))

= x ∗ (z ∗ (θi ∗ y)).

We summarize:

Theorem 2.13. Let ΓD(X) be a duplicative graph of a duplicative algebra (X ; ∗) and
Γi be a component of ΓD(X) . Then Ci = {u ∗ v |u, v ∈ Γi} is a B-algebra.

Proposition 2.14. Every B-algebra (X ; ∗, 0) is duplicative.

Proof. For any x, y, z ∈ X , we have

(y ∗ z) ∗ (0 ∗ z) = y ∗ ((0 ∗ z) ∗ (0 ∗ z))
= y ∗ 0
= y.

It follows that

(x ∗ z) ∗ (y ∗ z) = x ∗ ((y ∗ z) ∗ (0 ∗ z))
= x ∗ y,

proving that X is duplicative.
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3. Polynomial Duplicative Algebras

Let (X ; +, ·) be a field. An algebra (X ; ∗) is said to be linear if x ∗ y = A + Bx + Cy,
where A,B, C ∈ X , for any x, y ∈ X . A duplicative algebra (X ; ∗) is said to be linear if it
is linear.

Theorem 3.1. Let (X ; +, ·) be a field. Then every linear duplicative algebra (X ; ∗) has
one of the following forms: x ∗ y = A;x ∗ y = A + x − y; x ∗ y = x, where A ∈ X.

Proof. Define x ∗ y = A + Bx + Cy, A,B, C ∈ X . Then (x ∗ z) ∗ (y ∗ z) = A + B(x ∗
z) + C(y ∗ z) = A(1 + B + C) + B2x + CBy + (CB + C2)z. Since (X ; ∗) is duplicative we
obtain: A(1+B +C) = A, (B +C)C = 0, B2 = B, CB = C. If A �= 0, then 1+B +C = 1,
i.e., B +C = 0. If B = C = 0, then we obtain x ∗ y = A. If B = −C �= 0, since B2 = B, we
have B = 1, C = −1, i.e., x ∗ y = A + x− y, A �= 0. Assume A = 0. If C = 0, then we have
either A = B = C = 0 or A = C = 0, B = 1, i.e., x ∗ y = 0 or x ∗ y = x. If C �= 0, then
B +C = 0, CB = C imply B = 1, C = −1, i.e., x∗ y = x− y. This completes the proof.

An algebra (X ; ∗) is said to be quadratic if for all x, y in X , x ∗ y is defined by x ∗ y =
a1x

2 + a2xy + a3y
2 + a4x + a5y + a6, where a1, . . . , a6 ∈ X . Similarly, we can define cubic

polynomial algebras or polynomial algebra of higher degrees. Next, we give an example
of a quadratic duplicative algebra to provide a very small partial answer to the question
whether there are any other possibilities in this class of algebras. With the answer positive,
it becomes a question to identify those polynomial algebras (X ; ∗) which are duplicative.

Example 3.2. Let X := Z/(3) be a field, i.e., X = {0, 1,−1}. Then x2(x2 − 1) = 0 for
all x ∈ X and thus (x ∗ z) ∗ (y ∗ z) = x2 ∗ y2 = x4 = x2 = x ∗ y. This proves that (X ; ∗) is a
quadratic duplicative algebra, where x ∗ y = x2 for any x, y ∈ X = Z/(3).

Higher degree examples may also be constructed for particular fields. For example, if
X := Z/(11), then (x5)5 = (x11)2 · x3 = x5 and thus x ∗ y = x5 yields (x ∗ z) ∗ (y ∗ z) =
x5∗y5 = (x5)5 = x5 = x∗y. Also, in X := Z/(11), (x6)6 = (x11)3 ·x3 = x6 so that x∗y = x6

works as well. If we find an integer α ∈ Zp, where p is a prime, such that x2α = xα for any
x ∈ Zp, then this leads to construct a duplicative algebra (Zp; ∗) where x ∗ y = xα on the
field Zp in a similar fashion.
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