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STABILITY IN MULTICRITERIA LOCATION PROBLEMS

MASAMICHI KON
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Abstract. In this paper, the stability in multicriteria location problems is considered.
Given a family of parameterized multicriteria location problems, the (weak) Pareto
optimal value/solution mapping is defined as the set-valued mapping which associates
to each parameter value the set of all (weak) Pareto optimal values/solutions of the
problem. Sufficient conditions for the upper and lower semicontinuity of the (weak)
Pareto optimal value/solution mapping are obtained.

1 Introduction and preliminaries In a general continuous location model, finitely
many points called demand points in R

n, modeling existing facilities or customers, are
given. Then a problem to locate a new facility in R

n is called a single facility location
problem. This problem is usually formulated as a minimization problem with an objective
function involving distances between the facility and demand points. Let di ∈ R

n, i = 1, 2,
· · · , � be demand points, and we consider d ≡ (d1, d2, · · · , d�) ∈ R

n� as the parameter. We
put I ≡ {1, 2, · · · , �}. In this paper, we consider a multicriteria location problem formulated
as follows:

(Pd)
∣∣∣∣ min f (x, d) ≡ (γd1

(x − d1), γd2
(x − d2), · · · , γd�

(x − d�))
s.t. x ∈ X(d)

where x ∈ R
n is the variable location of the facility, and X is a set-valued mapping from

R
n� to R

n (which associates to each parameter d ∈ R
n� a set X(d) ⊂ R

n and we denote
it as X : R

n� � R
n), and γdi

: R
n → R, i ∈ I are gauges for each parameter d =

(d1, d2, · · · , d�) ∈ R
n�. For each i ∈ I and di ∈ R

n, let Bi(di) ⊂ R
n be a compact convex

set containing the origin in its interior, and it is assumed that the gauge γdi
: R

n → R is
defined as follows:

γdi
(x) ≡ inf{r > 0 : x ∈ rBi(di)}, x ∈ R

n.

Then Bi : R
n � R

n, i ∈ I are set-valued mappings. For each x ∈ R
n and di ∈ R

n, i ∈ I,
the value γdi

(x−di) represents the distance from di to x. For details, see [4] and references
therein in multicriteria location problems, see [2], [4], [5] and [7] in gauges and see [3] and
[6] in set-valued mappings.

Let us consider the following motivating example of the multicriteria location problem
(Pd). A company is going to develop a new product of some kind. Suppose that a product
is determined by n characteristic values, and that each product is represented as a point
x ∈ R

n, and that each di, i ∈ I represents the preference of customer i for the products.
Suppose also that for each i ∈ I, the value γdi

(x − di) represents the distance from the
preference of customer i, di, to the product x ∈ R

n, and that any customer prefers a
product near the preference of the customer. In this case, the multicriteria location problem
(Pd) is a problem to find a new product which is near preferences of customers as much
as possible, where the feasible region X(d) represents the set of all products which the
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company can produce. Then a (weak) Pareto optimal solution, which will be defined in
Definition 1 later, is the new product to be produced for the company. In fact, since a
(weak) Pareto optimal solution is not unique in general, the company needs to choose one
product among (weak) Pareto optimal solutions by using, for example, trade-off analysis.
The multicriteria location problem (Pd) can also be used in order to evaluate existing
products. If an existing product is not a (weak) Pareto optimal solution, then the company
should stop producing the existing product because it means that there exists another
product which customers prefer its product to the existing product. Gauges γdi

, i ∈ I are
asymmetric, which means that their unit balls are not symmetric around the origin, and
their gauges depend on demand points di, i ∈ I. It is suitable to consider different distance
measures (gauges), which are asymmetric and depend on demand points, in the following
situation. For customers i1, i2 ∈ I with i1 �= i2, consider the j1-th and j2-th characters of
the products for j1, j2 ∈ {1, 2, · · · , n} with j1 �= j2. For customer i1, let dj1

i1
∈ R be the

preference value for the j1-th character of the products. Suppose that for ε > 0 and the
j1-th character of the products, customer i1 prefers the value dj1

i1
+ ε to the value dj1

i1
a

little and prefers the value dj1
i1

to the value dj1
i1

− ε very much. In this case, it is suitable
to use a gauge in order to measure the distance from the preference of customer i1 to a
product because of the asymmetricity. Suppose that the j1-th character of the products
is important for customer i1 but not for customer i2, and that the j2-th character of the
products is important for customer i2 but not for customer i1. In this case, it is suitable
to use different gauges in order to measure distances from preferences of customers to a
product because important characters of the products are different according to customers.
On the other hand, demand points di, i ∈ I, which represent preferences of customers for
the products, may be estimators based on some data in general. Such estimated preferences
of customers for the products may be different from true preferences of customers for the
products. Let (P1) and (P2) be multicriteria location problems with estimated and true
preferences of customers as demand points, respectively. In this case, the difference between
(weak) Pareto optimal solutions of (P1) and those of (P2) is very important. Therefore,
the stability in multicriteria location problems (Pd) with respect to demand points, that
is, the stability of (weak) Pareto optimal solutions with respect to the parameter d is very
important .

In this paper, a family of parameterized multicriteria location problems (Pd) is consid-
ered, and the stability of Pareto and weak Pareto optimal values/solutions is investigated,
where we consider demand points as the parameter and distance measures depend on the
parameter. First, some auxiliary results are given in order to investigate the stability of
Pareto and weak Pareto optimal values/solutions. Next, the continuity of the weak Pareto
optimal value mapping, the continuity of the Pareto optimal value mapping, the continuity
of the weak Pareto optimal solution mapping, and the continuity of the Pareto optimal
solution mapping are investigated as the stability of Pareto and weak Pareto optimal val-
ues/solutions. Finally, some conclusions are given.

Definition 1. Let d ≡ (d1, d2, · · · , d�) ∈ R
n�.

(i) A point x0 ∈ R
n is called a Pareto optimal solution of (Pd) if there is no x ∈ X(d)

such that f(x, d) ≤ f(x0, d) and f(x, d) �= f(x0, d), where f (x, d) ≤ f (x0, d) means that
γdi

(x − di) ≤ γdi
(x0 − di), i ∈ I. If x0 ∈ R

n is a Pareto optimal solution of (Pd), then
f(x0, d) is called a Pareto optimal value of (Pd).

(ii) A point x0 ∈ R
n is called a weak Pareto optimal solution of (Pd) if there is no x ∈

X(d) such that f(x, d) < f (x0, d), where f(x, d) < f (x0, d) means that γdi
(x − di) <

γdi
(x0 − di), i ∈ I. If x0 ∈ R

n is a weak Pareto optimal solution of (Pd), then f (x0, d) is
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called a weak Pareto optimal value of (Pd).

(iii) A point x0 ∈ R
n is called a strictly Pareto optimal solution of (Pd) if there is no

x ∈ X(d) such that f(x, d) ≤ f(x0, d) and x �= x0.

(iv) A point x0 ∈ R
n is called an alternately Pareto optimal solution of (Pd) if x0 is a

Pareto optimal solution of (Pd) and not a strictly Pareto optimal solution of (Pd).

For details in Pareto optimality, see [1], [3] and [4].
We define a set-valued mapping F : R

n� � R
� as F (d) ≡ f(X(d),d),d ∈ R

n�, where
f(X(d),d) ≡ {y ∈ R

� : y = f(x, d), x ∈ X(d)}.
For multicriteria location problems (Pd), we define set-valued mappings M : R

n� �

R
�, WM : R

n� � R
�, MS : R

n� � R
n, WMS : R

n� � R
n as

M(d) ≡ {y ∈ F (d) : (y − R
�
+) ∩ F (d) = {y}},

WM(d) ≡ {y ∈ F (d) : (y − int R
�
+) ∩ F (d) = ∅},

MS(d) ≡ {x ∈ X(d) : f(x, d) ∈ M(d)},
WMS(d) ≡ {x ∈ X(d) : f(x, d) ∈ WM(d)},

and they are called, respectively, the Pareto optimal value mapping, the weak Pareto optimal
value mapping, the Pareto optimal solution mapping, the weak Pareto optimal solution
mapping, where R

�
+ ≡ {y ∈ R

� : y ≥ 0} is the non-negative orthant of R
�, and int R

�
+

is the interior of R
�
+, that is, int R

�
+ = {y ∈ R

� : y > 0}. For each parameter d ∈ R
n�,

M(d),WM(d),MS(d) and WMS(d) are, respectively, sets of all Pareto optimal values,
weak Pareto optimal values, Pareto optimal solutions and weak Pareto optimal solutions of
(Pd).

Definition 2.(See [1].) A set A ⊂ R
� is said to be R

�
+-compact if the section (y −R

�
+)∩A

is compact for any y ∈ A.

For a set A ⊂ R
�, AN ≡ {y ∈ A : (y − R

�
+) ∩ A = {y}} is called the nondominated set

of A. For each d ∈ R
n�, M(d) is the nondominated set of F (d), that is, M(d) = (F (d))N .

Definition 3.(See [1].) For a set A ⊂ R
�, the nondominated set of A, AN , is said to be

externally stable if for each y ∈ A \ AN , there exists y ∈ AN such that y ∈ y + R
�
+.

Definition 4.(See [4].) For a compact convex set B ⊂ R
n containing the origin in its

interior, assume that the gauge γ : R
n → R is defined as γ(x) ≡ inf{r > 0 : x ∈ rB}, x ∈

R
n. Then the gauge γ is said to be strictly convex if

γ(λx1 + (1 − λ)x2) < λγ(x1) + (1 − λ)γ(x2)

for any x1, x2 ∈ R
n with x1 �= x2, which are not on the same half line emanating from the

origin, and any λ with 0 < λ < 1.

Definition 5.(See [6].) Let S : R
p � R

q be a set-valued mapping, and let u ∈ R
p.

(i) S is said to be upper semicontinuous at u if {uk} ⊂ R
p, uk → u, {vk} ⊂ R

q, vk → v,
vk ∈ S(uk) (k ∈ N) imply that v ∈ S(u), where N is the set of all natural numbers. S is
said to be upper semicontinuous (on R

p) if S is upper semicontinuous at any u ∈ R
p.

(ii) S is said to be lower semicontinuous at u if {uk} ⊂ R
p, uk → u, v ∈ S(u) imply the

existence of k0 ∈ N and {vk} ⊂ R
q such that vk → v and vk ∈ S(uk) (k ≥ k0, k ∈ N). S is

said to be lower semicontinuous (on R
p) if S is lower semicontinuous at any u ∈ R

p.

(iii) S is said to be continuous at u if S is both upper and lower semicontinuous at u. S is
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said to be continuous (on R
p) if S is continuous at any u ∈ R

p.

Definition 6.(See [6].) Let S : R
p � R

q be a set-valued mapping, and let u ∈ R
p. S

is said to be locally bounded at u if there exists a neighborhood U ⊂ R
p of u such that

S(U) ⊂ R
q is bounded, where S(U) ≡ ∪u∈US(u). S is said to be locally bounded (on R

p)
if S is locally bounded at any u ∈ R

p.

2 Auxiliary results In this section, some auxiliary results are given in order to investi-
gate the stability of Pareto and weak Pareto optimal values/solutions.

First, we investigate the continuity of the objective function f : R
n × R

n� → R
� for

multicriteria location problems (Pd).

Theorem 1. For each i ∈ I, we define fi : R
n × R

n → R as fi(x, di) ≡ γdi
(x − di),

(x, di) ∈ R
n × R

n. If Bi : R
n � R

n, i ∈ I are continuous and locally bounded, then fi :
R

n × R
n → R, i ∈ I are continuous.

Proof. Fix any i ∈ I and x ∈ R
n and di ∈ R

n. We shall show that fi is continuous at
(x, di) ∈ R

n × R
n. Let {xk} ⊂ R

n be any sequence which converges to x, and {dik} ⊂ R
n

be any sequence which converges to di.

(i) First, we consider the case x = di. Then

fi(x, di) = γ
di

(x − di) = 0,

fi(xk, dik) = γdik
(xk − dik), k ∈ N.

Since Bi is convex-valued (which means that Bi(di) is convex for any di ∈ R
n) and

int Bi(di) �= ∅ and Bi is continuous (especially lower semicontinuous), there exists a neigh-
borhood U(di,0) ⊂ R

n×R
n of (di,0) ∈ R

n×R
n such that U(di,0) ⊂ gph Bi from Theorem

5.9 in [6], where gph Bi ≡ {(di, x) ∈ R
n × R

n : x ∈ Bi(di)}. Without loss of generality,
assume that U(di,0) = V (di) × W for some neighborhood V (di) ⊂ R

n of di and some
compact convex set W ⊂ R

n containing the origin in its interior. In this case, W ⊂ Bi(di)
for any di ∈ V (di). Since dik → di, there exists k0 ∈ N such that dik ∈ V (di) for any
k ≥ k0. Now, we define a gauge γ0 : R

n → R as γ0(x) ≡ inf{r > 0 : x ∈ rW}, x ∈ R
n. For

each k ≥ k0, since W ⊂ Bi(dik), we have

0 ≤ fi(xk, dik) = γdik
(xk − dik) ≤ γ0(xk − dik).

When k → ∞, since γ0(xk − dik) → γ0(x − di) = 0, we have fi(xk, dik) → 0 = fi(x, di).
Therefore, fi is continuous at (x, di).

(ii) Next, we consider the case x �= di. For each k ∈ N, since

γdik
(xk − dik) ≤ γdik

(xk − dik − (x − di)) + γdik
(x − di),

γdik
(x − di) ≤ γdik

(x − di − (xk − dik)) + γdik
(xk − dik)

by triangular inequality for gauges, we have

−γdik
((x−xk+2dik−di)−dik) ≤ γdik

(xk−dik)−γdik
(x−di) ≤ γdik

((xk−x+di)−dik).

From the result of (i),

lim
k→∞

{γdik
(xk − dik) − γdik

(x − di)} = 0.
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Thus, if it can be shown that

(1) lim
k→∞

γdik
(x − di) = γ

di

(x − di),

then

lim
k→∞

fi(xk, dik) = lim
k→∞

γdik
(xk − dik)

= lim
k→∞

[{
γdik

(xk − dik) − γdik
(x − di)

}
+ γdik

(x − di)
]

= 0 + γ
di

(x − di)

= fi(x, di)

and fi is continuous at (x, di). In order to show (1), it is sufficient to show that

(2) lim
k→∞

γdik

(
x − di

γ
di

(x − di)

)
= 1.

Note that

x0 ≡ x − di

γ
di

(x − di)
∈ bd Bi(di) ⊂ Bi(di)

where bd Bi(di) is the boundary of Bi(di). For each k ∈ N, since bd Bi(dik) ∩ {λx0 : λ ≥
0} = {xk} for some xk ∈ R

n, we have

γdik
(x0) =

‖x0‖
‖xk‖

where ‖ · ‖ is Euclidean norm (defined on R
n). Thus, in order to show (2), it is sufficient to

show that
lim

k→∞
xk = x0.

Since Bi is locally bounded and dik → di, {xk} is bounded. Thus, {xk} has a convergent
subsequence. Let {xk′} be any convergent subsequence of {xk}, and x′

0 be its limit. Since
Bi is continuous (especially upper semicontinuous), we have x′

0 ∈ Bi(di). Thus, x′
0 = µx0

for some µ with 0 ≤ µ ≤ 1. Since Bi is continuous (especially lower semicontinuous), there
exist k1 ∈ N and {x̂k} ⊂ R

n such that x̂k → x0 and x̂k ∈ Bi(dik), k ≥ k1. Again, since
Bi is continuous (especially lower semicontinuous), there exist ε > 0 and k2 ∈ N such that
V ≡ {x ∈ R

n : ‖x‖ < ε} ⊂ int Bi(dik) for any k ≥ k2 by the same argument in (i). If
µ = 0, then xk′ ∈ V ⊂ int Bi(dik′ ) for sufficiently large k′ ∈ N, which contradicts that
xk′ ∈ bd Bi(dik′ ). Thus, µ > 0. Suppose that µ < 1. Since

x̂k′ → x0, xk′ → x′
0 = µx0, 0 < µ < 1, {xk′} ⊂ {λx0 : λ ≥ 0},

for sufficiently large k′ ∈ N, we have x̂k′ �= xk′ and

{x̂k′ + λ(xk′ − x̂k′ ) : λ ≥ 1} ∩ V �= ∅

and x̂k′ ∈ Bi(dik′ ), V ⊂ int Bi(dik′) and xk′ ∈ int Bi(dik′) from the convexity of Bi(dik′ ),
which contradicts that xk′ ∈ bd Bi(dik′ ). Thus, µ = 1 and x′

0 = x0. Namely, x0 is a
unique accumulation point of {xk}. Therefore, {xk} converges to x0. �
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Throughout this paper, it is assumed that the objective function f : R
n × R

n� → R
�

for multicriteria location problems (Pd) is continuous. For example, f : R
n × R

n� → R
� is

continuous if Bi : R
n � R

n, i ∈ I are continuous and locally bounded from Theorem 1.
Next, we investigate the continuity of the set-valued mapping F : R

n� � R
�.

Lemma 1. Let d0 ∈ R
n�, and assume that X : R

n� � R
n is lower semicontinuous at d0.

Then F : R
n� � R

� is lower semicontinuous at d0.

Proof. Let {dk} ⊂ R
n� be any sequence which converges to d0, and fix any y0 ∈ F (d0).

Then there exists x0 ∈ X(d0) such that y0 = f(x0, d0). Since X is lower semicontinuous
at d0, there exist {xk} ⊂ R

n, which converges to x0, and k0 ∈ N such that xk ∈ X(dk) for
any k ≥ k0. For each k ∈ N, we put yk ≡ f (xk, dk). Then yk ∈ F (dk) for any k ≥ k0.
Since f is continuous, we have

lim
k→∞

yk = lim
k→∞

f (xk, dk) = f(x0, d0) = y0.

Therefore, F is lower semicontinuous at d0. �

Lemma 2. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is locally

bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is upper semicontinuous at d0.
Then F : R

n� � R
� is upper semicontinuous at d0.

Proof. Let {dk} ⊂ R
n� be any sequence which converges to d0, and {yk} ⊂ R

� be
any sequence which converges to y0 ∈ R

� such that yk ∈ F (dk), k ∈ N. Then for each
k ∈ N, there exists xk ∈ X(dk) such that yk = f(xk, dk). For each k ∈ N, if we put yk ≡
(yk1, yk2, · · · , yk�) ∈ R

� and dk ≡ (dk1, dk2, · · · , dk�) ∈ R
n�, then yki = γ

dki

(xk−dki), i ∈ I.
Since yk → y0, {yk} is bounded. Thus, there exists P > 0 such that

(3) 0 ≤ yki = γ
dki

(xk − dki) ≤ P, k ∈ N, i ∈ I.

Now, we shall show that {xk −dki0} is bounded. Since Bi0 is locally bounded at d0i0 , there
exists a neighborhood U of d0i0 such that Bi0(U) = ∪di0∈UBi0(di0) is bounded. Since

dki0 → d0i0 , there exists k0 ∈ N such that dki0 ∈ U for any k ≥ k0. Thus, for sufficiently
large u0 ∈ R, ⋃

k≥k0

Bi0(dki0) ⊂
⋃

di0∈U

Bi0(di0) ⊂ U0 ≡ {x ∈ R
n : ‖x‖ ≤ u0}.

For U0, which is a compact convex set containing the origin in its interior, we define the
gauge γU0 : R

n → R as γU0(x) ≡ inf{r > 0 : x ∈ rU0}, x ∈ R
n. Since Bi0(dki0 ) ⊂ U0, k ≥

k0, we have
0 ≤ γU0(xk − dki0 ) ≤ γ

dki0

(xk − dki0 ) ≤ P, k ≥ k0

from (3). Thus, {xk − dki0} is bounded. Since dki0 → d0i0 , {dki0} is bounded. Thus,
{xk} is also bounded. Thus, there exists a subsequence {xk′} ⊂ {xk} which converges
to x0 ∈ R

n. Since X is upper semicontinuous at d0, we have x0 ∈ X(d0). Since f is
continuous, we have

y0 = lim
k′→∞

yk′ = lim
k′→∞

f(xk′ , dk′ ) = f(x0, d0) ∈ f(X(d0),d0) = F (d0).

�

From Lemma 1 and 2, the following lemma is obtained.
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Lemma 3. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is locally

bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0. Then
F : R

n� � R
� is continuous at d0.

For example, if we define X : R
n� � R

n as X(d) ≡ A,d ∈ R
n� for a closed set A ⊂ R

n,
then X : R

n� � R
n is continuous.

Example 1. We define X : R
n� � R

n as

X(d) ≡ co {d1, d2, · · · , d�}, d = (d1, d2, · · · , d�) ∈ R
n�

where co {d1, d2, · · · , d�} is the convex hull of {d1, d2, · · · , d�}. Then it can be seen that
X : R

n� � R
n is continuous.

Example 2.(See Example 5.10 in [6].) Assume that gj : R
n×R

n� → R, j = 1, 2, · · · , m are
continuous, and that gj(x, d) is convex in x ∈ R

n for each j ∈ {1, 2, · · · , m} and d ∈ R
n�.

We define X : R
n� � R

n as

X(d) ≡ {x ∈ R
n : gj(x, d) ≤ 0, j = 1, 2, · · · , m}, d ∈ R

n�.

Then for d ∈ R
n�, if there exists x ∈ R

n such that gj(x, d) < 0, j = 1, 2, · · · , m, then
X : R

n� � R
n is continuous not only at d but at every d in some neighborhood of d.

Now, we refer to the following theorem.

Theorem 2.(Theorem 2.21 in [1].) Let A ⊂ R
� be a nonempty R

�
+-compact set. Then the

nondominated set of A, AN , is externally stable.

Lemma 4. Let d0 ∈ R
n�, and assume that X(d0) is closed. Then F (d0) is R

�
+-compact.

Proof. First, we shall show that F (d0) is closed. Let {yk} ⊂ F (d0) be any convergent
sequence, and y0 ∈ R

� be its limit. For each k ∈ N, there exists xk ∈ X(d0) such that
yk = f(xk, d0). For each k ∈ N, if we put yk ≡ (yk1, yk2, · · · , yk�) ∈ R

� and d0 ≡
(d01, d02, · · · , d0�) ∈ R

n�, then yki = γ
d0i

(xk − d0i), i ∈ I. Since yk → y0, {yk} is
bounded. Thus, there exists P > 0 such that

0 ≤ yki = γ
d0i

(xk − d0i) ≤ P, k ∈ N, i ∈ I.

Thus, {xk} is bounded, and there exists a subsequence {xk′} ⊂ {xk} which converges to
x0 ∈ R

n. Since X(d0) is closed, x0 ∈ X(d0). Since f is continuous, we have

y0 = lim
k′→∞

yk′ = lim
k′→∞

f(xk′ , d0) = f (x0, d0) ∈ f (X(d0),d0) = F (d0).

Therefore, F (d0) is closed.
Next, we shall show that any section of F (d0) is compact. Fix any y ∈ F (d0). Since

F (d0) is closed, (y−R
�
+)∩F (d0) is also closed. On the other hand, since, F (d0) ⊂ R

�
+, we

have (y−R
�
+)∩F (d0) ⊂ (y−R

�
+)∩R

�
+. Since (y−R

�
+)∩R

�
+ is bounded, (y−R

�
+)∩F (d0)

is also bounded. Therefore, the section (y − R
�
+) ∩ F (d0) is compact. �

From Theorem 2 and Lemma 4, the following theorem is obtained.

Theorem 3. Let d0 ∈ R
n�, and assume that X(d0) is closed. Then M(d0) is externally

stable.

The following theorem gives sufficient conditions for that the set of all weak Pareto
optimal solutions coincides with the set of all Pareto optimal solutions and that there does



508 M. KON

not exist any alternately Pareto optimal solution.

Theorem 4. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that X(d0) is convex, and

that all gauges γ
d0i

, i ∈ I are strictly convex. Then WMS(d0) = MS(d0), and there does
not exist any alternately Pareto optimal solution of (P

d0
).

Proof. Let SMS(d0) be the set of all strictly Pareto optimal solutions of (P
d0

). From

Definition 1, SMS(d0) ⊂ MS(d0) ⊂ WMS(d0). Thus, in order to show that WMS(d0)
= MS(d0) and there does not exist any alternately Pareto optimal solution of (P

d0
), it is

sufficient to show that WMS(d0) ⊂ SMS(d0). Fix any x0 ∈ WMS(d0) and x1 ∈ X(d0)
with x1 �= x0. We put x2 ≡ x0+x1

2 . Then there exists i ∈ I such that γ
d0i

(x0 − d0i) ≤
γ
d0i

(x2 − d0i). If x0 − d0i and x2 − d0i are on the same line passing through the origin,

then γ
d0i

(x0 − d0i) ≤ γ
d0i

(x2 − d0i) < γ
d0i

(x1 − d0i). If they are not on the same line

passing through the origin, then γ
d0i

(x0 − d0i) < γ
d0i

(x1 − d0i) from the strict convexity

of a function t 
→ γ
d0i

((1 − t)x0 + tx1 − d0i) defined on {t ∈ R : 0 ≤ t ≤ 1}. Therefore,

x0 ∈ SMS(d0). �

3 Main results In this section, by using the results given in the previous section, the
continuity of the weak Pareto optimal value mapping, the continuity of the Pareto optimal
value mapping, the continuity of the weak Pareto optimal solution mapping, and the con-
tinuity of the Pareto optimal solution mapping are investigated as the stability of Pareto
and weak Pareto optimal values/solutions.

First, we investigate the continuity of the weak Pareto optimal value mapping WM :
R

n� � R
�.

Theorem 5. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is

locally bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0. Then
the weak Pareto optimal value mapping WM : R

n� � R
� is upper semicontinuous at d0.

Proof. Let {dk} ⊂ R
n� be any sequence which converges to d0, and {yk} be any sequence

which converges to y0 ∈ R
� such that yk ∈ WM(dk), k ∈ N. From Lemma 3, F is

continuous (especially upper semicontinuous) at d0. Thus, y0 ∈ F (d0). Suppose that
y0 /∈ WM(d0). Then there exists ŷ ∈ F (d0) such that ŷ < y0. Since F is continuous
(especially lower semicontinuous) at d0, there exist {ŷk} ⊂ R

�, which converges to ŷ, and
k0 ∈ N such that ŷk ∈ F (dk) for any k ≥ k0. Then for any sufficiently large k ∈ N, ŷk < yk,
which contradicts that yk ∈ WM(dk). �

The following theorem gives sufficient conditions for the weak Pareto optimal value
mapping WM : R

n� � R
� to be continuous.

Theorem 6. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is locally

bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0. Furthermore,
assume that there exists a neighborhood U(d0) of d0 such that X(d) is closed for any
d ∈ U(d0). Then if WM(d0) = M(d0), then the weak Pareto optimal value mapping
WM : R

n� � R
� is continuous at d0.

Proof. From Theorem 5, it is sufficient to show that WM is lower semicontinuous at d0.
Let {dk} ⊂ R

n� be any sequence which converges to d0, and fix any y0 ∈ WM(d0) ⊂ F (d0).
Since F is continuous (especially lower semicontinuous) at d0 from Lemma 3, there exist
{yk} ⊂ R

�, which converges to y0, and k0 ∈ N such that yk ∈ F (dk) for any k ≥ k0.
If yk ∈ WM(dk) for any sufficiently large k ∈ N, then WM is lower semicontinuous at
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d0. Thus, without loss of generality, assume that yk /∈ WM(dk) for any k ≥ k0. From
Theorem 3, M(dk) is externally stable for any sufficiently large k ∈ N. Thus, there exists
{ŷk} ⊂ R

� such that ŷk ∈ WM(dk) and ŷk ≤ yk for any sufficiently large k ∈ N. In
order to show that WM is lower semicontinuous at d0, it is sufficient to show that {ŷk}
converges to y0. Since yk → y0, {yk} is bounded. Thus, there exists y0 ∈ R

�
+ such that

yk ∈ (y0 − R
�
+) ∩ R

�
+ for any k ≥ k0. For any sufficiently large k ∈ N, since ŷk ≤ yk and

ŷk ∈ WM(dk) ⊂ F (dk), we have ŷk ∈ (y0−R
�
+)∩R

�
+. Thus, {ŷk} is bounded, and {ŷk} has

a convergent subsequence. Let {ŷk′} be any convergent subsequence of {ŷk}, and ŷ0 ∈ R
�

be its limit. Then ŷ0 ≤ y0. Since F is continuous (especially upper semicontinuous) at d0

from Lemma 3, we have ŷ0 ∈ F (d0). Thus, ŷ0 = y0. Namely, y0 is a unique accumulation
point of {ŷk}. Therefore, {ŷk} converges to y0. �

For example, the condition ”WM(d0) = M(d0)” in Theorem 6 holds if X(d0) is convex and
all γ

d0i

, i ∈ I are strictly convex from Theorem 4, where d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�.

Next, we investigate the continuity of the Pareto optimal value mapping M : R
n� � R

�.

Theorem 7. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is locally

bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0. Furthermore,
assume that there exists a neighborhood U(d0) of d0 such that X(d) is closed for any
d ∈ U(d0). Then the Pareto optimal value mapping M : R

n� � R
� is lower semicontinuous

at d0.

Proof Let {dk} ⊂ R
n� be any sequence which converges to d0, and fix any y0 ∈ M(d0) ⊂

F (d0). Since F is continuous (especially lower semicontinuous) at d0 from Lemma 3, there
exist {yk} ⊂ R

�, which converges to y0, and k0 ∈ N such that yk ∈ F (dk) for any k ≥ k0.
If yk ∈ M(dk) for any sufficiently large k ∈ N, M is lower semicontinuous at d0. Thus,
without loss of generality, assume that yk /∈ M(dk) for any k ≥ k0. From Theorem 3, M(dk)
is externally stable for any sufficiently large k ∈ N. Thus, there exists {ŷk} ⊂ R

� such that
ŷk ∈ M(dk) and ŷk ≤ yk for any sufficiently large k ∈ N. In order to show that M is lower
semicontinuous at d0, it is sufficient to show that {ŷk} converges to y0. Since yk → y0,
{yk} is bounded. Thus, there exists y0 ∈ R

�
+ such that yk ∈ (y0−R

�
+)∩R

�
+ for any k ≥ k0.

Thus, for any sufficiently large k ∈ N, since ŷk ≤ yk and ŷk ∈ M(dk) ⊂ F (dk), we have
ŷk ∈ (y0 − R

�
+) ∩ R

�
+. Thus, {ŷk} is bounded, and {ŷk} has a convergent subsequence.

Let {ŷk′} be any convergent subsequence of {ŷk}, and ŷ0 ∈ R
� be its limit. Then ŷ0 ≤ y0.

Since F is continuous (especially upper semicontinuous) at d0 from Lemma 3, we have
ŷ0 ∈ F (d0). Thus, ŷ0 = y0. Namely, y0 is a unique accumulation point of {ŷk}. Therefore,
{ŷk} converges to y0. �

Theorem 8. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is

locally bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0.
Furthermore, assume that there exists a neighborhood U(d0) of d0 such that X(d) is closed
for any d ∈ U(d0). Then if WM(d0) = M(d0), then the Pareto optimal value mapping
M : R

n� � R
� is continuous at d0.

Proof. From Theorem 7, it is sufficient to show that M is upper semicontinuous at d0.
Let {dk} ⊂ R

n� be any sequence which converges to d0, and {yk} be any sequence which
converges to y0 ∈ R

� such that yk ∈ M(dk), k ∈ N. Since F is continuous (especially upper
semicontinuous) at d0 from Lemma 3, we have y0 ∈ F (d0). Suppose that y0 /∈ M(d0) =
WM(d0). Then there exists ŷ ∈ F (d0) such that ŷ < y0. Since F is continuous (especially
lower semicontinuous) at d0, there exist {ŷk} ⊂ R

�, which converges to ŷ, and k0 ∈ N such
that ŷk ∈ F (dk) for any k ≥ k0. Then for any sufficiently large k ∈ N, ŷk < yk, which
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contradicts that yk ∈ M(dk). �

Next, we investigate the continuity of the weak Pareto optimal solution mapping WMS :
R

n� � R
n and the Pareto optimal solution mapping MS : R

n� � R
n.

Theorem 9. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is locally

bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0. Then the
weak Pareto optimal solution mapping WMS : R

n� � R
n is upper semicontinuous at d0.

Proof. Let {dk} ⊂ R
n� be any sequence which converges to d0, and {xk} be any sequence

which converges to x0 ∈ R
n such that xk ∈ WMS(dk), k ∈ N. Then for each k ∈ N, we

put yk ≡ f (xk, dk) ∈ WM(dk). Since X is continuous (especially upper semicontinuous)
at d0, we have x0 ∈ X(d0). Since f is continuous and WM is upper semicontinuous at d0

from Theorem 5, we have y0 ≡ f(x0, d0) ∈ WM(d0). Therefore, x0 ∈ WMS(d0). �

Theorem 10. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n

is locally bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at
d0. Furthermore, assume that there exists a neighborhood U(d0) of d0 such that X(d)
is closed for any d ∈ U(d0). Then if WM(d0) = M(d0) and there does not exist any
alternately Pareto optimal solution of (P

d0
), then the weak Pareto optimal solution mapping

WMS : R
n� � R

n is continuous at d0.

Proof. From Theorem 9, it is sufficient to show that WMS is lower semicontinuous at
d0. Let {dk} ⊂ R

n� be any sequence which converges to d0, and fix any x0 ∈ WMS(d0).
We put y0 ≡ f(x0, d0). Then y0 ∈ WM(d0). Since WM is continuous (especially lower
semicontinuous) at d0 from Theorem 6, there exist {yk} ⊂ R

�, which converges to y0, and
k0 ∈ N such that yk ∈ WM(dk) for any k ≥ k0. Let {xk} ⊂ R

n be any sequence such
that yk = f (xk, dk) and xk ∈ WMS(dk) for each k ≥ k0. In order to show that WMS
is lower semicontinuous at d0, it is sufficient to show that {xk} converges to x0. By the
same argument in the proof of Lemma 2, {xk} is bounded. Thus, {xk} has a convergent
subsequence. Let {xk′} be any convergent subsequence of {xk}, and x′

0 ∈ R
n be its limit.

Since X is continuous (especially upper semicontinuous) at d0, we have x′
0 ∈ X(d0). Since

f is continuous, we have

f(x0, d0) = y0 = lim
k′→∞

yk′ = lim
k′→∞

f(xk′ , dk′) = f (x′
0, d0).

Since there does not exist any alternately Pareto optimal solution of (P
d0

) from the assump-

tion, x0 is a strictly Pareto optimal solution of (P
d0

). Thus, since f (x′
0, d0) = f(x0, d0),

we have x′
0 = x0. Namely, x0 is a unique accumulation point of {xk}. Therefore, {xk}

converges to x0. �

For example, the condition ”there does not exist any alternately Pareto optimal solution of
(P

d0
)” in Theorem 10 holds if X(d0) is convex and all γ

d0i

, i ∈ I are strictly convex from

Theorem 4, where d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�.

Theorem 11. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is

locally bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0.
Furthermore, assume that there exists a neighborhood U(d0) of d0 such that X(d) is closed
for any d ∈ U(d0). Then if WM(d0) = M(d0), then the Pareto optimal solution mapping
MS : R

n� � R
n is upper semicontinuous at d0.

Proof. Let {dk} ⊂ R
n� be any sequence which converges to d0, and {xk} be any sequence

which converges to x0 ∈ R
n such that xk ∈ MS(dk), k ∈ N. Then for each k ∈ N, we
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put yk ≡ f (xk, dk) ∈ M(dk). Since X is continuous (especially upper semicontinuous)
at d0, we have x0 ∈ X(d0). Since f is continuous and M is continuous (especially up-
per semicontinuous) at d0 from Theorem 8, we have y0 ≡ f(x0, d0) ∈ M(d0). Therefore,
x0 ∈ MS(d0). �

Theorem 12. Let d0 ≡ (d01, d02, · · · , d0�) ∈ R
n�, and assume that Bi0 : R

n � R
n is

locally bounded at d0i0 for some i0 ∈ I, and that X : R
n� � R

n is continuous at d0. Fur-
thermore, assume that there exists a neighborhood U(d0) of d0 such that X(d) is closed for
any d ∈ U(d0). Then if WM(d0) = M(d0) and there does not exist any alternately Pareto
optimal solution of (P

d0
), then the Pareto optimal solution mapping MS : R

n� � R
n is

continuous at d0.

Proof. From Theorem 11, it is sufficient to show that MS is lower semicontinuous at d0.
Let {dk} ⊂ R

n� be any sequence which converges to d0, and fix any x0 ∈ MS(d0). We put
y0 ≡ f(x0, d0). Then y0 ∈ M(d0). Since M is lower semicontinuous at d0 from Theorem
7, there exist {yk} ⊂ R

�, which converges to y0, and k0 ∈ N such that yk ∈ M(dk) for any
k ≥ k0. Let {xk} ⊂ R

n be any sequence such that yk = f(xk, dk) and xk ∈ MS(dk) for any
k ≥ k0. In order to show that MS is lower semicontinuous at d0, it is sufficient to show that
{xk} converges to x0. By the same argument in the proof of Lemma 2, {xk} is bounded.
Thus, {xk} has a convergent subsequence. Let {xk′} be any convergent subsequence of
{xk}, and x′

0 ∈ R
n be its limit. Since X is continuous (especially upper semicontinuous)

at d0, we have x′
0 ∈ X(d0). Since f is continuous, we have

f (x0, d0) = y0 = lim
k′→∞

yk′ = lim
k′→∞

f (xk′ , dk′) = f(x′
0, d0).

Since there does not exist any alternately Pareto optimal solution of (P
d0

) from the assump-

tion, x0 is a strictly Pareto optimal solution of (P
d0

). Thus, since f(x′
0, d0) = f(x0, d0),

we have x′
0 = x0. Namely, x0 is a unique accumulation point of {xk}. Therefore, {xk}

converges to x0. �

4 Conclusions In this paper, we dealt with a family of parameterized multicriteria lo-
cation problems, and investigated the stability of Pareto and weak Pareto optimal val-
ues/solutions, where we considered demand points as the parameter and distance measures
depended on the parameter. First, we gave sufficient conditions for the objective function
of the multicriteria location problems to be continuous as Theorem 1, and gave sufficient
conditions for that the set of all weak Pareto optimal solutions coincides with the set of
all Pareto optimal solutions and that there does not exist any alternately Pareto optimal
solution as Theorem 4. Next, we investigated the continuity of the weak Pareto optimal
value mapping as Theorem 5 and 6, the continuity of the Pareto optimal value mapping as
Theorem 7 and 8, the continuity of the weak Pareto optimal solution mapping as Theorem
9 and 10, and the continuity of the Pareto optimal solution mapping as Theorem 11 and
12.
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