ON DUPLICATIVE ALGEBRAS

YOUNG HEE YUN KIM

Received September 16, 2009

Abstract

In this paper we introduce a class of binary systems (groupoids, algebras) $(X ; *)$ on a set X for which $x * y=(x * z) *(y * z)$ holds for all $x, y, z \in X$. These duplicative algebras include surprisingly large classes of examples, including the B-algebras which are closely related to groups as well as the left zero semigroup. In order to study the structure theory of such algebras, we introduce a graph $\Gamma_{D}(X)$ whose components have right ideal characteristics and which determine certain related subalgebras which are B-algebras.

1. Introduction

The BCK and BCI-algebras were originally introduced by Y. Imai and K. Iséki as algebraic structures for abstract algebras ([1, 2]). It has been founded that that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras ([5]). In [3, 4], Q. P. Hu and X . Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of $B C H$-algebras. In $[7]$, J. Neggers and H. S. Kim introduced the notion of d-algebras, i.e., (I) $x * x=0$; (IV) $0 * x=0$; (V) $x * y=0$ and $y * x=0$ imply $x=y$, which is another useful generalization of $B C K$-algebras, and then they investigated several relations between d-algebras and $B C K$-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Y. B. Jun, E. H. Roh and H. S. Kim introduced a new notion, called an $B H$-algebra, i.e., (I), (II) $x * 0=x$ and (V), which is a generalization of $B C H / B C I / B C K$-algebras ([6]). They also defined the notions of ideals and boundedness in BH -algebras, and showed that there is a maximal ideal in bounded BH -algebras. Recently, J. Neggers and H. S. Kim introduced the notion of B-algebras, i.e., (I), (II) $x * 0=x$ and (III) $(x * y) * z=x *(z *(0 * y))$ for all x, y, z in X, and established some of its fundamental properties ([8]). In this paper we introduce a class of algebras which is related to the class of B-algebras but which is also a vast generation determined by a single law. As we shall see, it turns out that it is possible to define a related graph whose components have right ideal characteristics including that of being subalgebras with some other special properties noted below.

2. Duplicative Algebras

An algebra $(X ; *)$ is said to be a duplicative algebra if for any $x, y, z \in X$,

$$
\begin{equation*}
x * y=(x * z) *(y * z) \tag{2.1}
\end{equation*}
$$

Obviously, there is a dual duplicative law:

$$
x * y=(z * x) *(z * y)
$$

[^0]for any $x, y, z \in X$, but the corresponding theory will mostly be analogous to the discussion we shall develop in the case of duplicative algebras.

Example 2.1. If $(X ; *)$ is the left zero semigroup, i.e., $x * y=x$ for all $x, y \in X$, then also $x * y=(x * z) *(y * z)$ for any $x, y, z \in X$, i.e., the left zero semigroup is a duplicative algebra.

Example 2.2. If $(X ; \cdot)$ is a group, and if $(X ; *)$ is defined by $x * y:=x \cdot y^{-1}$, then $(x * z) *(y * z)=\left(x \cdot z^{-1}\right) \cdot\left(y \cdot z^{-1}\right)^{-1}=x \cdot z^{-1} \cdot z \cdot y^{-1}=x * y$, and $(X ; *)$ is a duplicative algebra.

The following proposition immediately follows from Example 2.2.
Proposition 2.3. Let $(G ; \cdot)$ be a group and $\alpha \in G$ (fixed). If we define $x * y:=x y^{-1} \alpha$, $x, y \in X$, then $(G ; *)$ is a duplicative algebra.

Proof. Straightforward.
Example 2.4. Let \mathbf{R} be the set of all real numbers except for a negative integer $-n$. Define a binary operation $*$ on \mathbf{R} by

$$
x * y:=\frac{n(x-y)}{n+y}
$$

Then $(\mathbf{R} ; *)$ is a duplicative algebra.
Example 2.5. Let $X:=\{0,1,2\}$ be a set with the following table:

$*$	0	1	2
0	0	0	0
1	0	0	0
2	2	2	2

Then $(\mathbf{X} ; *)$ is a duplicative algebra.
Example 2.6. Let \mathbf{R} be a set of all real numbers and $x, y \in \mathbf{R}$. If we define $x * y:=$ $x-y+\sqrt{3}$, then $(\mathbf{R} ; *)$ is a duplicative algebra.

Given a duplicative algebra $(X ; *)$, define the graph $\Gamma_{D}(X)$ to consist of a vertex set $V=X$ and $(x, y) \in E$ an edge, provided $x * X \cap y * X \neq \emptyset$. Thus, in Example 2.1, $x * X=\{x\}$ for any $x \in X$, and $(x, y) \in E$ if and only if $x=y$. On the other hand, in Example 2.2, for any $x, y \in X, x *((e * y) *(e * x))=x\left(\left(e y^{-1}\right)\left(e x^{-1}\right)^{-1}\right)^{-1}=y$ and $x * X=X$ so that $x * X \cap y * X \neq \emptyset$ and $(x, y) \in E$. In the one case we have $\Gamma_{D}(X)$ with singleton components, while in the second case $\Gamma_{D}(X)$ is a complete graph (including loops at vertices). Moreover, the graph $\Gamma_{D}(X)$ of Example 2.5 is one of the form:

If X is finite, then the incidence matrix of $\Gamma_{D}(X)$ in Example 2.1 is the identity matrix, while the incidence matrix in Example 2.2 is the matrix $U=\left(u_{i j}\right)$ where $u_{i j}=1$ for all i and j. A graph Γ is duplicative if it is $\Gamma_{D}(X)$ for some duplicative algebra $(X ; *)$.

Proposition 2.7. Let $\Gamma_{D}(X)$ be a duplicative graph of a duplicative algebra $(X ; *)$. If (x, y) is an edge in $\Gamma_{D}(X)$, i.e., $(x, y) \in E$, then $x * x=y * y$.

Proof. If $(x, y) \in E$, then there exists an $u \in X$ such that $x * a=y * b=u$ for some $a, b \in X$. Since X is duplicative, $x * x=(x * a) *(x * a)=u * u$ and $y * y=(y * b) *(y * b)=u * u$, proving that $x * x=y * y$.

Hence, if x and y are in the same connected component Γ_{i} of $\Gamma_{D}(X)$, then there exists a path $\left(x, t_{1}\right),\left(t_{1}, t_{2}\right), \cdots,\left(t_{n}, y\right)$ connecting x and y, so that $x * x=t_{1} * t_{1}=\cdots=t_{n} * t_{n}=y * y$. Let θ_{i} be this common element for the i th component Γ_{i} of $\Gamma_{D}(X)$.

Proposition 2.8. If Γ_{i} and Γ_{j} are components of $\Gamma_{D}(X)$ and $x \in \Gamma_{i}, y \in \Gamma_{j}$, then $x * y=(x * y) * \theta_{j}=\theta_{i} *(y * x)$.

Proof. Since $x * x=\theta_{i}$ and $y * y=\theta_{j}$, we have $x * y=(x * x) *(y * x)=\theta_{i} *(y * x)$ and $x * y=(x * y) *(y * y)=(x * y) * \theta_{j}$.

Corollary 2.9. Let Γ_{i} be a component of $\Gamma_{D}(X)$. If $x, y \in \Gamma_{i}$, then $x * y=\theta_{i} *(y * x)=$ $(x * y) * \theta_{i}$.

Proposition 2.10. Let Γ_{i} be a component of $\Gamma_{D}(X)$. If $x \in \Gamma_{i}$, then $\left(x, \theta_{i}\right) \in E$.
Proof. If $x \in \Gamma_{i}$, then $\theta_{i}=x * x=(x * x) *(x * x)=\theta_{i} * \theta_{i} \in \theta_{i} * X$. Since $x * x \in x * X$, $(x * X) \cap\left(\theta_{i} * X\right) \neq \emptyset$, proving that $\left(x, \theta_{i}\right) \in E$.

Proposition 2.11. If Γ_{i} is a component of a duplicative graph $\Gamma_{D}(X)$ then $\Gamma_{i} * X \subseteq \Gamma_{i}$.
Proof. If $x \in \Gamma_{i}$ then $\theta_{i}=x * x=(x * z) *(x * z)$ for any $z \in X$. This means that $(x * X) \cap((x * z) * X) \neq \emptyset$, i.e., $(x, x * z) \in E$, proving that $x * z \in \Gamma_{i}$.

It follows from Proposition 2.11 that $\Gamma_{i} * \Gamma_{i} \subseteq \Gamma_{i}$, i.e., $\left(\Gamma_{i} ; *\right)$ is a duplicative algebra which contains a special element θ_{i} such that $y * y=\theta_{i}$ for all $y \in \Gamma_{i}$. Furthermore, $u * v=\theta_{i} *(v * u)=(u * v) * \theta_{i}$ for all $u, v \in \Gamma_{i}$. We denote $C_{i}:=\left\{u * v \mid u, v \in \Gamma_{i}\right\}$. Since $C_{i} * C_{i} \subseteq C_{i} \subseteq \Gamma_{i}$ and $\theta_{i} * \theta_{i}=\theta_{i},\left(C_{i} ; *\right)$ is a subalgebra of a duplicative algebra ($\Gamma_{i} ; *$) containing θ_{i}.

Proposition 2.12. If $x \in C_{i}$, then $x * \theta_{i}=x$.
Proof. If $x \in C_{i}$, then $x=u * v$ for some $u, v \in \Gamma_{i}$. It follows from Proposition 2.8 that $x * \theta_{i}=(u * v) * \theta_{i}=u * v=x$.

Consider the following identity:

$$
\begin{equation*}
(x * y) * z=((x * y) * w) *(z * w) \tag{2.2}
\end{equation*}
$$

where $x, y, z \in C_{i}$ and $w \in X$. If we let $w:=x * y$ in (2.2), then

$$
\begin{align*}
(x * y) * z & =((x * y) *(x * y)) *(z *(x * y)) \tag{2.3}\\
& =\theta_{i} *(z *(x * y))
\end{align*}
$$

If we let $z:=\theta_{i}$ in (2.3) then by Corollary 2.9 we have

$$
\begin{equation*}
(x * y) * \theta_{i}=\theta_{i} *\left(\theta_{i} *(x * y)\right)=x * y \tag{2.4}
\end{equation*}
$$

If we let $y:=\theta_{i}$ in (2.4) then

$$
\begin{array}{rlr}
x & =x * \theta_{i} \quad & \text { [by Proposition 2.12] } \\
& =\left(x * \theta_{i}\right) * \theta_{i} & \text { [by Corollary } 2.9] \\
& =\theta_{i} *\left(\theta_{i} *\left(x * \theta_{i}\right)\right) & {[\text { by }(2.4)]} \\
& =\theta_{i} *\left(\theta_{i} * x\right) & \text { [by Proposition } 2.12]
\end{array}
$$

If we let $w:=\theta_{i} * y$ in (2.2), then

$$
\begin{aligned}
(x * y) * z & =\left((x * y) *\left(\theta_{i} * y\right)\right) *\left(z *\left(\theta_{i} * y\right)\right) \\
& =\left(x * \theta_{i}\right) *\left(z *\left(\theta_{i} * y\right)\right) \\
& =x *\left(z *\left(\theta_{i} * y\right)\right) .
\end{aligned}
$$

We summarize:
Theorem 2.13. Let $\Gamma_{D}(X)$ be a duplicative graph of a duplicative algebra $(X ; *)$ and Γ_{i} be a component of $\Gamma_{D}(X)$. Then $C_{i}=\left\{u * v \mid u, v \in \Gamma_{i}\right\}$ is a B-algebra.

Proposition 2.14. Every B-algebra $(X ; *, 0)$ is duplicative.
Proof. For any $x, y, z \in X$, we have

$$
\begin{aligned}
(y * z) *(0 * z) & =y *((0 * z) *(0 * z)) \\
& =y * 0 \\
& =y
\end{aligned}
$$

It follows that

$$
\begin{aligned}
(x * z) *(y * z) & =x *((y * z) *(0 * z)) \\
& =x * y
\end{aligned}
$$

proving that X is duplicative.

3. Polynomial Duplicative Algebras

Let $(X ;+, \cdot)$ be a field. An algebra $(X ; *)$ is said to be linear if $x * y=A+B x+C y$, where $A, B, C \in X$, for any $x, y \in X$. A duplicative algebra $(X ; *)$ is said to be linear if it is linear.

Theorem 3.1. Let $(X ;+, \cdot)$ be a field. Then every linear duplicative algebra $(X ; *)$ has one of the following forms: $x * y=A ; x * y=A+x-y ; x * y=x$, where $A \in X$.

Proof. Define $x * y=A+B x+C y, A, B, C \in X$. Then $(x * z) *(y * z)=A+B(x *$ $z)+C(y * z)=A(1+B+C)+B^{2} x+C B y+\left(C B+C^{2}\right) z$. Since $(X ; *)$ is duplicative we obtain: $A(1+B+C)=A,(B+C) C=0, B^{2}=B, C B=C$. If $A \neq 0$, then $1+B+C=1$, i.e., $B+C=0$. If $B=C=0$, then we obtain $x * y=A$. If $B=-C \neq 0$, since $B^{2}=B$, we have $B=1, C=-1$, i.e., $x * y=A+x-y, A \neq 0$. Assume $A=0$. If $C=0$, then we have either $A=B=C=0$ or $A=C=0, B=1$, i.e., $x * y=0$ or $x * y=x$. If $C \neq 0$, then $B+C=0, C B=C$ imply $B=1, C=-1$, i.e., $x * y=x-y$. This completes the proof.

An algebra $(X ; *)$ is said to be quadratic if for all x, y in $X, x * y$ is defined by $x * y=$ $a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6}$, where $a_{1}, \ldots, a_{6} \in X$. Similarly, we can define cubic polynomial algebras or polynomial algebra of higher degrees. Next, we give an example of a quadratic duplicative algebra to provide a very small partial answer to the question whether there are any other possibilities in this class of algebras. With the answer positive, it becomes a question to identify those polynomial algebras $(X ; *)$ which are duplicative.

Example 3.2. Let $X:=Z /(3)$ be a field, i.e., $X=\{0,1,-1\}$. Then $x^{2}\left(x^{2}-1\right)=0$ for all $x \in X$ and thus $(x * z) *(y * z)=x^{2} * y^{2}=x^{4}=x^{2}=x * y$. This proves that $(X ; *)$ is a quadratic duplicative algebra, where $x * y=x^{2}$ for any $x, y \in X=Z /(3)$.

Higher degree examples may also be constructed for particular fields. For example, if $X:=Z /(11)$, then $\left(x^{5}\right)^{5}=\left(x^{11}\right)^{2} \cdot x^{3}=x^{5}$ and thus $x * y=x^{5}$ yields $(x * z) *(y * z)=$ $x^{5} * y^{5}=\left(x^{5}\right)^{5}=x^{5}=x * y$. Also, in $X:=Z /(11),\left(x^{6}\right)^{6}=\left(x^{11}\right)^{3} \cdot x^{3}=x^{6}$ so that $x * y=x^{6}$ works as well. If we find an integer $\alpha \in Z_{p}$, where p is a prime, such that $x^{2 \alpha}=x^{\alpha}$ for any $x \in Z_{p}$, then this leads to construct a duplicative algebra $\left(Z_{p} ; *\right)$ where $x * y=x^{\alpha}$ on the field Z_{p} in a similar fashion.

References

[1] K. Iséki, S. Tanaka An introduction to theory of BCK-algebras, Math. Japonica, vol. 23 (1978), 1-26
[2] K. Iséki On BCI-algebras, Math. Seminar Notes, vol. 8 (1980), 125-130
[3] Q. P. Hu, X. Li, On BCH-algebras, Math. Seminar Notes, vol. 11 (1983), 313-320
[4] Q. P. Hu, X. Li, On proper BCH-algebras, Math. Japonica, vol. 30 (1985), 659-661
[5] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, (1994)
[6] Y. B. Jun, E. H. Roh, H. S. Kim On BH-algebras, Sci. Mathematicae, vol. 1 (1998), 347-354
[7] J. Neggers, H. S. Kim, On d-algebras, Math. Slovaca vol. 49 (1999), 27-33
[8] J. Neggers, H. S. Kim, On B-algebras, Mate. Vesnik, vol. 54 (2002)

[^1]
[^0]: 2000 Mathematics Subject Classification. 06F35.
 Key words and phrases. duplicative(algebras), B-algebras.

[^1]: Young Hee Yun Kim
 Department of Mathematics
 Tuskegee University
 Tuskegee Alabama, 36088 USA
 Phone:+1-334-727-8301
 Fax:+1-334-725-2348
 ykim@tuskegee.edu

