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PATH OF BREGMAN-PETZ OPERATOR DIVERGENCE
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Abstract. For the Bregman operator divergence defined by D.Petz, we introduce
two paths of operator divergences including this one as a terminal. This gives other
explanations from the viewpoint of operator means or solidarities.

In [7], Petz introduced the Bregman operator divergence: For an operator convex func-
tion F and positive (invertible) operators A and B on a Hilbert space, put

D[F ](A|B) = F (A) − F (B) − lim
t→+0

F (B + t(A − B)) − F (B)
t

= lim
t→+0

tF (A) + (1 − t)F (B) − F (tA + (1 − t)B)
t

= lim
t→+0

F (B) ∇t F (A) − F (B ∇t A)
t

≥ 0.

He gives a nice representation of D[F ] by hard calculation, by which, for density matrices
A and B and F (x) = x log x,

Tr D[x log x](A,B) = TrA(log A − log B) = s(A,B),

the Umegaki relative entropy [8].
In [2, 3], we define the relative operator entropy S(A|B) as

S(A|B) = A
1
2

(
log A− 1

2 BA− 1
2

)
A

1
2 ,

where −TrS(A|B) is the Belavkin-Staszewski entropy [1]. Petz also gives another operator
version of the Bregman divergence by

SFK(A|B) = B − A − S(A|B).

But unfortunately SFK(A|B) does not coincides with D[x log x](A,B) in general.
So we construct a class of operator divergences including SFK(A|B) from the viewpoint

of operator means [6] or solidarity [4], which is based on operator monotone or operator
concave functions. To see this, we extend D[F ](A|B) to fit to this viewpoint. Replacing
F with an operator concave function f = −F , we define a path of divergences extending
D[F ](A|B): For 0 ≤ t ≤ 1, let

Df,t(A,B) =
f(B ∇t A) − f(B) ∇t f(A)

t(1 − t)

=
f(tA + (1 − t)B) − tf(A) − (1 − t)f(B)

t(1 − t)
.
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Then we have a symmetric property of this path between D[F ](A,B) and D[F ](B,A):

lim
t→0

Df,t(A,B) = D[F ](A,B), lim
t→1

Df,t(A,B) = D[F ](B,A).

Note that if f is an affine function f(x) = a + bx, then Df,t(A,B) = O. So we assume
that a function f is non-affine throughout this note. Then we have a basic property of this
divergence:

Theorem 1. For a non-affine operator concave function f , the divergence Df,t(A,B) is a
positive operator and Df,t(A,B) = O holds if and only if A = B.

For this, we need the following lemma which is easily obtained since it is reduced to the
commutative case; 1 − t + tX = (1 − t + tX−1)−1 holds only when X = I:

Lemma 2. For the harmonic mean A!tB = ((1− t)A−1 + tB−1)−1 for selfadjoint invertible
operators A and B, the equation A∇tB = A!tB holds if and only if A = B.

Proof of Theorem 1. The positivity of Df,t(A,B) is merely the operator concavity of f .
To show the extreme case, suppose f(A∇tB) = f(A)∇tf(B). Since we may assume f is
operator concave on (−1, 1), then f has an integral representation

f(x) = a + bx +
∫ 1

−1

x2

tx − 1
dm(t).

The essential part of the function is

f0(x) =
x2

x − s
= x + s +

s2

x − s
,

so that we have only to show A = B when

(A∇tB − s)−1 = (1 − t)(A − s)−1 + t(B − s)−1

for some s /∈ (−1, 1). Taking inverse, we have

(A − s)∇t(B − s) = A∇tB − s = (A − s)!t(B − s).

Thus, Lemma 2 shows A − s = B − s, that is, A = B. The converse is clear.

Now we will define a path Df,t(A,B) including SFK(A|B). The following path of op-
erator divergences is naturally defined, but the symmetric property does not hold, so we
denote it by D̃f,t(A,B):

D̃f,t(A,B) = A1/2 f(A−1/2BA−1/2∇tI) − f(A−1/2BA−1/2)∇tf(I)
t(1 − t)

A1/2.

In fact, if f(x) = η(x) ≡ −x log x, then this path runs from SFK(A|B) to SFK(B|A):

D̃η,t(A,B) = A
1
2
η(X ∇t I) − η(X) ∇t η(I)

t(1 − t)
A

1
2 ,

where X = A− 1
2 BA− 1

2 . Then

D̃η,0(A,B) ≡ lim
t→0

D̃η,t(A,B) = lim
t→0

A
1
2
η(X + t(I − X)) − η(X) + tη(X)

t(1 − t)
A

1
2

= A
1
2 (η′(X)(I − X) + η(X))A

1
2

= A
1
2 (− log X − I + X)A

1
2

= B − A − S(A|B) = SFK(A|B)
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and

D̃η,1(A,B) ≡ lim
t→1

D̃η,t(A,B) = lim
t→1

A
1
2
η(I + (1 − t)(X − I)) − η(I) − (1 − t)η(X)

t(1 − t)
A

1
2

= A
1
2 (η′(I)(X − I) − η(X))A

1
2

= A
1
2 (−X + I + X log X)A

1
2

= A
1
2 (−A− 1

2 BA− 1
2 + I + A− 1

2 BA− 1
2 log A− 1

2 BA− 1
2 )A

1
2

= −B + A − B− 1
2 log(B

1
2 AB− 1

2 )B
1
2

= A − B − S(B|A) = SFK(B|A).

But a symmetric equation D̃f,0(A,B) = D̃f,1(B,A) does not always hold: Putting
X = A−1/2BA−1/2, we easily compute it as follows:

D̃f,0(A,B) = lim
t→0

A1/2
(
f ′(X∇tI)(I − X) + f(X) − f(I)

)
A1/2

= A1/2
(
f ′(X)(I − X) + f(X) − f(I)

)
A1/2

= A1/2f ′(X)(I − X)A1/2 + A1/2f(X)A1/2 − f(I)A

and

D̃f,1(A,B) = lim
t→1

D̃f,t(A,B) = lim
t→1

A
1
2
(
f ′(X∇tI)(X − I) − f(X) + f(I)

)
A

1
2

= A1/2
(
f ′(I)(X − I) − f(X) + f(I)

)
A1/2

= f ′(I)(B − A) − A1/2f(X)A1/2 + f(I)A.

Thus the symmetric equation is false in general.
To define a symmetric path of operator divergence, we recall the Kubo-Ando theory

of operator means [6] in which they gave the one-to-one correspondence between operator
means and positive operator monotone functions. For a positive operator monotone function
f on (0,∞), the transpose f◦ of f , defined by f◦(x) = xf(x−1), is also positive operator
monotone and then A mf◦ B = B mf A, where mf is the operator mean corresponding to
f :

A mfB = A
1
2 f

(
A− 1

2 BA− 1
2

)
A

1
2 = B

1
2 f◦

(
B− 1

2 AB− 1
2

)
B

1
2 .

Moreover M.Fujii [5] showed the following equivalence for f which is not always positive:

Theorem F. A real-valued function f on (0,∞) is operator concave if and only if its trans-
pose f◦ is operator concave.

For example, the entropy function η(x) = −x log x and log x are operator concave and
these are the transpose each other.

Now we define a path of Bregman-Petz operator divergences Df,t(A,B) for f as

B
1
2
(f(I ∇t Y ) − f(I) ∇t f(Y )) ∇t (f◦(Y ∇t I) − f◦(Y ) ∇t f◦(I))

t(1 − t)
B

1
2

for Y = B− 1
2 AB− 1

2 and in particular we denote

Df (A,B) = lim
t→0

Df,t(A,B).
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Since

B− 1
2 Df,t(A,B)B− 1

2 =
f(I ∇t Y ) − f(I)∇t f(Y )

t
+

f◦(Y ∇t I) − f◦(Y ) ∇t f◦(I)
1 − t

,

we have

Df (A,B) = lim
t→0

Df,t(A,B) = lim
t→0

B
1
2
f(I ∇t Y ) − f(I) ∇t f(Y )

t
B

1
2

= lim
t→0

B
1
2 (f ′(I ∇t Y )(Y − I) + f(I) − f(Y ))B

1
2

= B
1
2 (f ′(I)(Y − I) + f(I) − f(Y ))B

1
2

= f ′(I)(A − B) + f(I)B − B
1
2 f(Y )B

1
2

and also

lim
t→1

Df,t(A,B) = lim
t→1

B
1
2
f◦(Y ∇t I) − f◦(Y )∇t f◦(I)

1 − t
B

1
2

= lim
t→0

B
1
2
f◦(I ∇t Y ) − f◦(I)∇t f◦(Y )

t
B

1
2

= (f◦)′(I)(A − B) + f◦(I)B − B
1
2 f◦(Y )B

1
2 = Df◦(A,B).

Thus this path has a kind of symmetry between Df (A,B) and Df◦(A,B), which is more
clarified by the following theorem:

Theorem 3. Let f be an operator concave function and f◦ be the transpose of f . Then

Df◦(A,B) = Df (B,A).

Proof. The equality f◦(1) = f(1) holds and also (f◦)′(1) = f(1) − f ′(1) hods since

(f◦)′(x) = (xf(1/x))′ = f(1/x) − 1
x

f ′(1/x).

For the above X = A− 1
2 BA− 1

2 and Y = B− 1
2 AB− 1

2 , we have

Df◦(A,B) = (f(I) − f ′(I))(A − B) + f(I)B − B
1
2 Y f(X)B

1
2

= f ′(I)(B − A) + f(I)A − A
1
2 A

1
2 B− 1

2 f(((A
1
2 B− 1

2 )∗A
1
2 B− 1

2 )−1)B
1
2

= f ′(I)(B − A) + f(I)A − A
1
2 f((A

1
2 B− 1

2 (A
1
2 B− 1

2 )∗)−1)A
1
2 B− 1

2 B
1
2

= f ′(I)(B − A) + f(I)A − A
1
2 f(A− 1

2 BA− 1
2 )A

1
2 = Df (B,A).

by the above calculation for limt→1 Df,t(A,B).

Thus Df,t(A,B) combines the Bregman-Petz divergences Df (A,B) with Df (B,A). In
particular, for f(x) = η(x) = −x log x, we have

Dη(A,B) = B − A − S(A|B) = SFK(A|B)

and
Dη(B,A) = Dη◦(A,B) = A − B − S(B|A) = SFK(B|A).

Similarly to Theorem 1, we have the basic property of these divergences:

Theorem 4. For a non-affine operator concave function f , the Bregman-Petz divergence
is positive and equals to zero if and only if the operators are equal:

Df,t(A,B) ≥ O; Df,t(A,B) = O ⇐⇒ A = B(
D̃f,t(A,B) ≥ O; D̃f,t(A,B) = O ⇐⇒ A = B

)
.
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