ON DUPLICATIVE ALGEBRAS

YOUNG HEE YUN KIM

Received September 16, 2009

ABSTRACT. In this paper we introduce a class of binary systems (groupoids, algebras) (X; *) on a set X for which x*y = (x*z)*(y*z) holds for all $x, y, z \in X$. These duplicative algebras include surprisingly large classes of examples, including the *B*-algebras which are closely related to groups as well as the left zero semigroup. In order to study the structure theory of such algebras, we introduce a graph $\Gamma_D(X)$ whose components have right ideal characteristics and which determine certain related subalgebras which are *B*-algebras.

1. INTRODUCTION

The BCK and BCI-algebras were originally introduced by Y. Imai and K. Iséki as algebraic structures for abstract algebras ([1, 2]). It has been founded that that the class of BCK-algebras is a proper subclass of the class of BCI-algebras ([5]). In [3, 4], Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. In [7], J. Neggers and H. S. Kim introduced the notion of d-algebras, i.e., (I) x * x = 0; (IV) 0 * x = 0; (V) x * y = 0 and y * x = 0 imply x = y, which is another useful generalization of BCK-algebras, and then they investigated several relations between d-algebras and BCK-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Y. B. Jun, E. H. Roh and H. S. Kim introduced a new notion, called an *BH*-algebra, i.e., (I), (II) x * 0 = x and (V), which is a generalization of BCH/BCI/BCK-algebras ([6]). They also defined the notions of ideals and boundedness in BH-algebras, and showed that there is a maximal ideal in bounded BH-algebras. Recently, J. Neggers and H. S. Kim introduced the notion of B-algebras, i.e., (I), (II) x * 0 = x and (III) (x * y) * z = x * (z * (0 * y)) for all x, y, z in X, and established some of its fundamental properties ([8]). In this paper we introduce a class of algebras which is related to the class of B-algebras but which is also a vast generation determined by a single law. As we shall see, it turns out that it is possible to define a related graph whose components have right ideal characteristics including that of being subalgebras with some other special properties noted below.

2. Duplicative Algebras

An algebra (X; *) is said to be a *duplicative algebra* if for any $x, y, z \in X$,

(2.1) x * y = (x * z) * (y * z)

Obviously, there is a dual duplicative law:

x * y = (z * x) * (z * y)

²⁰⁰⁰ Mathematics Subject Classification. 06F35.

Key words and phrases. duplicative(algebras), B-algebras.

for any $x, y, z \in X$, but the corresponding theory will mostly be analogous to the discussion we shall develop in the case of duplicative algebras.

Example 2.1. If (X; *) is the left zero semigroup, i.e., x * y = x for all $x, y \in X$, then also x * y = (x * z) * (y * z) for any $x, y, z \in X$, i.e., the left zero semigroup is a duplicative algebra.

Example 2.2. If $(X; \cdot)$ is a group, and if (X; *) is defined by $x * y := x \cdot y^{-1}$, then $(x*z)*(y*z) = (x \cdot z^{-1}) \cdot (y \cdot z^{-1})^{-1} = x \cdot z^{-1} \cdot z \cdot y^{-1} = x*y$, and (X; *) is a duplicative algebra.

The following proposition immediately follows from Example 2.2.

Proposition 2.3. Let $(G; \cdot)$ be a group and $\alpha \in G$ (fixed). If we define $x * y := xy^{-1}\alpha$, $x, y \in X$, then (G; *) is a duplicative algebra.

Proof. Straightforward.

Example 2.4. Let **R** be the set of all real numbers except for a negative integer -n. Define a binary operation * on **R** by

$$x * y := \frac{n(x-y)}{n+y}$$

Then $(\mathbf{R}; *)$ is a duplicative algebra.

Example 2.5. Let $X := \{0, 1, 2\}$ be a set with the following table:

*	0	1	2
0	0	0	0
1	0	0	0
2	2	2	2

Then $(\mathbf{X}; *)$ is a duplicative algebra.

Example 2.6. Let **R** be a set of all real numbers and $x, y \in \mathbf{R}$. If we define $x * y := x - y + \sqrt{3}$, then $(\mathbf{R}; *)$ is a duplicative algebra.

Given a duplicative algebra (X;*), define the graph $\Gamma_D(X)$ to consist of a vertex set V = X and $(x, y) \in E$ an edge, provided $x * X \cap y * X \neq \emptyset$. Thus, in Example 2.1, $x * X = \{x\}$ for any $x \in X$, and $(x, y) \in E$ if and only if x = y. On the other hand, in Example 2.2, for any $x, y \in X$, $x * ((e * y) * (e * x)) = x((ey^{-1})(ex^{-1})^{-1})^{-1} = y$ and x * X = X so that $x * X \cap y * X \neq \emptyset$ and $(x, y) \in E$. In the one case we have $\Gamma_D(X)$ with singleton components, while in the second case $\Gamma_D(X)$ is a complete graph (including loops at vertices). Moreover, the graph $\Gamma_D(X)$ of Example 2.5 is one of the form:

542

If X is finite, then the incidence matrix of $\Gamma_D(X)$ in Example 2.1 is the identity matrix, while the incidence matrix in Example 2.2 is the matrix $U = (u_{ij})$ where $u_{ij} = 1$ for all *i* and *j*. A graph Γ is *duplicative* if it is $\Gamma_D(X)$ for some duplicative algebra (X;*).

Proposition 2.7. Let $\Gamma_D(X)$ be a duplicative graph of a duplicative algebra (X;*). If (x,y) is an edge in $\Gamma_D(X)$, i.e., $(x,y) \in E$, then x * x = y * y.

Proof. If $(x, y) \in E$, then there exists an $u \in X$ such that x * a = y * b = u for some $a, b \in X$. Since X is duplicative, x * x = (x * a) * (x * a) = u * u and y * y = (y * b) * (y * b) = u * u, proving that x * x = y * y.

Hence, if x and y are in the same connected component Γ_i of $\Gamma_D(X)$, then there exists a path $(x, t_1), (t_1, t_2), \dots, (t_n, y)$ connecting x and y, so that $x * x = t_1 * t_1 = \dots = t_n * t_n = y * y$. Let θ_i be this common element for the *i*th component Γ_i of $\Gamma_D(X)$.

Proposition 2.8. If Γ_i and Γ_j are components of $\Gamma_D(X)$ and $x \in \Gamma_i, y \in \Gamma_j$, then $x * y = (x * y) * \theta_j = \theta_i * (y * x)$.

Proof. Since $x * x = \theta_i$ and $y * y = \theta_j$, we have $x * y = (x * x) * (y * x) = \theta_i * (y * x)$ and $x * y = (x * y) * (y * y) = (x * y) * \theta_j$.

Corollary 2.9. Let Γ_i be a component of $\Gamma_D(X)$. If $x, y \in \Gamma_i$, then $x * y = \theta_i * (y * x) = (x * y) * \theta_i$.

Proposition 2.10. Let Γ_i be a component of $\Gamma_D(X)$. If $x \in \Gamma_i$, then $(x, \theta_i) \in E$.

Proof. If $x \in \Gamma_i$, then $\theta_i = x * x = (x * x) * (x * x) = \theta_i * \theta_i \in \theta_i * X$. Since $x * x \in x * X$, $(x * X) \cap (\theta_i * X) \neq \emptyset$, proving that $(x, \theta_i) \in E$.

Proposition 2.11. If Γ_i is a component of a duplicative graph $\Gamma_D(X)$ then $\Gamma_i * X \subseteq \Gamma_i$.

Proof. If $x \in \Gamma_i$ then $\theta_i = x * x = (x * z) * (x * z)$ for any $z \in X$. This means that $(x * X) \cap ((x * z) * X) \neq \emptyset$, i.e., $(x, x * z) \in E$, proving that $x * z \in \Gamma_i$.

It follows from Proposition 2.11 that $\Gamma_i * \Gamma_i \subseteq \Gamma_i$, i.e., $(\Gamma_i; *)$ is a duplicative algebra which contains a special element θ_i such that $y * y = \theta_i$ for all $y \in \Gamma_i$. Furthermore, $u * v = \theta_i * (v * u) = (u * v) * \theta_i$ for all $u, v \in \Gamma_i$. We denote $C_i := \{u * v \mid u, v \in \Gamma_i\}$. Since $C_i * C_i \subseteq C_i \subseteq \Gamma_i$ and $\theta_i * \theta_i = \theta_i$, $(C_i; *)$ is a subalgebra of a duplicative algebra $(\Gamma_i; *)$ containing θ_i .

543

Proposition 2.12. If $x \in C_i$, then $x * \theta_i = x$.

Proof. If $x \in C_i$, then x = u * v for some $u, v \in \Gamma_i$. It follows from Proposition 2.8 that $x * \theta_i = (u * v) * \theta_i = u * v = x$.

Consider the following identity:

(2.2)
$$(x*y)*z = ((x*y)*w)*(z*w),$$

where $x, y, z \in C_i$ and $w \in X$. If we let w := x * y in (2.2), then

(2.3)
$$(x * y) * z = ((x * y) * (x * y)) * (z * (x * y))$$

$$= \theta_i * (z * (x * y))$$

If we let $z := \theta_i$ in (2.3) then by Corollary 2.9 we have

(2.4)
$$(x*y)*\theta_i = \theta_i * (\theta_i * (x*y)) = x*y$$

If we let $y := \theta_i$ in (2.4) then

$$\begin{aligned} x &= x * \theta_i & [\text{ by Proposition 2.12}] \\ &= (x * \theta_i) * \theta_i & [\text{ by Corollary 2.9}] \\ &= \theta_i * (\theta_i * (x * \theta_i)) & [\text{ by (2.4)}] \\ &= \theta_i * (\theta_i * x) & [\text{ by Proposition 2.12}] \end{aligned}$$

If we let $w := \theta_i * y$ in (2.2), then

$$\begin{aligned} (x*y)*z &= ((x*y)*(\theta_i*y))*(z*(\theta_i*y)) \\ &= (x*\theta_i)*(z*(\theta_i*y)) \\ &= x*(z*(\theta_i*y)). \end{aligned}$$

We summarize:

Theorem 2.13. Let $\Gamma_D(X)$ be a duplicative graph of a duplicative algebra (X;*) and Γ_i be a component of $\Gamma_D(X)$. Then $C_i = \{u * v \mid u, v \in \Gamma_i\}$ is a *B*-algebra.

Proposition 2.14. Every B-algebra (X; *, 0) is duplicative.

Proof. For any $x, y, z \in X$, we have

$$\begin{array}{rcl} (y*z)*(0*z) &=& y*((0*z)*(0*z))\\ &=& y*0\\ &=& y. \end{array}$$

It follows that

$$\begin{array}{rcl} (x*z)*(y*z) &=& x*((y*z)*(0*z)) \\ &=& x*y, \end{array}$$

proving that X is duplicative.

544

ON DUPLICATIVE ALGEBRAS

3. POLYNOMIAL DUPLICATIVE ALGEBRAS

Let $(X; +, \cdot)$ be a field. An algebra (X; *) is said to be *linear* if x * y = A + Bx + Cy, where $A, B, C \in X$, for any $x, y \in X$. A duplicative algebra (X; *) is said to be *linear* if it is linear.

Theorem 3.1. Let $(X; +, \cdot)$ be a field. Then every linear duplicative algebra (X; *) has one of the following forms: x * y = A; x * y = A + x - y; x * y = x, where $A \in X$.

Proof. Define x * y = A + Bx + Cy, $A, B, C \in X$. Then $(x * z) * (y * z) = A + B(x * z) + C(y * z) = A(1 + B + C) + B^2x + CBy + (CB + C^2)z$. Since (X; *) is duplicative we obtain: A(1 + B + C) = A, (B + C)C = 0, $B^2 = B$, CB = C. If $A \neq 0$, then 1 + B + C = 1, i.e., B + C = 0. If B = C = 0, then we obtain x * y = A. If $B = -C \neq 0$, since $B^2 = B$, we have B = 1, C = -1, i.e., x * y = A + x - y, $A \neq 0$. Assume A = 0. If C = 0, then we have either A = B = C = 0 or A = C = 0, B = 1, i.e., x * y = x - y. This completes the proof. □

An algebra (X; *) is said to be *quadratic* if for all x, y in X, x * y is defined by $x * y = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6$, where $a_1, \ldots, a_6 \in X$. Similarly, we can define cubic polynomial algebras or polynomial algebra of higher degrees. Next, we give an example of a quadratic duplicative algebra to provide a very small partial answer to the question whether there are any other possibilities in this class of algebras. With the answer positive, it becomes a question to identify those polynomial algebras (X; *) which are duplicative.

Example 3.2. Let X := Z/(3) be a field, i.e., $X = \{0, 1, -1\}$. Then $x^2(x^2 - 1) = 0$ for all $x \in X$ and thus $(x * z) * (y * z) = x^2 * y^2 = x^4 = x^2 = x * y$. This proves that (X; *) is a quadratic duplicative algebra, where $x * y = x^2$ for any $x, y \in X = Z/(3)$.

Higher degree examples may also be constructed for particular fields. For example, if X := Z/(11), then $(x^5)^5 = (x^{11})^2 \cdot x^3 = x^5$ and thus $x * y = x^5$ yields $(x * z) * (y * z) = x^5 * y^5 = (x^5)^5 = x^5 = x * y$. Also, in X := Z/(11), $(x^6)^6 = (x^{11})^3 \cdot x^3 = x^6$ so that $x * y = x^6$ works as well. If we find an integer $\alpha \in Z_p$, where p is a prime, such that $x^{2\alpha} = x^{\alpha}$ for any $x \in Z_p$, then this leads to construct a duplicative algebra $(Z_p; *)$ where $x * y = x^{\alpha}$ on the field Z_p in a similar fashion.

References

[1] K. Iséki, S. Tanaka An introduction to theory of BCK-algebras, Math. Japonica, vol. 23 (1978), 1-26

[2] K. Iséki On BCI-algebras, Math. Seminar Notes, vol. 8 (1980), 125-130

[3] Q. P. Hu, X. Li, On BCH-algebras, Math. Seminar Notes, vol. 11 (1983), 313-320

[4] Q. P. Hu, X. Li, On proper BCH-algebras, Math. Japonica, vol. 30 (1985), 659-661

[5] J. Meng, Y. B. Jun, BCK-algebras, Kyung Moon Sa Co., Seoul, (1994)

[6] Y. B. Jun, E. H. Roh, H. S. Kim On BH-algebras, Sci. Mathematicae, vol. 1 (1998), 347-354

[7] J. Neggers, H. S. Kim, On d-algebras, Math. Slovaca vol. 49 (1999), 27-33

[8] J. Neggers, H. S. Kim, On B-algebras, Mate. Vesnik, vol. 54 (2002)

Young Hee Yun Kim Department of Mathematics Tuskegee University Tuskegee Alabama, 36088 USA Phone:+1-334-727-8301 Fax:+1-334-725-2348 ykim@tuskegee.edu