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Abstract. We would like to show a precise review of a part of the work [2]. As
materials, we take up Rearrangement, Neumann Problem, Equilibrium Equation, and
Chemotaxis System. We also explain the outline of the Sobolev embedding described
in the work [1]. Finally we investigate the relation between the Rearrangement and
Conditionally Convergent Integrals.

Introduction Equilibrium equation −∆u (x) = G (u, u∗, u′∗, b∗u) describes ”plasma” con-
fined in the machine Stellarator [2] p.173. We find rearrangements(RA) u∗, b∗u of mea-
surable functions u (x) , b (x) in the right side of the equation. We would like to show the
meaning of the rearrangements (in the form with Examples), and the relation between the
RA and conditionally convergent integrals such as A-integral (Theorems A∼C in Section
1). Various inequalities relating to the RA are found in the work [2]. We would like to prove
the estimations appearing in the Neumann problem [2] p.125. The outline of the results on
the Chemotaxis system with the term ∂tu in [2] p.234 is also given. The problem relating
to the Sobolev embeddings, found in the work [1] p.115, p.129, are explained. We express
here Theorems in [2] in the form with the same numbers as [2].

1 Rearrangement and A-Integral

(I) Rearrangement

(i) Let u: Ω
(⊆ RN

)→R, measurable, and m (t) = mu (t) = |u > t| ≡ measure{x; u (x) >

t}. u∗ (s) = Inf{t ∈ R,m (t) � s}, s ∈ Ω∗, is called ”decreasing rearrangement(RA) of u”.
Ω∗ = [0, |Ω|) .

(ii) F (t, u) = ts+
∫
Ω

(u − t)+dx,F (u∗ (s) , u) =
∫
[0,s]

u∗ (σ) dσ, (u − t)+ = Max{0, (u − t)}.
F′ (·, u; v) = limλ→0,λ>0{(F (·, u + λv) − F (·, u)) /λ}. v∗u (s) = (d/ds) F

′
(·, u; v) is ”relative

RA of v with respect to u”.

R-formula. v∗u (s) = (d/ds)+ w (s) for F (u∗ (s) , u) , [2] p.33, p.40; w (s) =
∫
{u>u∗(s)} v (x) dx+∫

[0,s−|u>u∗(s)|]
(
v|{u=u∗(s)}

)
∗ (σ) dσ.

(iii) u has a step at t. if |u = t| > 0. Du is the set of steps, and P (u) = ∪t∈Du{u = t} is
the plateau of u. If |P (u)| = |Ω| , u (x) is called ”step function”.

Remark 1. u (x) , v (x) in L1 (Ω) are treated in [2] p.40. When u (x) and v (x) are step
functions, δ-like sigularities do not appear in v∗u (s) given from Definition. Then (d/ds)+
must be used.
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(iv) u∼ (x) = u∗
(
αN |x|N)

, NαN : surface area of the unit ball in RN , is called spherical
RA of u.

Example 1.

(a) u (x) =
(
1 − x2

)
+

, Ω = (−1, 1) , m (t) = 2 (1 − t)1/2
,

u∗ (s) = 1 − s2/4, ts +
∫
Ω (u − t)+ dx = ts + (4/3) (1 − t)3/2

.

(b) v (x) =
(
1 − x2

)2
, w (x) =

∫
{u>u∗(s)} v (x) dx = s − s3/6 + s5/80,

v∗u (s) =
(
1 − s2/4

)2 = v∗ (s) .

(c) u (x) = 2 for 1 � |x| < 2, = 1 for |x| < 1; Ω = (−2, 2) ;
mu (t) = 0 for t � 2, = 2 for 2 > t � 1, = 4 for 1 > t;
u∗ (s) = 2 for 0 � s < 2, = 1 for 2 � s < 4; Ω∗ = [0, 4).

Remark 2.
∫
Ω

u (x) dx = − ∫
(−∞,∞)

tdmu (t) /dt =
∫
[0,|Ω|) u∗ (s) ds (I) holds for the

above (a), (c) in Example 1.

Example 2. u (x, y) =
(
1 − (x − 5)2 /4 − (y − 7)2 /9

)
+

, m (t) = 6π (1 − t) ,

u∗ (s) = 1 − s/6π, u∼ (x, y) = 1 − (
x2 + y2

)
/6.

Example 3. Denote by u (x) = 0 for |x| � 1/2, = 1/2 for 1/2 < |x| � 1. u∗ (s) = 1/2

for 0 � s < 1, = 0 for 1 � s < 2. For v (x) =
(
1 − x2

)2, v∗u (s) =
(
1 − (s + 1)2 /4

)2

for 0 � s < 1, =
(
1 − (s − 1)2 /4

)2

for 1 � s < 2.

Remark 3. Example 3 is given by using the R-formula in (ii). u (x) plays the effective
role to give a measure preserving transform in Ω∗.

(II) Conditionally Convergent Integrals such as A-integral.
Measurable fuction f (x) defined on an open bounded set Ω is A-integrable, if the following
conditions are satisfied:
(a) meas{x; |f (x)| > n, x ∈ Ω} = O

(
(n · loge n)−1

)
.

(b) There exists a finite limit limn→∞
∫
Ω [f]n (x) dx = A− ∫

Ω f (x) dx; [f]n (x) = f (x), if
|f (x)| � n, and [f]n (x) = 0, if |f (x)| > n.
Since f (x) is measurable, the function mf (t) ,−∞ < t < ∞, can be defined. We
obtain the following Theorem A from the Definition of f∗ (s) , s ∈ [0, |Ω|).

Theorem A. A-integral A-
∫
Ω f (x) dx = limn→∞

∫
Ω [f]n (x) dx is given by A-

∫
Ω f (x) dx =

limn→∞
∫
I(n)

f∗ (s) ds, where the interval I (n) =
[
f−1
∗ (n) , f−1

∗ (−n)
]
.

Let V+ = |f (x) > 0| < ∞, V0 = |f (x) = 0| > 0, and V− = |f (x) < 0| < ∞. Since
mf (t) = |f (x) > t|, mf (0) = mf (0 + 0) = V+ and mf (0 − 0) = V+ + V0. Since f∗ (s) =
inf{t ∈ R; s � mf (t)}, then, f∗ (V+ + V0 + 0) < 0 and f∗ (s) = 0 for V+ � s < V+ + V0,
hold. The rest part of the Proof is derived from the formula (I) in Remark 2.

A-integral, an extension of the Lebesgue integral, is the same as E.R.integral given by
K.Kunugui [4] etc.. E.R. ν integral, is the Stieltjes type E.R.integral. E.R.ν integral by
using ν (B) =

∫
B

φ (x) dx with φ (x) ∈ L1 (Ω) , φ (x) > 0, can be defined by mf (t) =∫
{x|f(x)>tφ(x)} φ (x) dx. Improper integral can be also defined by using the infinite sequence
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{Ωn; n = 1, 2, · · · }, Ωi ⊂ Ωi+1. When the set {x; f (x) 	= 0} is infinite join of the nowhere
dense parfect sets, these conditionally convergent integrals have various applications. As
Example, Expression of the distributions by I.L.Bondi [5] p.131, and an interpretation of
Causality and of Lorentz invariance in [6] p.548, are given.

Theorem B. If {(u (x) , v (x)) ; x ∈ Ω
(⊆ RN

)} satisfies u (x1) � u (x2) � v (x1) � v (x2)
for ∀ (x1, x2) ∈ Ω × Ω, then v∗u (s) = v∗ (s) holds for ∀s ∈ Ω∗.
If u (x) is a step function, heorem B can be proved by using the R-formula v∗u (s) =

(d/ds)+ w (s) in (ii).
Suppose that v (x) ∈ (

L1 (Ω)
)c (complement) is an A-integrable function defined on

Ω
(⊆ RN

)
. Let n (0) = 0, and {n (i) ; i = 1, 2, ·} (⊆ N) be an infinite increasing sequence

such that
∣∣Ωn(i)

∣∣ > 0 for Ωn(i) = {x ∈ Ω; n (i − 1) < |v (x)| � n (i)}. Let I (1) =
[
0,

∣∣Ωn(1)

∣∣),
and I (i) :=

[∑
j=1∼i−1

∣∣Ωn(j)

∣∣ ,
∑

j=1∼i

∣∣Ωn(j)

∣∣) for i � 2.

Theorem C. Suppose that v (x) ∈ (
L1 (Ω)

)c is an A-integrable function. Then there
exists a step function u (x) ; x ∈ Ω

(⊆ RN
)

such that A-
∫
Ω v (x) dx =

∑
i∈N

∫
I(i) v∗u (s) ds

holds.

Proof.
Let u (x) = (1/2)i for x ∈ Ωn(i), = 0 for x ∈ Ω − ∪i∈NΩn(i).

u∗ (s) = 1/2 for 0 � s < |I (1)| ,
= (1/2)n for |∪j=1∼n−1I (j)| � s < |∪j=1∼nI (j)| ,
= 0 for |∪j=1∼∞I (j)| � s < |Ω| .

This Theorem C can be proved by the extended use of R-formula in (ii). We must use
n (i) φ (x) instead of n (i) for the E.R. ν. integrable functions v (x) .

2 Sobolev Embeddings, Boundary Value Problems, and Equilibrium Equation.

(I) Sobolev Embeddings.

Sobolev space Wm,p (Ω) := {v ∈ Wm−1,p (Ω) , Dαv ∈ Lp (Ω) for Ω ⊂ RN , |α| = m, α ∈
NN}, Hilbert space Hm (Ω) = Wm,2 (Ω), and Wm,p

0 (Ω): closure of D (Ω) in Wm,p (Ω).

Continuous injection: Let us consider the two linear spaces V , H , with two norms
‖ · ‖, |·| , respectively. The relation ”V ⊂ H” means ”∃c > 0 such that |v| � c ‖ v ‖ holds
for ∀v ∈ V ”.

Let Ω
(⊆ RN

)
be an open bounded set with C1 boundary [1] p.115.

Sobolev Embeddings: (i).
(a) If 1 � p < N , then W1,p (Ω) ⊂ Lq (Ω) for q ∈ [1, p∗] with p∗ = Np/ (N − p). If

q 	= p∗, this injection becomes the compact operator ”bounded→ compact”, [1] p.130.
(b) If p = N , then W1,N (Ω) ⊂ Lq (Ω) for ∀q ∈ [1,∞), and these injections are compact.
(c) If p > N , then W1,p (Ω) ⊂ C0,α (Ω) [1] p.10, with α = 1 − N/p, and the injection of

W1,p
(
Ω̄

)
in C

(
Ω̄

)
is compact.
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The Ascoli Theorem, proved by using equicontinuity, is used in the proof of this Proposi-
tion.
(ii) Let W1,N

0 (Ω) ⊂ Lr (Ω) holds for 1 � ∀r < ∞. One has |u|Lr(Ω) �
(
|Ω|1/r

/Nα
1/N
N

)
·

(∫
[0,1] (−Logt)r/N ′

dt
)1/r

||∇u|∗u|N , where N ′ = N/ (N − 1), [2] p.95.

(II) Boundary Value Problem.
The RA makes it possible to give estimates having various properties. The author of [2]

applies them to the boundary value problems of PDEs relating to plasma physics.

(i) Acoordings to G.Talenti [3], when −∆u = f ∈ L2
+ (Ω), u ∈ H1

0 (Ω) derives −∆U = f∼,
U ∈ H1

0 (Ω∼) by the spherical RA, u∗ (s) � U∗ (s) holds for ∀s ∈ Ω∗.

(ii) In [2] (Chapter 5), the Neumann problem (PN ) in Ω
(⊂ RN

)
is treated: Let

f ∈ Lp′
(Ω); p′ = p/ (p − 1).

(PN ): u ∈ W1,p (Ω), −div (â (x, u,∇u)) = f in Ω, and â (∇u) · n (x) = 0 on ∂Ω.
n (x): normal unit vector directed to the outside of ∂Ω at x.

Coercive Condition: â (x, u,∇u) ≡ â (∇u) (taking the values in RN ) satisfies â (x, σ, ξ)·
ξ � α |ξ|p for ∀ξ ∈ RN ; p ∈ (1,∞).

The corresponding variational problem (PvN ):
∫
Ω â (∇u) · ∇φdx =

∫
Ω fφdx for ∀φ ∈

W1,p (Ω). v = |u| derives sign (u) · (v − v∗ (s))+ ∈ W1,p (Ω). F (s) ≡ ∫
[0,s]

|f|∗v (σ) dσ.

Theorem 5.3.1. All variational solution u ∈ W1,p (Ω) of (PvN) satisfies the inequalities
(a), (b), and (c) for almost all s.
(a) (â (∇u) · ∇u)∗v (s) � −v′

∗ (s) F (s).

(b) |∇v|∗v (s) �
[
(Q/α) · max (s, |Ω| − s)(1−N)/N · F (s)

]1/(p−1)

.

(c) −v′
∗ (s) �

[(
Q/α1/p

) · max (s, |Ω| − s)(1−N)/N
]p′

· F (s)1/(p−1).

max (s, |Ω| − s)(1−N)/N := max
(
s(1−N)/N , (|Ω| − s)(1−N)/N

)
, because of

Corollary 3.3.2. One poses k (s) = Q−1Min
(
s1−1/N , (|Ω| − s)1−1/N

)
. If 1 � p �

∞, u∗ ∈ W1,p
loc (Ω∗) for ∀u ∈ W1,p (Ω). Furthermore one has Polya-Szëgo inequalities

|k (s) · du∗/ds|Lp(Ω∗) � ||∇u|∗u|Lp(Ω∗) � |∇u|Lp(Ω), [2] p.70.

Proof of the Theorem.
(a) The inequality is derived from

∫
v>v∗(s)

(â (∇u) · ∇u) dx =
∫
Ω

f (x)·sign (u)·(v − v∗ (s))+ dx.

”Let G (s) =
∫
Ω g (x) (v (x) − v∗ (s))+ dx, g ∈ Lp′

(Ω).
G′ (s) = −v′

∗ (s)
∫
{v>v∗(s)} g (x) dx holds.” (cf. R-formula)

(b) [â (∇u) · ∇u]∗v (s) � α [|∇v|p]∗v (s) is derived from the Coercive Condition. Next
”The Poincaré-Sobolev inequality −u′

∗ (s) � K (s,Ω, V ) · |∇u|∗u (s) with V =
W1,p (Ω) [2] p.85” is used .
One has (|∇v|p)∗v (s) � (|∇v|∗v (s))p, by using the Hörder inequality.

Höder inequality:
(
F1 · F2χΩ−P(u)

)
∗u

�
[|F1|p χΩ−P(u)

]1/p

∗u
·
[
|F2|p‘

χΩ−P(u)

]1/p′

∗u
,

[1]p.39, [2] p.116.
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(c) One must use the Poincaré-Sobolev inequality with V = W1.p (Ω) one more time.

(iii) Theorem 5.4.1. Let V = {v ∈ H1 (Ω), v = constant on ∂Ω}. There exists a
solution u ∈ H2 (Ω) ∩ V, Ω ⊂ R2, satisfying [T]: −∆u + λu− = 0 (λ > 0) in Ω, u = γ =
constant on ∂Ω = Γ,

∫
∂Ω ∇u · n (x) dl = I > 0 (for given I ). u− = u+ − u. (due to

R.Sermange.)

Theorem 5.4.2. Suppose that λ1: the first eigenvalue of the Dirichlet problem: −∆φ1 =
λ1φ1, φ1 = 0 on ∂Ω,

∫
Ω φ1dx = λ−1

1 .
(a) λ > λ1 � u|Γ > 0, (b) λ = λ1 � u|Γ = 0, (c) λ < λ1 � u|Γ < 0.
The Harnack inequality and the Green formula are used in the proof.

(III) Equiliblium Non-Local Equation.
Theorem 8.2.4. b1 (x), b2 (x) ∈ L∞ (Ω). There exists u ∈ H1

0 (Ω) ∩ W2,p (Ω), p ∈ [1,∞)
such that −∆u = F (x; [b1Φ1 (∇u)]∗u (|u > u (·)|) , u′∗ (|u > u (·)|) , u′∗, [b2Φ2 (∇u)]∗u).

Here |Φj (ξ)| � c1 |ξ|, for ∀ξ ∈ RN ,j = 1, 2.

F (x;X) : Ω × L1 (Ω)2 × L1 (Ω∗)
2 → (ε,∞), ε > 0, bounded.

x ∈ Ω → F (x;X) measurable, F (x;Xn) → F (x;X) as Xn → X .
(G (v) , φ) =

∫
Ω

φ (x) F (x; X (v)) dx, for ∀φ ∈ L2 (Ω). G (v) ∈ Cε = {f ∈ L2 (Ω) ; f � ε}
is used in the Proof of this Theorem 8.2.4.

Let 0 < c3 < inf{∫
Ω
|∇φ|2 dx; |φ|2 = 1, φ ∈ H1

0 (Ω)}, p (t) ∈ C1 (R) , p′ (t) � 0, and
|p′ (t)| � c3 |t| + c4. Let a (x) ∈ L∞ (Ω), b (x) � 0, and v (x) ∈ W1,q (Ω) for q > N and

Ω
(⊆ RN

)
. F (v) (x) is given as F (v) (x) = a (x)

[
F 2

0 − ∫
Iv(x)

(
[p (v∗)]

′
b∗v

)
(σ) dσ

]1/2

+
, where

Iv (x) = [mv (0) , mv (v+ (x))].

Theorem 8.2.5. Let N=2, and Φε (ξ) = |ξ| / (ε + |ξ|), ε > 0.
There exists a solution u ∈ W2,p (Ω)∩H1

0 (Ω), p > 1, of the equation −∆u (x) = F (u) (x)+
p′ (u) (x) [b (x) − [bΦε (∇ u)]∗u (|u > u (x)|)].

3 Chemotaxis System.
Let u (t, x) : QT ≡ (0, T ) × Ω → R measurable, and u∗ (t, s) = u (t)∗ (s). Let b, u ∈

L1 (QT ), and b∗u (t, s) = b (t)∗u(t) (s). In [2] (Chapter 9), the Chemotaxis system (Ch)
is studied by using the RA.
(Ch): ∂tu = div (∇u − χ̄u∇v) and 0 = ∆v − γv + αu in QT , with u (0, x) = u0 � 0 in
Ω ⊂ RN . χ̄, γ, α: positive constants.

Theorem 9.5.1. Suppose that u0 ∈ W1,p
0 (Ω), p > N . There exist a time Tmax > 0, and

an unique solution (u,v) of the (Ch), satisfying (1) and (2).
(1) u > 0, v > 0, in (0, Tmax) × Ω,
(2) u ∈ C

(
[0, Tmax) ; W1,p

0 (Ω)
)
∩C1 ([0, Tmax) ; Lp (Ω)) , u (t) ∈ W2,p (Ω) for 0 < t < Tmax,

and v ∈ C
(
(0, Tmax) ; W2,p (Ω) ∩ W1,p

0 (Ω)
)
.

This Theorem is not proved in [2]. Next let QT∗ ≡ (0, T )× Ω∗.

Comparison Theorem Two functions f and g are defined on QT∗.
(i) f, g ∈ L∞ (QT∗) ∩ H1

(
0, T ; L2 (Ω∗)

) ∩ (∩δ>0L
2
(
0, T ; W2,2 (δ, |Ω|))).
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(ii) |∂f (t, s) /∂s| � c (t) and |∂g (t, s) /∂s| � c (t)max
(
s−l, 1

)
, where 0 � l < 1, c (t) ∈

L2 (0, T )

Suppose that f and g satisfy the system: ∂tf −
(
Nα

1/N
N

)2

s2−2/N∂2f/∂s2 − αχ̄f∂f/∂s �

∂tg −
(
Nα

1/N
N

)2

s2−2/N∂2g/∂s2 − αχ̄g∂g/∂s,
0 = f (t, 0) � g (t, 0) and ∂f (t, |Ω|))/∂s � ∂g (t, |Ω|) /∂s for ∀t ∈ [0, T ] . f (0, s) � g (0, s) for
s ∈ Ω∗, and g (t, s) � 0.
Then f � g holds in QT∗.

Proof. w = f − g, then w+ = Max (w, 0) = 0 and f � g.

Theorem 9.5.2. Tmax = ∞ holds in the Case (1) ∼ (3).
(1) N = 1.
(2) N = 2, αχ̄ |u0|1 < 8π.
(3) N � 3, αχ̄ |u0|LN

< Nα
2/N
N |Ω|1/N .

Theorem 9.5.2. is proved in [2] p.240 by using the above Comparison Theorem.

Proof f (t, s) = k (k, s) ≡ ∫
[0,s] u∗ (t, σ) dσ is used as f. Then ∂tf−

(
Nα

1/N
N

)2

s2−2/N∂2f/∂s2−
αχ̄∂f/∂s � 0 holds in p.p. QTmax∗ = (0, Tmax) × Ω∗. g (t, s) = pe−λt tanh (αχ̄ps/4) :=
pe−λthp (s) for N = 1, g (t, s) = e−λtaqs/ (1 + qs) for N = 2, and g (t, s) = e−λtqs1−1/N , q =
(N/β)α

2/N
N |Ω|−1/N for N � 3 are used.

Then |u (t)|L∞(Ω) � Ce−λt is derived.

Conclusion and Postscript. We investigate the relation between the RA and A-integral
(by A.N.Kolmogorov etc.) and derive the following (i) ∼ (iii):
(i)

∫
Ω

u (x) dx =
∫
Ω∗ u∗ (s) ds, holds for step function u taking finite values and defined on

a bounded set Ω.
(ii) vu∗ = v∗ holds under the conditions such that u is step function, v ∈ L1 (Ω), and
u (x1) � u (x2) � v (x1) � v (x2).
(iii) u in v∗u gives a measure preserving transform in Ω∗.
In plasma physics we find the equation ∂tH(u) − ∆u = G (t, x, u′∗ (t, ·) , b∗u (t, ·)),
H (u): a monotone function. If u (t, ·) is stationary, it becomes the solution of the equation
−∆u = G (x, u′

∗, b∗u).
Stellarator(USA) and Tokomak(USSR) are machines, which aim to realize the nuclear fu-
sion. The Chemotaxis system is the one appearing in the biological classification related to
Chemistry.
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which tells the death of Prof.T.Ishihara. When I received it, I was typing the manuscript
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partielles. Presses Universitaires de France, 1999.
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