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Abstract. In the present paper, we consider multiobjective two-level nonlinear inte-
ger programming problems (MOTLNLIPPs) in which the decision maker (DM) at each
level controls his own integer decision variables to optimize multiple objective func-
tions. Various approaches for multi-level programming problems could exist according
to situations which the DMs are placed in. In this paper, it is assumed that the DMs
have motivation to cooperate with each other and they have own fuzzy goals with re-
spect to their multiple objective functions and partial information on their preferences
among them. Under the situation, we propose an interactive fuzzy programming tech-
nique through genetic algorithms for MOTLNLIPPs to obtain a satisfactory solution
for the DMs. Furthermore, the feasibility of the proposed method is shown by applying
it to an illustrative numerical example.

1 Introduction In the real world, we often encounter decision making situations involv-
ing multiple decision makers. Especially in industrial or governmental decision making
situations, those decision makers have different interest and decision priority. Thus, di-
versity of evaluation have been a matter of great importance to us and therefore decision
makers desire to attain several goals simultaneously. A multiobjective multi-level program-
ming problem is one of mathematical optimization models for them. In this paper, we focus
on multiobjective two-level nonlinear integer programming problems (MOTLNLIPPs), in
which there exist a decision maker (DM) with integer decision variables at the upper level
and another decision maker with integer decision variables at the lower level.

Various approaches for multi-level programming problems could exist according to situ-
ations which the DMs are placed in [17]. Under the assumption that the DMs do not have
motivation to cooperate mutually, a Stackelberg solution is adopted as a reasonable solution
for the situation. It is assumed that the decision maker at the upper level (leader) and the
decision maker at the lower level (follower) completely know their objective functions and
the constraints of the problem and they do not have any motivation to cooperate with each
other, and the leader first makes a decision and then the follower specifies a decision so as
to optimize the objective function of itself with full knowledge of the decision of the leader.
Under this assumption, the leader also makes a decision such that his own objective function
is optimized. Then, a solution defined as mentioned above is called a Stackelberg (equilib-
rium) solution, which has been employed as a solution concept for two-level mathematical
programming problems [3, 7, 11, 12, 25].

On the other hand, under the assumption that the DMs have motivation to cooperate
mutually, a satisfactory solution for the DMs is adopted as a reasonable solution for the
cooperative situation. For obtaining a satisfactory solution, Lai [8] and Shih, Lai and Lee

2003 Mathematics Subject Classification. Primary 90C15, 90C59; Secondary 90C10, 90C29.
Key words and phrases. two-level nonlinear integer programming problem, fuzzy programming, multi-

objective programming, genetic algorithm.



522 M.A.K. AZAD, K. KATO, H. KATAGIRI, T. UNO AND M. SAKAWA

[24] proposed solution methods based on fuzzy concepts for multi-level linear programming
problems such that decisions of DMs in all levels are sequential and all of the DMs essentially
cooperate with each other. In their method, the DMs identify membership functions of
fuzzy goals for their objective functions, and especially, the DMs at the upper levels also
specifies those of fuzzy goals for decision variables. The DM at the lowest level solves a
fuzzy programming problem with constraints on fuzzy goals of the DMs at upper levels.
Unfortunately, however, there is a possibility that their method leads a final solution to
an undesirable one because of inconsistency between fuzzy goals of the objective function
and those of the decision variables. To overcome the problem in the method of Shih et
al., eliminating the fuzzy goals for the decision variables, Sakawa et al. have proposed
interactive fuzzy programming for multi-level linear programming problems [18, 19, 20]. But
they considered only linear case. For obtaining a satisfactory solution to two-level nonlinear
integer programming problems the authors [1] proposed an interactive fuzzy programming
technique through genetic algorithms with double strings using continuous relaxation based
on reference solution updating (GADSCRRSU) [15, 16].

In order to take the diversification of social requirements or various multiple objectives
of the DM into account, theoretical, methodological or applied researches have been done
for multiobjective programming problems involving multiple objective functions conflicting
with each other in ordinary single level programming problems [4, 9, 10]. Based on these
researches with multiple decision makers, Sakawa et al. [21, 22, 23] have proposed interactive
fuzzy programming for multiobjective two-level linear programming problems for obtaining
a satisfactory solution for the DMs having multiple objective functions.

Decision making situations in the real world are often formulated as large-scale multiob-
jective two-level nonlinear integer programming problems (MOTLNLIPPs) involving integer
decision variables, nonlinear objective functions and nonlinear constraint functions. Since a
general solution method does not exist for nonlinear integer programming problems like the
branch and bound method for linear ones, a solution method peculiar to each problem has
been proposed. As a general-purpose solution method for nonlinear integer programming
problems, we propose the usage of genetic algorithms with double strings using continuous
relaxation based on reference solution updating (GADSCRRSU) [14, 15, 16].

Under these circumstances, in this paper, for obtaining a satisfactory solution in co-
operative relationship between the DMs, interactive fuzzy programming through proposed
GADSCRRSU is presented for MOTLNLIPPs, assuming that the DMs have fuzzy goals
with respect to their multiple objective functions and also have partial information on their
preference [4, 9, 10]. In our proposed method, after identifying membership functions of
the fuzzy goals of the two DMs, the DM at the upper level subjectively specifies minimal
satisfactory levels for all the fuzzy goals and the DM at the lower level also specifies aspi-
ration levels for all the fuzzy goals. During an interactive process in the proposed method,
tentative solutions are obtained and evaluated by using the partial information on prefer-
ences of the DMs. Taking into account the overall satisfactory balance between the two
levels, the two DMs update some of the minimal satisfactory levels and the aspiration levels,
if necessary, in order to derive a satisfactory solution. Furthermore, the feasibility of the
proposed method is shown through application of it to illustrative numerical example with
different numbers of variables.

2 Problem Formulation Multiobjective two-level nonlinear integer programming prob-
lems in which the decision maker at the upper level (DM1) has t1 objective functions and the
decision maker at the lower level (DM2) has t2 objective functions are generally formulated
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as follows:

minimize
DM1

f1
1 (x1, x2)

. . . . . . . . . . . .
minimize

DM1
f t1
1 (x1, x2)

minimize
DM2

f1
2 (x1, x2)

. . . . . . . . . . . .
minimize

DM2
f t2
2 (x1, x2)

subject to gi(x1, x2) ≤ 0, i = 1, . . . , m
xlj ∈ {0, 1, . . . , νlj}, l = 1, 2, j = 1, . . . , nl,

(1)

where xl is an nl dimensional integer decision variable column vector for the decision maker
at each level, fkl

l (x1, x2), kl = 1, . . . , tl and gi(x1, x2), i = 1, . . . , m may be linear or
nonlinear. For notational convenience, we use x = (xT

1 , xT
2 )T and denote the feasible

region of problem (1) by X . Since the DMs have motivation to cooperate with each other,
we denote the solution vector as x without partition.

For example, consider project selection problems in an administrative office at the upper
level and several autonomous divisions of a company. In this case, the situation that all the
DMs can cooperate with each other seems natural rather than one that all the DMs do not
have motivation to cooperate mutually.

Under the hypothesis of cooperation between the DMs, Sakawa et al. [21, 22, 23] pro-
posed interactive fuzzy programming for multiobjective two-level linear programming prob-
lems in order to derive satisfactory solutions for the DMs through interactions with the
DM at the upper level by introducing fuzzy goals to consider the imprecise nature of DMs’
judgments for objective functions.

In this paper, for multiobjective two-level nonlinear integer programming problems, fo-
cusing on the case of cooperative relation between the DMs, we present a new interactive
fuzzy programming method through genetic algorithms with double strings using continu-
ous relaxation based on reference solution updating (GADSCRRSU) in order to derive a
satisfactory solution for the DMs.

3 Interactive Fuzzy Programming In this section, we describe an interactive fuzzy
programming method through genetic algorithms based on literatures by Sakawa et al.
[21, 22, 23] is summarized as follows.

3.1 Interactive Fuzzy Programming Considering the ambiguity or fuzziness of the
decision makers’ judgments on each of the objective functions fkl

l (x) in (1), it seems natural
to introduce such fuzzy goals for objective functions as “fkl

l (x) should be subjectively less
than or equal to a certain value”. In order to identifying such fuzzy goals, first we solve
problems to obtain the individual minimum

fkl,min
l = min

x∈X
fkl

l (x), l = 1, 2, kl = 1, . . . , tl(2)

and the individual maximum

fkl,max
l = max

x∈X
fkl

l (x), l = 1, 2, kl = 1, . . . , tl(3)

of each of the objective functions which are referred to when the DMs elicit membership
functions prescribing the fuzzy goals for the objective functions fkl

l (x), l = 1, 2. Since these
problems are single-objective nonlinear integer programming problems and it is difficult to
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obtain optimal solutions to them, we use genetic algorithms with double strings using
continuous relaxation based on reference solution updating (GADSCRRSU) which is an
extension of genetic algorithms with double strings based on reference solution updating
(GADSRSU) for linear 0-1 programming problems [16].

The DMs determine the membership functions µkl

l (fkl

l (x)), l = 1, 2 which are strictly
monotone decreasing for fkl

l (x), consulting the variation ratio of degree of satisfaction in
the interval between the individual minimum of problem (2) and the individual maximum of
problem (3). The domain of the membership functions is in the interval [fkl,min

l , fkl,max
l ], l =

1, 2, kl = 1, . . . , tl and the DM specifies subjectively the value fkl,0
l of the objective function

for which the degree of satisfaction is 0 and the value fkl,1
l of the objective function for

which the degree of satisfaction is 1. For the value undesired (larger) than fkl,0
l , it is

defined that µkl

l (fkl

l (x)) = 0, and for the value desired (smaller) than fkl,1
l , it is defined

that µkl

l (fkl

l (x)) = 1. Here a linear membership function in Figure 1 is considered, which
characterizes the fuzzy goal of the DM at each level. The corresponding linear membership
function µkl

l (fkl

l (x)) is defined as:

µkl

l (fkl

l (x)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 fkl

l (x) < fkl,1
l

fkl

l (x) − fkl,0
l

fkl,1
l − fkl,0

l

fkl,1
l ≤ fkl

l (x) < fkl,0
l

0 fkl

l (x) ≥ fkl,0
l

(4)

It is assumed that the DMs subjectively specify fkl,0
l and fkl,1

l .

Figure 1: Linear Membership Function

Zimmermann [26] proposed a method for determining the parameters fkl,0
l and fkl,1

l of
the linear membership function in the following way. That is, using the individual minimum,
they are defined as

fkl,1
l = fkl,min

l = fkl

l (xlkl0) = min
x∈X

fkl

l (x), l = 1, 2, kl = 1, . . . , tl(5)

together with

fkl,0
l = max

l=1, 2, kl=1,... ,tl

{
fkl

l (xlkl0)
}

.(6)
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We assume that each DM evaluates a solution x by taking the weighted sum of all of
the membership functions, and the aggregated membership function of DMl is represented
as

tl∑
kl=1

ωkl

l µkl

l (fkl

l (x)),(7)

where ωl = (ω1
l , . . . , ωtl

l ) denotes a weighting coefficient vector satisfying

ωl ∈
{

ωl ∈ Rtl |
tl∑

kl=1

ωkl

l = 1, ωkl

l ≥ 0, kl = 1, . . . , tl

}
.(8)

Moreover, we assume that each DM cannot identify the weighting coefficients precisely
and has some partial information on his preference [4, 9, 10]. Suppose that such partial
information can be represented by the following two inequalities with respect to DMl:

LBkl

l ≤ ωkl

l ≤ UBkl

l ,(9)
ωp

l ≥ ωq
l + ε, p �= q,(10)

where ε is a small nonnegative constant. The upper bound UBkl

l and the lower bound
LBkl

l are specified for the weight ωkl

l to the membership function µkl

l (fkl

l (x)) of the fuzzy
goal for the klth objective function like the condition (9). The condition (10) represents an
order relation between the pth fuzzy goal and the qth one. Let Ωl denote a set of weighting
coefficient vectors ωl = (ω1

l , . . . , ωtl

l ) of DMl satisfying the conditions (9) and (10) as well
as the condition (8). For example, suppose that DMl has two objectives and thinks µ1

l is
more important than µ2

l but there does not exist a great difference between them. Then
DMl could specify the partial information of preference like ω2

l ≥ 0.4 and ω1
l ≥ ω2

l . As a
result, ω1

l and ω2
l are restricted as 0.5 ≤ ω1

l ≤ 0.6 and 0.4 ≤ ω2
l ≤ 0.5, respectively.

Having elicited membership functions µkl

l (fkl

l (x)) for fkl

l (x), l = 1, 2 and the partial
information on preference about each of the objective functions by the DM at each level,
then the original multiobjective two-level nonlinear integer programming problems (1) can
be interpreted as a multiobjective two-level membership maximization problem defined by:

maximize
DM1

µ1
1(f1

1 (x))

. . . . . . . . . . . .
maximize

DM1
µt1

1 (f t1
1 (x))

maximize
DM2

µ1
2(f

1
2 (x))

. . . . . . . . . . . .
maximize

DM2
µt2

2 (f t2
2 (x))

subject to gi(x) ≤ 0, i = 1, . . . , m
xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n

(11)

Since (11) is a multiobjective two-level membership maximization problem, in general, a
complete optimal solution that simultaneously maximizes all the DMs’ degree of satisfaction
of their objective functions does not always exist when the objective functions conflict with
each other. Thus, a satisfactory solution is expected to be obtained from among M-Pareto
optimal solution set which is defined for multiobjective programming problems [13, 15, 16].

For deriving an overall satisfactory solution to the formulated problem (11), first the
maximizing decision of the fuzzy decision proposed by Bellman and Zadeh [2] is found.
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Namely, the following problem is solved for obtaining a solution which maximizes the small-
est degree of satisfaction among satisfactory degrees for all of the fuzzy goals of the two
DMs:

maximize min
l=1, 2, kl=1,... ,tl

{
µkl

l (fkl

l (x))
}

subject to gi(x) ≤ 0, i = 1, . . . , m
xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n

(12)

This problem can also be solved by GADSCRRSU.

Let us denote an optimal solution to the problem (12) by x∗ and if DM1 is satisfied
with this solution, it follows that the optimal solution x∗ becomes a satisfactory solution.
However, DM1 is not always satisfied with the optimal solution x∗. It is quite natural
to assume that DM1 expects satisfactory degrees for the membership functions µk1

1 , k1 =
1, . . . , t1 larger than certain minimal satisfactory levels δ̂k1

1 ∈ [0, 1], k1 = 1, . . . , t1, and DM2
also holds certain aspiration levels µ̄k2

2 , k2 = 1, . . . , t2 to values of the membership functions
µk2

2 , k2 = 1, . . . , t2. To specify the minimal satisfactory levels δ̂k1
1 and the aspiration levels

µ̄k2
2 , it seems reasonable for DM1 and DM2 to consult the optimal solution to the maxmin

problem (12) and the related information.

Consequently, if DM1 is not satisfied with the solution x∗ to problem (12), then DM1
specifies minimal satisfactory levels δ̂k1

1 for his membership of all objective functions and
also DM2 specifies his aspiration levels µ̄k2

2 for his membership of all objective functions,
then the following minmax problem is formulated:

minimize max
k2=1,... ,t2

{
µ̄k2

2 − µk2
2 (fk2

2 (x))
}

subject to µk1
1 (fk1

1 (x)) ≥ δ̂k1
1 , k1 = 1, . . . , t1

gi(x) ≤ 0, i = 1, . . . , m
xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n

(13)

In problem (13), the distance between a vector of the membership values of DM2 and that
of the aspiration levels is minimized under the conditions that the membership values of
DM1 are larger than or equal to the minimal satisfactory levels specified by DM1. After
obtaining a solution to problem (13), on the preference of self, DM2 updates the membership
values µ̄k2

2 representing the aspiration levels and searches a satisfactory solution of self, if
necessary.

If an optimal solution to problem (13) exists, it follows that DM1 obtains a satisfactory
solution having satisfactory degrees larger that or equal to the minimal satisfactory levels
specified by DM1. However, the larger the minimal satisfactory levels δ̂k1

1 are assessed,
the smaller the DM2’s satisfactory degrees become. Consequently, a relative difference
between the aggregated satisfactory degrees of DM1 and DM2 becomes larger and it cannot
be anticipated that the obtained solution becomes a satisfactory solution balancing the
aggregated satisfactory degree of DM1 and that of DM2.

To obtain a satisfactory solution acceptable for both DMs, we must evaluate a can-
didate for the satisfactory solution. By using the aggregated membership functions with
weighting coefficients, an optimal solution x∗ to problem (13) is evaluated. Because possi-
ble weighting coefficients vectors ωl belong to Ωl, the minimum and the maximum of the
aggregated membership functions with weighting coefficients of DMl with respect to x∗ can
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be represented by:

Smin
l = min

ωl∈Ωl

tl∑
kl=1

ωkl

l µkl

l (fkl

l (x∗)), l = 1, 2,(14)

Smax
l = max

ωl∈Ωl

tl∑
kl=1

ωkl

l µkl

l (fkl

l (x∗)), l = 1, 2.(15)

Using the two values Smin
l and Smax

l , we define an aggregated satisfactory degree of DMl
with respect to x∗ as an L-L fuzzy number [5] defined as

S̃l = (ul, vl)LL.(16)

where

ul =
Smax

l + Smin
l

2
,

vl =
Smax

l − Smin
l

2
.

The L-L fuzzy number S̃l is represented by the following membership function:

µS̃l
(p) =

⎧⎪⎪⎨
⎪⎪⎩

L

(
Smax

l + Smin
l − 2p

Smax
l − Smin

l

)
if p ≤ (Smax

l + Smin
l )/2,

L

(
2p − Smax

l − Smin
l

Smax
l − Smin

l

)
if p > (Smax

l + Smin
l )/2,

(17)

where L(p) = max(0, 1 − |p|). The fuzzy number representing the satisfactory degree of
DMl is shown in Figure 2. Smin

l and Smax
l are values for which the satisfaction degrees are

0 and (Smin
l + Smax

l )/2 is a value for which the satisfaction is 1.

Figure 2: Satisfactory degree S̃l of DMl

In order to take account of the overall satisfactory balance between both levels, we define
a ratio of satisfactory degrees between both DMs as a quotient of the two L-L fuzzy numbers
[5].

S̃2 � S̃1
∼= ∆̃ =

(
u2

u1
,

v2u1 + v1u2

(u1)2

)
LL

.(18)
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Let µ∆̃(p) denote a membership function of the ratio ∆̃ of satisfactory degrees between
both DMs.

DM1 is guaranteed to have satisfactory degrees larger than or equal to the minimal sat-
isfactory levels for all of the fuzzy goals because the corresponding constraints are involved
in problem (13). To take into account the overall satisfactory balance between both levels
as well as the satisfactory degrees of self, it is assumed that DM1 has a fuzzy goal R̃ for the
ratio ∆̃ of satisfactory degrees. The fuzzy goal R̃ is expressed in words such as “the ratio
∆̃ should be in the vicinity of a certain value q”.

We introduce a termination condition that the maxmin value of the ratio ∆̃ of satis-
factory degrees and its fuzzy goal R̃ is larger than or equal to the permissible level δ̂∆̃,
i.e.,

α
∆= max

p
min{µ∆̃(p), µR̃(p)} ≥ δ̂∆̃,(19)

where µR̃(p) denotes a membership function of the fuzzy goal R̃. When the termination
condition is not satisfied, or DM1 judges that it is desirable for self to increase his satisfactory
degree at the sacrifice of that of DM2 or the reverse is true, DM1 must update some or all
of the minimal satisfactory levels.

3.2 Algorithm of the Interactive Fuzzy Programming through GADSCRRSU
We are now ready to present an interactive algorithm for deriving an overall satisfactory
solution to multiobjective two-level nonlinear integer programming problems (1) through
genetic algorithms with double strings using continuous relaxation based on reference solu-
tion updating (GADSCRRSU), which is summarized in the following.

Step 1: Ask the two DMs about partial information of their preference of each objective
function.

Step 2: Solve (5) through GADSCRRSU for individual minimum and by using (6) calculate
fkl,0

l for each objective function of all the DMs and ask the DMs to identify their
membership functions µkl

l (fkl

l (·)), l = 1, 2, kl = 1, . . . , tl of the fuzzy goals for their
own objective functions.

Step 3: Solve (12) through GADSCRSSU. If DM1 is satisfied with an obtained solution, the
solution becomes a satisfactory solution. Otherwise, ask DM1 to specify the minimal
satisfactory levels δ̂k1

1 , k1 = 1, . . . , t1 by considering the current satisfaction degrees,
and also ask DM2 to specify the aspiration levels µ̄k2

2 , k2 = 1, . . . , t2. Moreover, elicit
the membership µR̃(p) of the fuzzy goal for the ratio of satisfactory degrees from DM1
and ask DM1 to specify the permissible level δ̂∆̃.

Step 4: Solve (13) through GADSCRRSU with the minimal satisfactory levels and aspi-
ration levels. If DM2 is satisfied with an obtained solution, go to step 6. Otherwise,
go to step 5.

Step 5: Ask DM2 to update his aspiration levels and return to step 4.

Step 6: The satisfactory degrees S̃l, l = 1, 2 and the ratio of satisfactory degrees ∆̃ corre-
sponding an optimal solution to (13) are shown to DM1. If the solution shown to DM1
satisfies the termination condition and DM1 concludes the solution as a satisfactory
solution, the algorithms stops. Otherwise, go to step 7.

Step 7: Ask DM1 to update some of the minimal satisfactory levels by consulting the
optimal solution to (13) and the related information. Return to step 4.
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4 Genetic Algorithms with Double Strings using Continuous Relaxation based
on Reference Solution Updating (GADSCRRSU) Genetic algorithms were initiated
by Holland, his colleagues, and his students at the University of Michigan in the 1970s
as stochastic search procedures based on the mechanism of natural selection and natu-
ral genetics. It should be noticed that genetic algorithms have received much attention
as a promising approximate computational method for large-scale optimization problems.
Generally in genetic algorithms, an individual is usually represented by binary 0-1 strings.
For solving constrained mathematical programming problems through genetic algorithms
the most straightforward technique is to transform the constrained problem into an un-
constrained problem by penalizing infeasible solutions. The fitness function is defined for
preventing to generate infeasible solutions by imposing penalties on individuals that violate
the constraints. It is generally recognized that the smaller the feasible region, the harder it
is for the penalty function methods to generate feasible solutions, as pointed out in the field
of nonlinear optimization. Sakawa et al. [15, 16] proposed genetic algorithms with double
strings using continuous relaxation based on reference solution updating (GADSCRRSU)
for multidimensional integer problems.

In this section, we mention GADSCRRSU proposed as a general solution method for
nonlinear integer programming problems defined as

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . , m

xj ∈ {0, 1, . . . , νj}, j = 1, . . . , n.
(20)

In the problem (20), x is an n dimensional integer decision variable vector, f(x), gi(x), i =
1, . . . , m are nonlinear functions and νj , j = 1, . . . , n is the upper bound of each decision
variable.

4.1 Individual Representation The individual representation [15, 16] by double
strings shown in Figure 3 is adopted in GADSCRRSU. In the figure, each of s(j), j =

Figure 3: Double Strings Representation

1, . . . , n is the index of an element in a solution vector and each of ys(j) ∈ {0, 1, . . . , νj}, j =
1, . . . , n is the value of the element, respectively.

4.2 Decoding Algorithm Let N be the total number of population (pop size). The
individuals s with the dimensions n are generated randomly. Unfortunately, however, the
direct mapping of the individual can generate infeasible solutions [15, 16]. To eliminate
such solutions, a decoding algorithm of double strings for nonlinear integer programming
problems (20) using a reference solution x0, which is a feasible solution and used as the
origin of decoding, is constructed as follows.

Decoding algorithm using reference solution:

In the algorithm, it is assumed that a feasible solution x0 is obtained in advance. Let n, and
N be the number of variables and number of individuals in the population, respectively.
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Step 1: If the index of an individual to be decoded is in {1, . . . , �N/2�}, go to step 2.
Otherwise, go to step 8.

Step 2: Let j := 1, x := {0, . . . , 0}, l := 1.

Step 3: Let xs(j) := ys(j).

Step 4: If gi(x) ≤ 0, i = 1, . . . , m, let l := j, j := j + 1, and go to step 5. Otherwise, let
j := j + 1, and go to step 5.

Step 5: If j ≤ n, go to step 3. Otherwise, go to step 6.

Step 6: If l > 0, go to step 7. Otherwise, go to step 8.

Step 7: By substituting xs(j) := ys(j), 1 ≤ j ≤ l and xs(j) := 0, l < j ≤ n, we obtain a
feasible solution x corresponding to the individual s and stop.

Step 8: Let j := 1, x := x0.

Step 9: Let xs(j) := ys(j). If ys(j) = x0
s(j), let j := j +1, and go to step 11. If ys(j) �= x0

s(j),
go to step 10.

Step 10: If gi(x) ≤ 0, i = 1, . . . , m, let j := j + 1, and go to step 11. Otherwise, let
xs(j) := x0

s(j), j := j + 1, and go to step 11.

Step 11: If j ≤ n, go to step 9. Otherwise, we obtain a feasible solution x corresponding
to the individual s and stop.

This decoding algorithm enables us to decode each of the individuals represented by the
double strings to the corresponding feasible solution. However, the diversity of the solution
x greatly depends on the reference solution, because solutions obtained by the decoding
algorithm using reference solution tend to concentrate around the reference solution. To
overcome such situations, the reference solution updating procedure [15, 16] is adopted here.

4.3 Fitness Nature obeys the principle of Darwinian “survival of the fittest”, the indi-
viduals with high fitness values will, on average, reproduce more often than those low fitness
values. For obtaining satisfactory solution for the DMs to multiobjective two-level nonlinear
integer programming problems (1) through GADSCRRSU, the objective function value is
used as the fitness value f of an individual s. When the variance of fitness in a population
is small, it is often observed that the ordinary roulette wheel selection does not work well
because there is little difference between the probability of a good individual surviving and
that of a bad one surviving [15, 16]. In order to overcome this problem, the linear scaling
[15, 16] is adopted here. The new fitness f ′

l (s), l = 1, 2 of the DMl is obtained by using
the following linear scaling

f ′
l (s) := alfl(s) + bl(21)

where fl(s), l = 1, 2 are the fitness values of the DMs at all levels with respect to each
decoded individual s.

4.4 Genetic Operators For obtaining satisfactory solution for the DMs to multiob-
jective two-level nonlinear integer programming problems (1) through GADSCRRSU, four
genetic operators such as reproduction, partially matched crossover (PMX), bit reverse
mutation and inversion [15, 16] are adopted here.
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4.5 Usage of Continuous Relaxation In order to find an approximate optimal solution
with high accuracy in reasonable time, we need some schemes such as the restriction of the
search space to a promising region, the generation of individuals near the optimal solution
and so forth. From the point of view, the information about an optimal solution to the
corresponding continuous relaxation problem

minimize f(x)
subject to gi(x) ≤ 0, i = 1, . . . , m

0 ≤ xj ≤ νj , j = 1, . . . , n
(22)

is used in the generation of the initial population and the bit reverse mutation. When
this problem is convex, we can obtain a global optimal solution by some convex program-
ming technique, e.g., the sequential quadratic programming. Otherwise, i.e., when it is
nonconvex, because it is difficult to find a global optimal solution, we search an approxi-
mate optimal solution by some approximate solution method such as genetic algorithms or
simulated annealing. Here GENOCOP V [6] is used to find the solution of corresponding
continuous relaxation problem (22).

4.6 Computational Procedures of GADSCRRSU Now the genetic algorithms with
double strings using continuous relaxation based on reference solution updating (GAD-
SCRRSU) for solving nonlinear integer programming problems (20) are summarized in the
following.

Step 0: Determine values of the parameters used in GADSCRRSU: the population size
N , the minimal search generation Imin, the maximal search generation Imax > Imin,
the convergence criterion ε, the degree of use of information about solutions to non-
linear programming relaxation problem R, the parameter for feasible solution θ, the
parameter for reference solution updating η, the upper bound of each decision variable
ν, the scaling constant cmult, the probability of crossover pc, the generation gap G,
the probability of mutation pm, the probability of inversion pi and set the generation
counter r at 0.

Step 1: Generate the initial population consisting of N individuals based on the informa-
tion of a solution to the continuous relaxation problem (22).

Step 2: Decode each individual (genotype) in the current population and calculate its
fitness based on the corresponding solution (phenotype).

Step 3: If the termination condition is fulfilled, stop. Otherwise, let r := r + 1 and go to
step 4.

Step 4: Apply the reproduction operator based on the elitist expected value selection, after
carrying out linear scaling.

Step 5: Apply the crossover operator, called PMX (Partially Matched Crossover) for dou-
ble strings.

Step 6: Apply the mutation operator based on the information of an optimal solution to
the continuous relaxation problem (22).

Step 7: Apply the inversion operator. Go to step 2.
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5 Numerical Example Here, we consider the following multiobjective two-level nonlin-
ear integer programming problem in order to test the proposed algorithm.

maximize
DM1

f1
1 (x) =

n∏
j=1

[1 − (1 − rj)xj ]

minimize
DM1

f2
1 (x) =

n∑
j=1

cjxj

minimize
DM2

f1
2 (x) =

n∑
j=1

dj

[
xj + exp

(xj

4

)]

minimize
DM2

f2
2 (x) =

n∑
j=1

qjxj exp
(xj

4

)

subject to g1(x) =
n∑

j=1

pjx
2
j − P ≤ 0

g2(x) =
n∑

j=1

wjxj exp
(xj

4

)
− W ≤ 0

xj ∈ {1, 2, . . . , 10}, j = 1, . . . , n

(23)

The numerical experiments were performed on a personal computer (processor: Intel 1
GHz, memory: 512 MB, OS: Windows 2000) using Visual C/C++ compiler (version 6.0).
The parameter values used in GADSCRRSU for solving (23) were set as follows: N = 100,
Imin = 100, Imax = 1000, ε = 0.005, R = 0.9, θ = 5.0, η = 0.1, σ = 2.0, τ = 3.0, ν = 10,
cmult = 1.8, pc = 0.9, G = 0.9, pm = 0.05, pi = 0.03, and P = 200. Several problems with
different numbers of variables were considered to test the proposed algorithm for solving
(23). The data were generated randomly. In the following section, the result has been
discussed briefly when n = 15 and the data are shown in Table 1.

Table 1: Data for problem (23) with 15 variables

Values of elements of coefficient vectors
�

�

�

�

�

�

P
W

0.659 0.573 0.574 0.603 0.634 0.710 0.543 0.593 0.922 0.656 0.786 0.639 0.621 0.703 0.776
4.900 17.700 12.500 20.900 17.200 26.600 25.700 26.600 10.000 33.800 16.900 17.600 28.900 12.800 27.100
8.650 4.980 3.340 2.820 9.480 9.330 3.420 8.480 0.890 5.720 1.110 6.710 8.070 7.370 9.590
4.540 1.240 4.500 4.290 0.830 2.090 4.450 4.890 1.560 2.380 0.640 3.340 2.270 4.070 1.320
3.000 1.000 10.000 5.000 5.000 9.000 3.000 8.000 4.000 10.000 5.000 1.000 10.000 3.000 8.000
0.385 0.672 0.934 0.254 0.892 0.284 0.347 0.578 0.627 0.570 0.505 0.850 0.389 0.912 0.284

1781.250
414.871

5.1 Result and Discussion First, in step 1, suppose that DM1 and DM2 specify the
partial information of preference as follows

Ω1 ≡ {ω1 ∈ R2|ω1
1 ≥ ω2

1 , ω2
1 ≥ 0.2, ω1

1 + ω2
1 = 1, ω1

1 ≥ 0, ω2
1 ≥ 0},

Ω2 ≡ {ω2 ∈ R2|ω2
2 ≥ ω1

2 , ω1
2 ≥ 0.2, ω1

2 + ω2
2 = 1, ω1

2 ≥ 0, ω2
2 ≥ 0}.

In step 2, the individual minimum and maximum of each objective function of both
the DMs are calculated by using Zimmermann method and are shown in Table 2. After
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calculating individual minimum and maximum of each objective function of both the DMs,
the corresponding linear membership functions are specified subjectively by the DMs.

Table 2: Calculated individual minimum and maximum

Decision Maker Objective fkl, min
l fkl, max

l Time (Sec.)
DM1 f1

1 0.0019 0.8985
f2
1 299.2000 1456.7000 34.68

DM2 f1
2 205.4709 770.6370

f2
2 54.4555 835.4906

Since DM1’s first objective function is a maximization type, the linear membership
function in equation (24) in Figure 4 is used to specify the fuzzy goal of the DM1’s 1st
objective function.

µ1
1(f

1
1 (x)) =

⎧⎪⎪⎨
⎪⎪⎩

0 f1
1 (x) < f1,0

1

f1
1 (x) − f1,0

1

f1,1
1 − f1,0

1

f1,0
1 ≤ f1

1 (x) < f1,1
1

1 f1
1 (x) ≥ f1,1

1

(24)

On the other hand, since DM1’s second objective and DM2’s objective functions are mini-

Figure 4: Linear membership function for DM1’s 1st objective

mization type, the linear membership function in equation (4) in Figure 1 is used to specify
the fuzzy goal of the corresponding objective function. The corresponding linear member-
ship functions of both the DMs for their objective functions are shown in Table 3.

After specifying the linear membership functions, in step 3, in order to obtain a sat-
isfactory solution to the multiobjective two-level nonlinear integer programming problem
(23), the maxmin problem (12) is formulated and solved through GADSCRRSU, where the
smallest degree of satisfaction among satisfactory degrees for all of the fuzzy goals of both
DMs is maximized and the results are shown in Table (4) and the solution is proposed to
DM1.

Suppose that DM1 at the upper level is not satisfied with the obtained solution and
specifies the minimal satisfactory levels for the membership functions µk1

1 (fk1
1 (x)), k1 = 1, 2
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Table 3: Parameters for linear membership functions

Decision Maker Objective fkl, 0
l fkl, 1

l

DM1 f1
1 0.10 0.85

f2
1 1400.00 350.00

DM2 f1
2 675.00 250.00

f2
2 550.00 100.00

Table 4: Optimal values to the maxmin problem (Iteration 1)

Decision Maker Objective fkl

l (x∗) µkl

l (fkl

l (x∗)) Time(sec.)
DM1 f1

1 0.4858 0.5144
f2
1 860.1000 0.5142 6.77

DM2 f1
2 454.2847 0.5193

f2
2 313.2190 0.5262

at δ̂1
1 = 0.60 and δ̂2

1 = 0.40 by consulting the smallest satisfactory degree of both levels and
the partial information Ω1, and DM2 at the lower level also sets the aspiration levels to
the membership functions µk2

2 (fk2
2 (x)), k2 = 1, 2 at µ̄1

2 = 0.60 and µ̄2
2 = 0.80. Moreover,

suppose that DM1 thinks the ratio ∆̃ should be in the vicinity of about 0.9 and identifies
the membership function of the fuzzy goal R̃ for the ratio ∆̃ of satisfactory degrees as

µR̃(p) =
{

max{0, 10p − 8}, p < 0.9
max{0, −10p + 10}, p ≥ 0.9.

(25)

The fuzzy goal R̃ corresponds to the fuzzy number (0.9, 0.1)LL, L(p) = max{0, 1 − |p|}.
Suppose that DM1 determines the permissible level δ̂δ̃ at 0.85, and then the termination

condition is represented as α
∆= maxp min{µ∆̃(p), µR̃(p)} ≥ δ̂∆̃ = 0.85.

Then, in step 4, the minmax problem (13) is formulated and solved through GAD-
SCRRSU and the results are shown in Table (5). Suppose that the DM2 is not satisfied

Table 5: Iteration 2

Decision Maker Objective fkl

l (x∗) µkl

l (f(x∗)) Time(sec.)
DM1 f1

1 0.5507 0.6009
f2
1 951.4000 0.4272 2.80

DM2 f1
2 495.0954 0.4233

f2
2 284.2084 0.5906

with the obtained solution from iteration 2 and he raises his first aspiration level to 0.7 and
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the the minmax problem (13 is again formulated and solved, and the results with other
related information are shown in Table (6).

Table 6: Iteration 3

DM1 DM2

Individual satisfactory degree
f1
1 = 0.5550 µ1

1 = 0.6067
f2
1 = 948.7000 µ2

1 = 0.4298
f1
2 = 481.2942 µ1

2 = 0.4558
f2
2 = 298.4707 µ2

2 = 0.5590

(�min
1 , �min

2 )
ω1 min

1 = 0.5000
ω2 min

1 = 0.5000
ω1 min

2 = 0.5000
ω2 min

2 = 0.5000

Minimum of the weighted
membership value

Smin
1 = 0.5183 Smin

2 = 0.5074

(�max
1 , �max

2 )
ω1max

1 = 0.8000
ω2max

1 = 0.2000
ω1max

2 = 0.2000
ω2max

2 = 0.8000

Maximum of the weighted
membership value

Smax
1 = 0.5713 Smax

2 = 0.5383

Aggregated satisfactory degree (0.5448, 0.0265)LL (0.5228, 0.0255)LL

Ratio of satisfactory degrees (0.9597, 0.0752)LL

maxmin value α α = 0.6592

Time (sec.) 5.96

In step 6, the obtained solution and related information from iteration 3 are proposed
to DM1. But the maxmin value α between the ratio of satisfactory degrees and the fuzzy
goal for the ratio is 0.6592 and it is smaller than the permissible level δ̂∆̃ = 0.85. Therefore,
DM1 must update some of the minimal satisfactory levels. Suppose that DM1 raises the
second minimal satisfactory level to 0.45 and the revised minmax problem (13) is solved
and the results and the related information are shown in Table (7). In this iteration the
value of α is 0.8285 and it is still smaller than the permissible level. So the DM1 must
update the minimal satisfactory levels. Suppose DM1 raises the first minimal satisfactory
level to 0.62 and the revised minmax problem (13) is solved and the results and the related
information are shown in Table (8). In this iteration the value of α is 0.8835 and it is greater
than the permissible level and also the memberships of DM1 are greater than the minimal
satisfactory levels. So the obtained solution becomes satisfactory for both the DMs and the
interactive process is terminated.

Through the application of the proposed method to this test problem (23), we could
find one of satisfactory solutions. Furthermore, we applied the proposed method to (23)
with different numbers of variables. In all applications, we could also find one of satis-
factory solutions. Figure 5 shows the relation between the number of variables and the
total computational time. From the figure, it seems that the computational time increases
polynomially as the number of variables increases. These results indicate the feasibility and
efficiency of the proposed interactive fuzzy programming for MOTLNLIPPs.

6 Conclusion In this paper, focusing on multiobjective two-level nonlinear integer pro-
gramming problems, an interactive fuzzy programming procedure for them through genetic
algorithms with double strings using continuous relaxation based on reference solution up-
dating (GADSCRRSU) is presented. In the proposed method, the decision maker at the
upper level subjectively specifies the minimal satisfactory levels for his all of the fuzzy goals
and the decision maker at the lower level also specifies the aspiration levels for his all of the
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Table 7: Iteration 4

DM1 DM2

Individual satisfactory degree
f1
1 = 0.5522 µ1

1 = 0.6029
f2
1 = 925.5000 µ2

1 = 0.4519
f1
2 = 484.1852 µ1

2 = 0.4490
f2
2 = 305.3659 µ2

2 = 0.5436

(�min
1 , �min

2 )
ω1min

1 = 0.5000
ω2min

1 = 0.5000
ω1 min

2 = 0.5000
ω2 min

2 = 0.5000

Minimum of the weighted
membership value

Smin
1 = 0.5274 Smin

2 = 0.4963

(�max
1 , �max

2 )
ω1 max

1 = 0.8000
ω2 max

1 = 0.2000
ω1max

2 = 0.2000
ω2max

2 = 0.8000

Maximum of the weighted
membership value

Smax
1 = 0.5727 Smax

2 = 0.5247

Aggregated satisfactory degree (0.5500, 0.0226)LL (0.5105, 0.0142)LL

Ratio of satisfactory degrees (0.9281, 0.0640)LL

maxmin value α α = 0.8285

Time (sec.) 3.58

Table 8: Iteration 5

DM1 DM2

Individual satisfactory degree
f1
1 = 0.5653 µ1

1 = 0.6204
f2
1 = 926.5000 µ2

1 = 0.4510
f1
2 = 506.4666 µ1

2 = 0.4295
f2
2 = 358.8285 µ2

2 = 0.5288

(�min
1 , �min

2 )
ω1min

1 = 0.5000
ω2min

1 = 0.5000
ω1 min

2 = 0.5000
ω2 min

2 = 0.5000

Minimum of the weighted
membership value

Smin
1 = 0.5357 Smin

2 = 0.4792

(�max
1 , �max

2 )
ω1 max

1 = 0.8000
ω2 max

1 = 0.2000
ω1 max

2 = 0.2000
ω2 max

2 = 0.8000

Maximum of the weighted
membership value

Smax
1 = 0.5865 Smax

2 = 0.5090

Aggregated satisfactory degree (0.5611, 0.0254)LL (0.4941, 0.0149)LL

Ratio of satisfactory degrees (0.8806, 0.0664)LL

maxmin value α α = 0.8835

Time (sec.) 2.07
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Figure 5: Total Computational Time

fuzzy goals according to the partial information of their preferences. Taking into account
the overall satisfactory balance between the two decision makers, we have derived a sat-
isfactory solution by interactive fuzzy programming and obtained the total computational
time for various size problems.
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