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Abstract. Ideal extensions of semigroups (without order) have been first considered
by Clifford and Preston in 1950. The main theorem of the ideal extensions of ordered
semigroups has been studied by Kehayopulu and Tsingelis in 2003. As a continuation
of our paper on the ideal extensions of ordered semigroups, we present here the ideal
extensions of weakly reductive ordered semigroups.

Introduction. Ideal extensions (or just extensions) of semigroups (without order) have
been first considered by Clifford and Preston in [1], with a detailed exposition of the theory
in [2],[5]. For (ideal) extensions in the particular case of weakly reductive semigroups we
also refer to [2],[5]. The main theorem of the (ideal) extensions of ordered semigroups
has been given in [4]. This paper is a continuation of [4]. The aim of the present paper
is to construct the (ideal) extensions of weakly reductive ordered semigroups. We start
with an weakly reductive ordered semigroup S and an ordered semigroup Q having a zero
such that S ∩ Q∗ = ∅ (where Q∗ is the set of nonzero elements of Q). We construct
all the ordered semigroups V having an ideal S′ which is isomorphic to S and the Rees
quotient V/S′ is isomorphic to Q. Conversely, we prove that each ordered semigroup which
is an extension of an weakly reductive ordered semigroup S by an ordered semigroup Q
can be so constructed. As an application of our results mentioned above, we study the
ideal extensions for the weakly reductive ordered semigroup of natural numbers. For the
necessary definitions, notations, and prerequisites we refer to [4].

1. The main result. Our aim is to study the main theorem of the (ideal) extensions in
the particular case of the weakly reductive ordered semigroups. In case of weakly reductive
ordered semigroups the main theorem of the (ideal) extensions of ordered semigroups can
be simplified in the way given in this section.

Definition 1. An ordered semigroup (S, .,≤) is called weakly reductive if for each a, b ∈ S
such that ax ≤ bx and xa ≤ xb for all x ∈ S, we have a ≤ b.
In a weakly reductive ordered semigroup S, for each a, b ∈ S such that ax = bx and xa = xb
for all x ∈ S, we have a = b.

Proposition 2. An ordered semigroup (S, .,≤) is weakly reductive if and only if the mapping
π : S → Ω(S) | s → πs is reverse isotone.

Proof. =⇒. Let a, b ∈ S, πa ≤Ω πb. Since πa := (λa, ρa) and πb := (λb, ρb), we have
(λa, ρa) ≤Ω (λb, ρb), so λa ≤Λ λb and ρa ≤P ρb. Then λa(x) ≤ λb(x) and ρa(x) ≤ ρb(x) for
all x ∈ S, from which ax ≤ bx and xa ≤ xb for all x ∈ S. Since S is weakly reductive, we
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have a ≤ b.
⇐=. Let a, b ∈ S, ax ≤ bx and xa ≤ xb for all x ∈ S. Since λa(x) ≤ λb(x) and ρa(x) ≤ ρb(x)
for all x ∈ S, we have λa ≤Λ λb and ρa ≤P ρb, then (λa, ρa) ≤Ω (λb, ρb) i.e. πa ≤Ω πb.
Since the mapping π is reverse isotone, we get a ≤ b. �

Theorem 3. Let (S, . ≤S) be a weakly reductive ordered semigroup, (Q, .,≤Q) an ordered
semigroup with 0, S ∩ Q∗ = ∅. Let

θ : Q∗ → Ω(S) | a → (λa, ρa)

be a partial homomorphism such that

∀ a, b ∈ Q∗, ab = 0, we have θ(a).θ(b) ∈ π(S).

Moreover, let r ⊆ S × Q∗ such that the following conditions are satisfied:

(D1) x ≤S y, (y, z) ∈ r, z ≤Q t =⇒ (x, t) ∈ r.
(D2) a, b, c ∈ Q∗, s ∈ S, a ≤Q b, bc 
= 0, ac = 0, θ(a).θ(c) = πs =⇒ (s, bc) ∈ r.
(D3) πa ≤Ω θ(b) ∀ (a, b) ∈ r.
(D4) b, c ∈ Q∗, (a, b) ∈ r, bc 
= 0 =⇒ (ρc(a), bc) ∈ r.
(D5) a, b, c ∈ Q∗, s ∈ S, a ≤Q b, cb 
= 0, ca = 0, θ(c).θ(a) = πs =⇒ (s, cb) ∈ r.
(D6) b, c ∈ Q∗, (a, b) ∈ r, cb 
= 0 =⇒ (λc(a), cb) ∈ r.

Let V := S ∪ Q∗ and ” ◦ ”, ” ≤V ” an operation and an order on V , respectively, defined
by:

a ◦ b :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ab if a, b ∈ S
ρb(a) if a ∈ S, b ∈ Q∗

λa(b) if a ∈ Q∗, b ∈ S
c where c ∈ S such that θ(a).θ(b) = πc if a, b ∈ Q∗, ab = 0
ab if a, b, ab ∈ Q∗

and

≤V :=≤S ∪r ∪ {(x, y) | x, y ∈ Q∗, x ≤Q y}.
Then (V, ◦,≤V ) is an ordered semigroup and it is an extension of S by Q. Conversely,
every extension V of S by Q can be so constructed.

Proof. Since S is weakly reductive, for each a, b ∈ Q∗ the bitranslations θ(a) and θ(b) are
permutable (cf. [5,3]). We consider the mapping:

f : {(a, b) | a, b ∈ Q∗, ab = 0} → S | (a, b) → c, where c ∈ S such that θ(a).θ(b) = πc.

The mapping f is a ramification mapping. In fact: Let (a1, b1), (a2, b2) ∈ {(a, b) | a, b ∈
Q∗, ab = 0} such that a1 ≤Q a2 and b1 ≤Q b2. We have f(a1, b1) := s1 for some s1 ∈ S

such that θ(a1).θ(b1) = πs1 and f(a2, b2) := s2 for some s2 ∈ S such that θ(a2).θ(b2) = πs2 .
Since (Ω(S), .,≤Ω) is an ordered semigroup, Q an ordered semigroup with 0, θ : Q∗ → Ω(S)
a partial homomorphism, a1, a2 ∈ Q∗ and a1 ≤Q a2, we have θ(a1) ≤Ω θ(a2). Similarly,
b1, b2 ∈ Q∗, b1 ≤Q b2 implies θ(b1) ≤Ω θ(b2). Then θ(a1).θ(b1) ≤Ω θ(a2).θ(b2), so πs1 ≤ πs2 .
By Proposition 2, we get s1 ≤ s2.

The mapping f satisfies the conditions (C1)–(C5) of the Theorem 1 in [4] (cf. [5], for
a detailed proof we refer to [3]). Conditions (D1), (D3), (D4), (D6) are, respectively, the



IDEAL EXTENSIONS OF WEAKLY REDUCTIVE ORDERED SEMIGROUPS 515

conditions (O1), (O3), (O5), (O8) of the Theorem 1 in [4]. Conditions (O2), (O4), (O6)
and (O7) of the same theorem in [4] are satisfied as well. In fact,

(O2) Let Let a, b, c ∈ Q∗, ac = 0, bc 
= 0, a ≤Q b. Then (f(a, c), bc) ∈ r. Indeed: Since
a, c ∈ Q∗ and ac = 0, by (C1), we have θ(a).θ(c) = πf(a,c). Then, by (D2), (f(a, c), bc) ∈ r.

(O4) Let b, c ∈ Q∗, bc = 0, (a, b) ∈ r. Then ρc(a) ≤S f(b, c). In fact: Since (a, b) ∈ r, by
(D3), we obtain πa ≤Ω θ(b). Since c ∈ Q∗, we have θ(c) ∈ Ω(S), then πa.θ(c) ≤Ω θ(b).θ(c).
Since b, c ∈ Q∗ and bc = 0, by (C1), we have θ(b).θ(c) = πf(b,c). Then πa.θ(c) ≤Ω πf(b,c).

On the other hand, λa.λc = λρc(a) and ρa.ρc = ρρc(a). Indeed: Let x ∈ S. Since λc is
a left translation and λa an inner translation (and so a left translation on S, as well), we
have (λa.λc)(x) = λa(λc(x)) = aλc(x). Since θ(c) := (λc, ρc) ∈ Ω(S), the pair (λc, ρc)
is a bitranslation on S, so aλc(x) = ρc(a)x = λρc(a)(x). Then (λa.λc)(x) = λρc(a)(x),
and so λa.λc = λρc(a). Similarly, since ρc and ρa are right translations on S, we have
(ρa.ρc)(x) = ρc(ρa(x)) = ρc(xa) = xρc(a) = ρρc(a)(x), so ρa.ρc = ρρc(a). Hence we have
πa.θ(c) = (λa, ρa).(λc, ρc) = (λa.λc, ρa.ρ

c) = (λρc(a), ρρc(a)) = πρc(a).Then πρc(a) ≤Ω πf(b,c)

and, by Proposition 2, ρc(a) ≤S f(b, c). The proof of condition (O6) (resp. (O7)) is similar
to that of (O2) (resp. (O4)).

By the first part of the Theorem 1 in [4], the set V := S ∪ Q∗ with the operation ” ◦ ”
and the order ” ≤V ” on V defined by:

a ◦ b :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ab if a, b ∈ S
ρb(a) if a ∈ S, b ∈ Q∗

λa(b) if a ∈ Q∗, b ∈ S
f(a, b) if a, b ∈ Q∗, ab = 0
ab if a, b, ab ∈ Q∗

and
≤V :=≤S ∪r ∪ {(x, y) | x, y ∈ Q∗, x ≤Q y}

is an ordered semigroup and it is an extension of S by Q.

It remains to prove that if a, b ∈ Q∗, ab = 0, then f(a, b) is the only element of S such
that θ(a).θ(b) = πf(a,b). Now let a, b ∈ Q∗, ab = 0. First of all, by (C1), θ(a).θ(b) = πf(a,b).
Now let d ∈ S such that θ(a).θ(b) = πd. Since πf(a,b) = πd, by Proposition 2, we have
f(a, b) = d.

The converse statement: Let (V, .,≤V ) be an extension of (S, .,≤S) by (Q, .,≤Q). By the
second part of the Theorem 1 in [4], there exists a partial homomorphism θ : Q∗ → Ω(S)
such that for each a, b ∈ Q∗ the bitranslations θ(a) := (λa, ρa) and θ(b) := (λb, ρb) are
permutable. Moreover, there exists a ramification mapping f : {(a, b) | a, b ∈ Q∗, ab =
0} → S and an r ⊆ S × Q∗ such that conditions (C1)–(C5) and (O1)–(O8) mentioned in
Theorem 1 in [4] hold true. According to the first part of the Theorem 1 in [4], the set
V ′ := S ∪ Q∗ with the multiplication ” ◦ ” and the order ” ≤V ′ ” on V ′ defined by:
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a ◦ b :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ab if a, b ∈ S

ρb(a) if a ∈ S, b ∈ Q∗

λa(b) if a ∈ Q∗, b ∈ S

f(a, b) if a, b ∈ Q∗, ab = 0
ab if a, b, ab ∈ Q∗

and

≤V ′ :=≤S ∪r ∪ {(x, y) | x, y ∈ Q∗, x ≤Q y}
is an ordered semigroup, it is an extension of S by Q, and (V ′, ◦,≤V ′) ≈ (V, .,≤V ).

Let a, b ∈ Q∗, ab = 0. Then θ(a).θ(b) ∈ π(S). Indeed: By (C1), θ(a).θ(b) = πf(a,b). Since
f(a, b) ∈ S, we have θ(a).θ(b) = πf(a,b) := π(f(a, b)) ∈ π(S).
Conditions (D1), (D3), (D4), (D6) being, respectively, the same as (O1), (O3), (O5) and
(O8) are satisfied.

(D2) Let a, b, c ∈ Q∗, s ∈ S, a ≤Q b, bc 
= 0, ac = 0, θ(a).θ(c) = πs. Then (s, bc) ∈ r.
Indeed: By (O2), we have (f(a, c), bc) ∈ r. Since a, c ∈ Q∗, ac = 0, by (C1), we have
θ(a).θ(c) = πf(a,c). Since θ(a).θ(c) = πs, we get πf(a,c) = πs then, by Proposition 2,
f(a, c) = s. Hence we have (s, bc) ∈ r.
Condition (D5) can be proved in a similar way.
Finally, if a, b ∈ Q∗, ab = 0, then f(a, b) ∈ S and, by (C1), θ(a).θ(b) = πf(a,b), so θ(a).θ(b) ∈
π(S). The proof of the theorem is complete. �

2. Ideal extensions of natural numbers. In this section, as an application of Theorem
3, we study the ideal extensions for the weakly reductive ordered semigroup of natural
numbers. In the following N will stand for the set of natural numbers {1, 2, ..., n} with the
usual operation, order ” + ” and ” ≤ ”. Denote by 1N the idempotent mapping on N .

Remark 4. For each k ∈ N , the inner left, right translation and the inner bitranslation of
N are the mappings

λk : N → N | n → k + n
ρk : N → N | n → n + k
πk := (λk, ρk).

Moreover, λk (resp. ρk) is a left (resp. right) translation and πk is a bitranslation on N .
That is, λk ∈ Λ(N), ρk ∈ P(N), πk ∈ Ω(N).

Lemma 5. Λ(N) = {λk | k ∈ N} ∪ {1N}.
Proof. Let λ ∈ Λ(N). Since 1 ∈ N , λ(1) ∈ N . If λ(1) = 1, then λ = 1N . Indeed: If n = 1,
then λ(n) = λ(1) = 1 = n. Let n > 1. Since n− 1 ∈ N and λ is a left translation on N , we
have λ(n) = λ(1 + n − 1) = λ(1) + n − 1 = 1 + n − 1 = n.
Let λ(1) > 1. Then λ = λλ(1)−1, where λ(1) − 1 ∈ N . Indeed: Let n ∈ N . If n = 1, then
λ(n) = λ(1) = λ(1) − 1 + 1 = λλ(1)−1(1) = λλ(1)−1(n). Let n > 1. Since n − 1 ∈ N , we
have λ(n) = λ(1 + n − 1) = λ(1) + n − 1 = λ(1) − 1 + n = λλ(1)−1(n).
On the other hand, clearly {λk | k ∈ N} ∪ {1N} ⊆ Λ(N). �

In a similar way we prove the following:

Lemma 6. P(N) = {ρk | k ∈ N} ∪ {1N}.
Remark 7. Λ(N) = P(N). This is because λk = ρk for each k ∈ N .
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Lemma 8. Ω(N) = {πk | k ∈ N} ∪ {(1N , 1N )}.
Proof. Let (λ, ρ) ∈ Ω(N). Since 1 ∈ N and (λ, ρ) is a bitranslation on N , we have
1 + λ(1) = ρ(1) + 1, then λ(1) = ρ(1). Moreover λ = ρ. In fact: Let n ∈ N, n > 1. Since
n − 1 ∈ N , λ is a left translation and ρ a right translation on N , we have

λ(n) = λ(1 + n − 1) = λ(1) + n − 1 = ρ(1) + n − 1 = n − 1 + ρ(1)

= ρ(n − 1 + 1) = ρ(n).

Since λ ∈ Λ(N), by Lemma 5, λ = λk for some k ∈ N or λ = 1N . If λ = λk for some
k ∈ N , then ρ = λk = ρk. Then (λ, ρ) = (λk, ρk) = πk. If λ = 1N , then ρ = 1N , and
(λ, ρ) = (1N , 1N). Obviously, {πk | k ∈ N} ∪ {(1N , 1N)} ⊆ Ω(N). �

Lemma 9. Ω(N) ≈ (N ∪ {0}, +,≤).

Proof. We consider the mapping:

f : Ω(N) → (N ∪ {0}, +,≤) | (λ, ρ) → λ(1) − 1.

If (λ, ρ) ∈ Ω(N), then λ(1) ∈ N , so λ(1) − 1 ∈ N ∪ {0}, so the mapping f is well defined.
1. The mapping f is a homomorphism. In fact: Let (λ, ρ), (λ′, ρ′) ∈ Ω(N). Then

f((λ, ρ).(λ′, ρ′)) = f(λ.λ′, ρ.ρ′) = (λ.λ′)(1) − 1
= λ(λ′(1)) − 1
= 1 + λ(λ′(1)) − 1 − 1
= ρ(1) + λ′(1) − 1 − 1 (since (ρ, λ) ∈ Ω(S))
= ρ(1) − 1 + λ′(1) − 1
= λ(1) − 1 + λ′(1) − 1 (since ρ = λ)
= f(λ, ρ) + f(λ′, ρ′).

Let now (λ, ρ), (λ′, ρ′) ∈ Ω(N) such that (λ, ρ) ≤Ω (λ′, ρ′). Then f(λ, ρ) ≤ f(λ′, ρ′).
Indeed: Since λ ≤Λ λ′, we have λ(1) ≤ λ′(1). Hence we have

f(λ, ρ) := λ(1) − 1 ≤ λ′(1) − 1 := f(λ′, ρ′).

2. The mapping f is reverse isotone: Let (λ, ρ), (λ′, ρ′) ∈ Ω(N), f(λ, ρ) ≤ f(λ′, ρ′). Then
(λ, ρ) ≤Ω (λ′, ρ′). Indeed: Since λ(1) − 1 ≤ λ′(1) − 1, we have λ(1) ≤ λ′(1).
Let now n ∈ N, n > 0. Since n − 1 ∈ N and λ, λ′ ∈ Λ(N), we have

λ(n) = λ(1 + n − 1) = λ(1) + n − 1 ≤ λ′(1) + n − 1
= λ′(1 + n − 1) = λ′(n).

Since λ(n) ≤ λ′(n) ∀ n ∈ N , we have λ ≤Λ λ′.
Since (λ, ρ) ∈ Ω(N), we have λ = ρ. Similarly λ′ = ρ′. Hence we have

ρ(n) = λ(n) ≤ λ′(n) = ρ′(n) ∀ n ∈ N,

so ρ ≤P ρ′. Since λ ≤Λ λ′ and ρ ≤P ρ′, we have (λ, ρ) ≤Ω (λ′, ρ′).
3. f is onto: Let n ∈ N ∪ {0}. If n = 0 then, for the bitranslation (1N , 1N) of N we
have f(1N , 1N ) = 1 − 1 = 0. If n ∈ N then, for the bitranslation πn ∈ Ω(N) we have
f(πN ) = f(λn, ρn) = λn(−1) = n + 1 − 1 = n. �
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Theorem 10. Let (Q, .,≤Q) be an ordered semigroup having a zero 0Q, let N ∩ Q∗ = ∅
and θ : Q∗ → (N ∪ {0}, .,≤) be a partial homomorphism such that

For each a, b ∈ Q∗, ab = 0Q, we have θ(a) + θ(b) > 0.
Suppose r ⊆ {(a, b) ∈ N × Q∗ | a ≤ θ(b)} having the following properties:

(P1) x, y ∈ N , z, t ∈ Q∗, x ≤ y, (y, z) ∈ r, z ≤Q t =⇒ (x, t) ∈ r.
(P2) a, b, c ∈ Q∗, a ≤Q b, ac = 0Q, bc 
= 0Q =⇒ (θ(a) + θ(c), bc) ∈ r.
(P3) a ∈ N, b, c ∈ Q∗, (a, b) ∈ r, bc 
= 0Q =⇒ (a + θ(c), bc) ∈ r.
(P4) a, b, c ∈ Q∗, a ≤Q b, ca = 0Q, cb 
= 0Q =⇒ (θ(c) + θ(a), cb) ∈ r.
(P5) a ∈ N, b, c ∈ Q∗, (a, b) ∈ r, cb 
= 0Q =⇒ (θ(c) + a, cb) ∈ r.

Define an operation ” ◦ ” and an order ” ≤V ” on V := N ∪ Q∗ as follows:

a ◦ b :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a + θ(b) if a ∈ N, b ∈ Q∗

θ(a) + b if a ∈ Q∗, b ∈ N
θ(a) + θ(b) if a, b ∈ Q∗, ab = 0Q

ab if a, b ∈ Q∗, ab 
= 0Q

a + b if a, b ∈ N
and

≤V :=≤S ∪r ∪ {(x, y) | x, y ∈ Q∗, x ≤Q y}.
Then (V, ◦,≤V ) is an ordered semigroup and it is an extension of N by Q. Conversely,
every extension V of N by Q can be so constructed.

Proof. The mapping f : Ω(N) → (N ∪ {0}, +,≤) | (λ, ρ) → λ(1) − 1 defined in Lemma 9
is an isomorphism. The mapping

g : N ∪ {0} → Ω(N) | n →
{

(1N , 1N ) if n = 0
πn if n > 0

being the inverse mapping of f is an isomorphism as well. We consider the mapping

h := g ◦ θ : Q∗ → Ω(N) | a → (λa, ρa).

The mapping h satisfies the conditions of Theorem 3. In fact: Since θ is a partial homo-
morphism and g a homomorphism, the mapping h is a partial homomorphism.

Let a, b ∈ Q∗, ab = 0Q. Then h(a).h(b) ∈ π(N). Indeed: Since g is a homomorphism, we
have h(a).h(b) = g(θ(a)).g(θ(b)) = g(θ(a) + θ(b)). Since θ(a) + θ(b) > 0, we get g(θ(a) +
θ(b)) = πθ(a)+θ(b) = π(θ(a) + θ(b)) ∈ π(N). Hence we have h(a). h(b) ∈ π(N).

(D2) Let a, b, c ∈ Q∗, s ∈ N , a ≤Q b, bc 
= 0, ac = 0, h(a). h(c) = πs. Then (s, bc) ∈
r. Indeed: By (P2), we have (θ(a) + θ(c), bc) ∈ r. On the other hand, since g is a
homomorphism, we have πs = h(a). h(c) = g(θ(a)). g(θ(c)) = g(θ(a) + θ(c)). Since a, b ∈
Q∗, ab = 0Q, we have θ(a) + θ(c) > 0. Then g(θ(a) + θ(c)) = πθ(a)+θ(c), therefore πs =
πθ(a)+θ(c). Since (N, .,≤) is weakly reductive, by Proposition 2, we have θ(a) + θ(c) = s.
Then (s, bc) ∈ r.

(D3) Let (a, b) ∈ r. Then πa ≤Ω h(b). Indeed: Since (a, b) ∈ r, we have N � a ≤ θ(b) ∈
N ∪ {0}, then θ(b) ∈ N . Since the mapping π : N → Ω(N) | n → πn is isotone, we have
πa ≤Ω πθ(b) = g(θ(b)) = h(b).
(D4) Let b, c ∈ Q∗, (a, b) ∈ r, bc 
= 0. Then (ρc(a), bc) ∈ r. Indeed: By (P3), we have
(a+θ(c), bc) ∈ r. Since c ∈ Q∗, θ(c) ∈ N∪{0}. If θ(c) = 0, then h(c) := g(θ(c)) = (1N , 1N).
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Since h(c) := (λc, ρc), we have ρc = 1N , then ρc(a) = a = a + θ(c), hence (ρc(a), bc) ∈ r.
If θ(c) ∈ N , then h(c) := g(θ(c)) = (λθ(c), ρθ(c)), h(c) := (λc, ρc), so ρc = ρθ(c), hence
ρc(a) = ρθ(c)a = a + θ(c), and (ρc(a), bc) ∈ r.
Condition (D1) is satisfied and the proof of (D5), (D6) are similar to that of (D2), (D4),
respectively. From the first part of Theorem 3, the set V := N ∪Q∗ with the operation and
the order defined in Theorem 3, is an ordered semigroup and it is an extension of N by Q.
Moreover we have the following:

1. If a ∈ N , b ∈ Q∗, then ρb(a) = a + θ(b). Indeed: Since b ∈ Q∗, θ(b) ∈ N ∪ {0}.
If θ(b) = 0, then h(b) = g(θ(b)) = (1N , 1N ). Besides, h(b) := (λb, ρb), so ρb = 1N , and
ρb(a) = a = a + 0 = a + θ(b). If θ(b) ∈ N , then h(b) = g(θ(b)) = (λθ(b), ρθ(b)). Since
h(b) := (λb, ρb), we get ρb = ρθ(b), thus ρb(a) = ρθ(b)a = a + θ(b).

2. If a ∈ Q∗, b ∈ N , then θ(a) + b = λa(b). The proof is similar to that of 1.
3. Let a, b ∈ Q∗, ab = 0Q. Then the element θ(a) + θ(b) is the only element of N such

that θ(a). θ(b) = πθ(a)+θ(b). Indeed: Since θ(a) + θ(b) > 0 and g is a homomorphism, we
obtain h(a). h(b) = g(θ(a)). g(θ(b)) = g(θ(a) + θ(b)) = πθ(a)+θ(b)). Let now d ∈ N such that
θ(a). θ(b) = πd. Since πd = πθ(a)+θ(b), by Proposition 2, we get d = θ(a) + θ(b).

The converse statement: Let (V, .,≤) be an extension of (N, .,≤) by (Q, .,≤Q). Since N is
weakly reductive, by the second part of the Theorem 3, there exists a partial homomorphism
θ′ : Q∗ → Ω(N) and an r ⊆ N × Q∗ satisfying the conditions given in Theorem 3. We
consider the isomorphism

f : Ω(N) → (N ∪ {0}, +,≤) | (λ, ρ) → λ(1) − 1

given in Lemma 9 and the composition mapping

θ := f ◦ θ′ | Q∗ → (N ∪ {0}, +,≤).

The mapping θ satisfies the conditions given in Theorem 10. In fact: Since f is a homo-
morphism and θ′ a partial homomorphism, θ is a partial homomorphism.
Let a, b ∈ Q∗, ab = 0Q. Then θ(a) + θ(b) > 0. Indeed: Suppose θ(a) + θ(b) = 0. By
Theorem 3, we have θ′(a). θ′(b) ∈ π(N). Then θ′(a). θ′(b) = πn := (λn, ρn) for some n ∈ N .
Since f is a homomorphism, we have

θ(a) + θ(b) = f(θ′(a)) + f(θ′(b)) = f(θ′(a). θ′(b))
= f(λn, ρn) = λn(1) − 1 = n + 1 − 1 = n ∈ N

which is impossible.
r ⊆ {(a, b) ∈ N × Q∗ | a ≤ θ(b)}. Indeed: Let (a, b) ∈ r. By (D3), πa ≤Ω θ′(b), then
f(πa) ≤ f(θ′(b)) = θ(b). Since f(πa) = f(λa, ρa) = λa(1) − 1 = 1 + a − 1 = a, we get
a ≤ θ(b).
Condition (P1) is satisfied (cf. Theorem 3).
(P2) Let a, b, c ∈ Q∗, a ≤Q b, ac = 0Q, bc 
= 0Q. Then (θ(a) + θ(c), bc) ∈ r. Indeed: Since
a, c ∈ Q∗, ac = 0Q, by Theorem 3, we have θ′(a). θ′(c) ∈ π(N). Then θ′(a). θ′(c) = πn :=
(λn, ρn) for some n ∈ N . Since f is a homomorphism, we have

θ(a) + θ(c) = f(θ′(a)) + f(θ′(c)) = f(θ′(a). θ′(c))
= f(λn, ρn) = λn(1) − 1 = 1 + n − 1 = n ∈ N.
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Since a, b, c ∈ Q∗, n ∈ N , a ≤Q b, bc 
= 0Q, ac = 0Q, θ′(a). θ′(c) = πn, by Theorem 3,
we have (n, bc) ∈ r, therefore (θ(a) + θ(c), bc) ∈ r.
(P3) Let b, c ∈ Q∗, (a, b) ∈ r, bc 
= 0Q Then (a + θ(c), bc) ∈ r. Indeed: By (D4), we have
(ρc(a), bc) ∈ r. Since θ′(c) := (λc, ρc) ∈ Ω(N), we have

θ(c) = f(θ′(c)) = f(λc, ρc) := λc(1) − 1.

By Lemma 8, (λc, ρc) ∈ {πk | k ∈ N} ∪ {(1N , 1N)}. If (λc, ρc) = (1N , 1N ), then λc(a) =
1, θ(c) = 0, ρc(a) = a, a+ θ(c) = ρc(a), thus (a+ θ(c), bc) ∈ r. Let (λc, ρc) = πk := (λk, ρk)
for some k ∈ N . Then λc = λk and ρc = ρk. Since a ∈ N , we have ρc(a) = ρk(a) := a + k.
Besides, λc(1) = λk(1) := k + 1. Thus we get θ(c) = λc(1) − 1 = k, ρc(a) = a + θ(c), and
(a + θ(c), bc) ∈ r.
Conditions (P4) and (P5) can be proved in a similar way as the (P2), (P3) using the
conditions (D5), (D6), respectively. �

We would like to express our warmest thanks to the editor of the journal Professor
Kiyoshi Iséki for editing, communicating the paper and his prompt reply.
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