PATH OF BREGMAN-PETZ OPERATOR DIVERGENCE

Jun Ichi Fujii* and Eizaburo Kamei**

Received June 19, 2007

Abstract

For the Bregman operator divergence defined by D.Petz, we introduce two paths of operator divergences including this one as a terminal. This gives other explanations from the viewpoint of operator means or solidarities.

In [7], Petz introduced the Bregman operator divergence: For an operator convex function F and positive (invertible) operators A and B on a Hilbert space, put

$$
\begin{aligned}
D_{[F]}(A \mid B) & =F(A)-F(B)-\lim _{t \rightarrow+0} \frac{F(B+t(A-B))-F(B)}{t} \\
& =\lim _{t \rightarrow+0} \frac{t F(A)+(1-t) F(B)-F(t A+(1-t) B)}{t} \\
& =\lim _{t \rightarrow+0} \frac{F(B) \nabla_{t} F(A)-F\left(B \nabla_{t} A\right)}{t} \geq 0 .
\end{aligned}
$$

He gives a nice representation of $D_{[F]}$ by hard calculation, by which, for density matrices A and B and $F(x)=x \log x$,

$$
\operatorname{Tr} D_{[x \log x]}(A, B)=\operatorname{Tr} A(\log A-\log B)=s(A, B)
$$

the Umegaki relative entropy [8].
In $[2,3]$, we define the relative operator entropy $S(A \mid B)$ as

$$
S(A \mid B)=A^{\frac{1}{2}}\left(\log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

where $-\operatorname{Tr} S(A \mid B)$ is the Belavkin-Staszewski entropy [1]. Petz also gives another operator version of the Bregman divergence by

$$
S_{F K}(A \mid B)=B-A-S(A \mid B)
$$

But unfortunately $S_{F K}(A \mid B)$ does not coincides with $D_{[x \log x]}(A, B)$ in general.
So we construct a class of operator divergences including $S_{F K}(A \mid B)$ from the viewpoint of operator means [6] or solidarity [4], which is based on operator monotone or operator concave functions. To see this, we extend $D_{[F]}(A \mid B)$ to fit to this viewpoint. Replacing F with an operator concave function $f=-F$, we define a path of divergences extending $D_{[F]}(A \mid B)$: For $0 \leq t \leq 1$, let

$$
\begin{aligned}
D_{f, t}(A, B) & =\frac{f\left(B \nabla_{t} A\right)-f(B) \nabla_{t} f(A)}{t(1-t)} \\
& =\frac{f(t A+(1-t) B)-t f(A)-(1-t) f(B)}{t(1-t)}
\end{aligned}
$$

Then we have a symmetric property of this path between $D_{[F]}(A, B)$ and $D_{[F]}(B, A)$:

$$
\lim _{t \rightarrow 0} D_{f, t}(A, B)=D_{[F]}(A, B), \quad \lim _{t \rightarrow 1} D_{f, t}(A, B)=D_{[F]}(B, A)
$$

Note that if f is an affine function $f(x)=a+b x$, then $D_{f, t}(A, B)=O$. So we assume that a function f is non-affine throughout this note. Then we have a basic property of this divergence:
Theorem 1. For a non-affine operator concave function f, the divergence $D_{f, t}(A, B)$ is a positive operator and $D_{f, t}(A, B)=O$ holds if and only if $A=B$.

For this, we need the following lemma which is easily obtained since it is reduced to the commutative case; $1-t+t X=\left(1-t+t X^{-1}\right)^{-1}$ holds only when $X=I$:
Lemma 2. For the harmonic mean $A!_{t} B=\left((1-t) A^{-1}+t B^{-1}\right)^{-1}$ for selfadjoint invertible operators A and B, the equation $A \nabla_{t} B=A!_{t} B$ holds if and only if $A=B$.

Proof of Theorem 1. The positivity of $D_{f, t}(A, B)$ is merely the operator concavity of f. To show the extreme case, suppose $f\left(A \nabla_{t} B\right)=f(A) \nabla_{t} f(B)$. Since we may assume f is operator concave on $(-1,1)$, then f has an integral representation

$$
f(x)=a+b x+\int_{-1}^{1} \frac{x^{2}}{t x-1} d m(t)
$$

The essential part of the function is

$$
f_{0}(x)=\frac{x^{2}}{x-s}=x+s+\frac{s^{2}}{x-s}
$$

so that we have only to show $A=B$ when

$$
\left(A \nabla_{t} B-s\right)^{-1}=(1-t)(A-s)^{-1}+t(B-s)^{-1}
$$

for some $s \notin(-1,1)$. Taking inverse, we have

$$
(A-s) \nabla_{t}(B-s)=A \nabla_{t} B-s=(A-s)!_{t}(B-s)
$$

Thus, Lemma 2 shows $A-s=B-s$, that is, $A=B$. The converse is clear.
Now we will define a path $\mathfrak{D}_{f, t}(A, B)$ including $S_{F K}(A \mid B)$. The following path of operator divergences is naturally defined, but the symmetric property does not hold, so we denote it by $\tilde{\mathfrak{D}}_{f, t}(A, B)$:

$$
\tilde{\mathfrak{D}}_{f, t}(A, B)=A^{1 / 2} \frac{f\left(A^{-1 / 2} B A^{-1 / 2} \nabla_{t} I\right)-f\left(A^{-1 / 2} B A^{-1 / 2}\right) \nabla_{t} f(I)}{t(1-t)} A^{1 / 2}
$$

In fact, if $f(x)=\eta(x) \equiv-x \log x$, then this path runs from $S_{F K}(A \mid B)$ to $S_{F K}(B \mid A)$:

$$
\tilde{\mathfrak{D}}_{\eta, t}(A, B)=A^{\frac{1}{2}} \frac{\eta\left(X \nabla_{t} I\right)-\eta(X) \nabla_{t} \eta(I)}{t(1-t)} A^{\frac{1}{2}},
$$

where $X=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$. Then

$$
\begin{aligned}
\tilde{\mathfrak{D}}_{\eta, 0}(A, B) & \equiv \lim _{t \rightarrow 0} \tilde{\mathfrak{D}}_{\eta, t}(A, B)=\lim _{t \rightarrow 0} A^{\frac{1}{2}} \frac{\eta(X+t(I-X))-\eta(X)+t \eta(X)}{t(1-t)} A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left(\eta^{\prime}(X)(I-X)+\eta(X)\right) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}(-\log X-I+X) A^{\frac{1}{2}} \\
& =B-A-S(A \mid B)=S_{F K}(A \mid B)
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{\mathfrak{D}}_{\eta, 1}(A, B) & \equiv \lim _{t \rightarrow 1} \tilde{\mathfrak{D}}_{\eta, t}(A, B)=\lim _{t \rightarrow 1} A^{\frac{1}{2}} \frac{\eta(I+(1-t)(X-I))-\eta(I)-(1-t) \eta(X)}{t(1-t)} A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left(\eta^{\prime}(I)(X-I)-\eta(X)\right) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}(-X+I+X \log X) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left(-A^{-\frac{1}{2}} B A^{-\frac{1}{2}}+I+A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \log A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}} \\
& =-B+A-B^{-\frac{1}{2}} \log \left(B^{\frac{1}{2}} A B^{-\frac{1}{2}}\right) B^{\frac{1}{2}} \\
& =A-B-S(B \mid A)=S_{F K}(B \mid A) .
\end{aligned}
$$

But a symmetric equation $\tilde{\mathfrak{D}}_{f, 0}(A, B)=\tilde{\mathfrak{D}}_{f, 1}(B, A)$ does not always hold: Putting $X=A^{-1 / 2} B A^{-1 / 2}$, we easily compute it as follows:

$$
\begin{aligned}
\tilde{\mathfrak{D}}_{f, 0}(A, B) & =\lim _{t \rightarrow 0} A^{1 / 2}\left(f^{\prime}\left(X \nabla_{t} I\right)(I-X)+f(X)-f(I)\right) A^{1 / 2} \\
& =A^{1 / 2}\left(f^{\prime}(X)(I-X)+f(X)-f(I)\right) A^{1 / 2} \\
& =A^{1 / 2} f^{\prime}(X)(I-X) A^{1 / 2}+A^{1 / 2} f(X) A^{1 / 2}-f(I) A
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{\mathfrak{D}}_{f, 1}(A, B) & =\lim _{t \rightarrow 1} \tilde{\mathfrak{D}}_{f, t}(A, B)=\lim _{t \rightarrow 1} A^{\frac{1}{2}}\left(f^{\prime}\left(X \nabla_{t} I\right)(X-I)-f(X)+f(I)\right) A^{\frac{1}{2}} \\
& =A^{1 / 2}\left(f^{\prime}(I)(X-I)-f(X)+f(I)\right) A^{1 / 2} \\
& =f^{\prime}(I)(B-A)-A^{1 / 2} f(X) A^{1 / 2}+f(I) A .
\end{aligned}
$$

Thus the symmetric equation is false in general.
To define a symmetric path of operator divergence, we recall the Kubo-Ando theory of operator means [6] in which they gave the one-to-one correspondence between operator means and positive operator monotone functions. For a positive operator monotone function f on $(0, \infty)$, the transpose f° of f, defined by $f^{\circ}(x)=x f\left(x^{-1}\right)$, is also positive operator monotone and then $A m_{f} \circ B=B m_{f} A$, where m_{f} is the operator mean corresponding to f :

$$
A m_{f} B=A^{\frac{1}{2}} f\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}=B^{\frac{1}{2}} f^{\circ}\left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right) B^{\frac{1}{2}}
$$

Moreover M.Fujii [5] showed the following equivalence for f which is not always positive:
Theorem F. A real-valued function f on $(0, \infty)$ is operator concave if and only if its transpose f° is operator concave.

For example, the entropy function $\eta(x)=-x \log x$ and $\log x$ are operator concave and these are the transpose each other.

Now we define a path of Bregman-Petz operator divergences $\mathfrak{D}_{f, t}(A, B)$ for f as

$$
B^{\frac{1}{2}} \frac{\left(f\left(I \nabla_{t} Y\right)-f(I) \nabla_{t} f(Y)\right) \nabla_{t}\left(f^{\circ}\left(Y \nabla_{t} I\right)-f^{\circ}(Y) \nabla_{t} f^{\circ}(I)\right)}{t(1-t)} B^{\frac{1}{2}}
$$

for $Y=B^{-\frac{1}{2}} A B^{-\frac{1}{2}}$ and in particular we denote

$$
\mathfrak{D}_{f}(A, B)=\lim _{t \rightarrow 0} \mathfrak{D}_{f, t}(A, B)
$$

Since

$$
B^{-\frac{1}{2}} \mathfrak{D}_{f, t}(A, B) B^{-\frac{1}{2}}=\frac{f\left(I \nabla_{t} Y\right)-f(I) \nabla_{t} f(Y)}{t}+\frac{f^{\circ}\left(Y \nabla_{t} I\right)-f^{\circ}(Y) \nabla_{t} f^{\circ}(I)}{1-t}
$$

we have

$$
\begin{aligned}
\mathfrak{D}_{f}(A, B) & =\lim _{t \rightarrow 0} \mathfrak{D}_{f, t}(A, B)=\lim _{t \rightarrow 0} B^{\frac{1}{2}} \frac{f\left(I \nabla_{t} Y\right)-f(I) \nabla_{t} f(Y)}{t} B^{\frac{1}{2}} \\
& =\lim _{t \rightarrow 0} B^{\frac{1}{2}}\left(f^{\prime}\left(I \nabla_{t} Y\right)(Y-I)+f(I)-f(Y)\right) B^{\frac{1}{2}} \\
& =B^{\frac{1}{2}}\left(f^{\prime}(I)(Y-I)+f(I)-f(Y)\right) B^{\frac{1}{2}} \\
& =f^{\prime}(I)(A-B)+f(I) B-B^{\frac{1}{2}} f(Y) B^{\frac{1}{2}}
\end{aligned}
$$

and also

$$
\begin{aligned}
\lim _{t \rightarrow 1} \mathfrak{D}_{f, t}(A, B) & =\lim _{t \rightarrow 1} B^{\frac{1}{2}} \frac{f^{\circ}\left(Y \nabla_{t} I\right)-f^{\circ}(Y) \nabla_{t} f^{\circ}(I)}{1-t} B^{\frac{1}{2}} \\
& =\lim _{t \rightarrow 0} B^{\frac{1}{2}} \frac{f^{\circ}\left(I \nabla_{t} Y\right)-f^{\circ}(I) \nabla_{t} f^{\circ}(Y)}{t} B^{\frac{1}{2}} \\
& =\left(f^{\circ}\right)^{\prime}(I)(A-B)+f^{\circ}(I) B-B^{\frac{1}{2}} f^{\circ}(Y) B^{\frac{1}{2}}=\mathfrak{D}_{f^{\circ}}(A, B)
\end{aligned}
$$

Thus this path has a kind of symmetry between $\mathfrak{D}_{f}(A, B)$ and $\mathfrak{D}_{f} \circ(A, B)$, which is more clarified by the following theorem:
Theorem 3. Let f be an operator concave function and f° be the transpose of f. Then

$$
\mathfrak{D}_{f^{\circ}}(A, B)=\mathfrak{D}_{f}(B, A) .
$$

Proof. The equality $f^{\circ}(1)=f(1)$ holds and also $\left(f^{\circ}\right)^{\prime}(1)=f(1)-f^{\prime}(1)$ hods since

$$
\left(f^{\circ}\right)^{\prime}(x)=(x f(1 / x))^{\prime}=f(1 / x)-\frac{1}{x} f^{\prime}(1 / x) .
$$

For the above $X=A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$ and $Y=B^{-\frac{1}{2}} A B^{-\frac{1}{2}}$, we have

$$
\begin{aligned}
& \mathfrak{D}_{f^{\circ}}(A, B)=\left(f(I)-f^{\prime}(I)\right)(A-B)+f(I) B-B^{\frac{1}{2}} Y f(X) B^{\frac{1}{2}} \\
& \quad=f^{\prime}(I)(B-A)+f(I) A-A^{\frac{1}{2}} A^{\frac{1}{2}} B^{-\frac{1}{2}} f\left(\left(\left(A^{\frac{1}{2}} B^{-\frac{1}{2}}\right)^{*} A^{\frac{1}{2}} B^{-\frac{1}{2}}\right)^{-1}\right) B^{\frac{1}{2}} \\
& \quad=f^{\prime}(I)(B-A)+f(I) A-A^{\frac{1}{2}} f\left(\left(A^{\frac{1}{2}} B^{-\frac{1}{2}}\left(A^{\frac{1}{2}} B^{-\frac{1}{2}}\right)^{*}\right)^{-1}\right) A^{\frac{1}{2}} B^{-\frac{1}{2}} B^{\frac{1}{2}} \\
&=f^{\prime}(I)(B-A)+f(I) A-A^{\frac{1}{2}} f\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}=\mathfrak{D}_{f}(B, A) .
\end{aligned}
$$

by the above calculation for $\lim _{t \rightarrow 1} \mathfrak{D}_{f, t}(A, B)$.
Thus $\mathfrak{D}_{f, t}(A, B)$ combines the Bregman-Petz divergences $\mathfrak{D}_{f}(A, B)$ with $\mathfrak{D}_{f}(B, A)$. In particular, for $f(x)=\eta(x)=-x \log x$, we have

$$
\mathfrak{D}_{\eta}(A, B)=B-A-S(A \mid B)=S_{F K}(A \mid B)
$$

and

$$
\mathfrak{D}_{\eta}(B, A)=\mathfrak{D}_{\eta^{\circ}}(A, B)=A-B-S(B \mid A)=S_{F K}(B \mid A) .
$$

Similarly to Theorem 1, we have the basic property of these divergences:
Theorem 4. For a non-affine operator concave function f, the Bregman-Petz divergence is positive and equals to zero if and only if the operators are equal:

$$
\begin{aligned}
\mathfrak{D}_{f, t}(A, B) \geq O ; & \mathfrak{D}_{f, t}(A, B)=O \Longleftrightarrow A=B \\
\left(\tilde{\mathfrak{D}}_{f, t}(A, B) \geq O ;\right. & \left.\tilde{\mathfrak{D}}_{f, t}(A, B)=O \Longleftrightarrow A=B\right) .
\end{aligned}
$$

References

[1] V.P.Belavkin and P.Staszewski: C*-algebraic generalization of relative entropy and entropy, Ann. Inst. H. Poincaré Sect. A., 37(1982), 51-58.
[2] J.I.Fujii and E.Kamei: Relative operator entropy in noncommutative information theory, Math. Japon., 34 (1989), 341-348.
[3] J.I.Fujii and E.Kamei: Uhlmann's interpolational method for operator means. Math. Japon., 34 (1989), 541-547.
[4] J.I.Fujii, M.Fujii and Y.Seo: An extension of the Kubo-Ando theory: Solidarities, Math. Japon., 35(1990), 387-396.
[5] M.Fujii: On operator concavity related to means of operators, Math. Japon., 30 (1985), 283288.
[6] F.Kubo and T.Ando: Means of positive linear operators, Math. Ann., 246(1980), 205-224.
[7] D.Petz: Bregman divergence as relative operator entropy, Acta Math. Hungar., 116(2007), 127-131.
(http://www.renyi.hu/~petz/pdf/112bregman.pdf)
[8] H.Umegaki: Conditional expectation in an operator algebra IV, Kodai Math. Sem. Rep. 14 (1962), 59-85.

* Department of Arts and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan.
E-mail address: fujii@cc.osaka-kyoiku.ac.jp
** Maebashi Institute of Technology, Kamisadori, Maebashi, Gunma 371-0816, Japan. E-mail address : kamei@maebashi-it.ac.jp

