A SIMPLE NUMBER THEORETIC PROBLEM III

Kiyoshi ISEKI

Received July 30, 2009

Abstract. In this note, we prove that positive integral solutions of $x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}=$ y^{2} do not satisfy $x_{1}^{n}+x_{2}^{n}+\ldots+x_{m}^{n}=y^{n}$ by elementary way.

Let $a_{1}, a_{2}, \ldots, a_{m}, b$ be a positive integral solution of the equation

$$
x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}=y^{2} .
$$

Suppose that $a_{1}, a_{2}, \ldots, a_{m}, b$ is a solution of the equation

$$
x_{1}^{n}+x_{2}^{n}+\ldots+x_{m}^{n}=y^{n},
$$

n is a natural number $3,4, \ldots$

$$
\begin{aligned}
& b^{n}=b^{n-2} b^{2}=b^{n-2}\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{m}^{2}\right) \\
& >a_{1}^{n-2} a_{1}^{2}+a_{2}^{n-2} a_{2}^{2}+\ldots+a_{m}^{n-2} a_{m}^{2}=b^{n}
\end{aligned}
$$

which is impossible.
Proposition. Any positive integral solution of

$$
x_{1}^{2}+x_{2}^{2}+\ldots+x_{m}^{2}=y^{2}
$$

is not a solution of

$$
x_{1}^{n}+x_{2}^{n}+\ldots+x_{m}^{n}=y^{n}(n=3,4, \ldots) .
$$

For example, in my notes [1],[2], there are identities

$$
380^{2}+381^{2}+\ldots+9978^{2}+9979^{2}=575500^{2}
$$

with 9600 terms,

$$
307^{2}+309^{2}+\ldots+20303^{2}+20305^{2}=1181300^{2}
$$

with 10000 terms.
These numbers do not satisfy the equation

$$
x_{1}^{n}+x_{2}^{n}+\ldots+x_{m}^{n}=y^{n}
$$

where $m=9600,10000, n=3,4, \ldots$
For an identity in [3],

$$
2^{4}+2^{4}+3^{4}+4^{4}+4^{4}=5^{4}
$$

2000 Mathematics Subject Classification. 11A99.
Key words and phrases. Pythagorean triple.
we know that $(2,2,3,4,4,5)$ is not a solution of

$$
x_{1}^{n}+x_{2}^{n}+x_{3}^{n}+x_{4}^{n}=y^{n}
$$

for $n=5,6, \ldots$
All Pythagorean triples are not solutions of

$$
x^{n}+y^{n}=z^{n}(n=3,4, \ldots)
$$

By the same highschool math. technique, we can easily obtain more general proposition.

References

[1] K.Iseki and S.Lajos, Positive integral solutions of the equations $x^{2}+(x+1)^{2}+(x+2)^{2}+\ldots+$ $(x+n)^{2}=y^{2}(1 \leq x+n \leq 10000)$, Math. Japonica, 35(1990), 817-830.
[2] K.Iseki, Positive integral solutions of $x^{2}+(x+2)^{2}+\ldots+(x+2 n)^{2}=y^{2}(1 \leq n \leq 10000)$, Math. Japonica 35(1990), 1003-1012.
[3] W.Sierpinski, Elementary theory of numbers(editor: A.Schinzel), Warszawa, 1987.
Kitamachi 14-6, Sakuragaoka, Takatsuki, Osaka 569-0817, Japan

