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ON THE DIEUDONNÉ THEOREM

Giuseppina Barbieri
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Abstract. We obtain for modular measures on lattice ordered effect algebras the
classical theorem of Dieudonné related to convergent sequences of regular maps.

1 Introduction In 1933 Nikodým [10] proved the well-known Vitali-Hahn-Saks theorem,
namely “If a sequence of Borel measures converges pointwise to a map µ, then µ is a Borel
measure.”

In 1951 Dieudonné proved the following more general theorem: “If a sequence of regular
measures defined on Borel sets of a compact metrizable space converges on every open set,
then it converges on every Borel sets. In this case, the sequence is uniformly regular”. This
theorem generalizes Nikodým’ s theorem if one substitutes the pointwise convergence on the
Borel σ-algebra for the analogous condition on open sets provided a regularity assumption
and a topological condition on the space are satisfied. Brooks in [6] generalizes this theorem
to the case the space is either compact or the space is normal and the sequence is uniformly
bounded. In this note we furnish a general version of Dieudonné’s theorem valid for real-
valued modular measures defined on lattice ordered effect algebras. For we use an abstract
concept of regularity (see Definition 4.1) where F and G play the role of compact sets and
open sets, respectively.

The paper, which follows Candeloro and Letta’s work, is organized as follows.

After notation and preliminaries we give the exhaustivity condition, the regularity con-
dition and their relationship. Finally, we provide the main result (Theorem 5.1).

We deal with effect algebras. Effect algebras have been introduced by Foulis and Bennett
in 1994 [5] for modelling unsharp measurement in a quantum mechanical system. They are
a generalization of many structures which arise in quantum physics and in Mathematical
Economics, in particular of orthomodular lattices in noncommutative measure theory and
MV-algebras in fuzzy measure theory.

2 Preliminaries In this section we shall give some basic definitions and fix some nota-
tions.

Definition 2.1 Let (L,≤) be a poset with a smallest element 0 and a greatest element 1
and let ⊖ be a partial operation on L such that b⊖ a is defined if and only if a ≤ b and for
all a, b, c ∈ L:

If a ≤ b then b ⊖ a ≤ b and b ⊖ (b ⊖ a) = a.

If a ≤ b ≤ c then c ⊖ b ≤ c ⊖ a and (c ⊖ a) ⊖ (c ⊖ b) = b ⊖ a.

Then (L,≤,⊖) is called a difference poset (D-poset for short), or a difference lattice
(D-lattice for short) if L is a lattice.
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For the rest, let L be a D-lattice.

One defines in L a partial operation ⊕ as follows:

a ⊕ b is defined and a ⊕ b = c if and only if c ⊖ b is defined and c ⊖ b = a.

The operation ⊕ is well-defined by the cancellation law [9, page 13] (a ≤ b, c and
b ⊖ a = c ⊖ a implies b = c), and (L,⊕, 0, 1) is an effect algebra (see [9, Theorem 1.3.4]),
that is the following conditions are satisfied for all a, b, c ∈ L:

If a ⊕ b is defined, then b ⊕ a is defined and a ⊕ b = b ⊕ a;
if b ⊕ c is defined and a ⊕ (b ⊕ c) is defined, then a ⊕ b and (a ⊕ b) ⊕ c are defined, and

a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c;
there exists a unique a⊥ ∈ E such that a ⊕ a⊥ is defined and a ⊕ a⊥ = 1;
if a ⊕ 1 is defined, then a = 0.

We say that a and b are orthogonal if a ≤ b⊥ and we write a ⊥ b. Therefore a ⊕ b is
defined if and only if a ⊥ b, and in this case a ⊕ b = (a⊥ ⊖ b)⊥ by [9, Lemma 1.2.5]. If
a1, . . . , an ∈ L we inductively define a1 ⊕ · · · ⊕ an = (a1 ⊕ · · · ⊕ an−1)⊕ an if the right-hand
side exists. The sum is independent on any permutation of the elements. We say that a
finite family (ai)

n
i=1 of (not necessarily different) elements of L is orthogonal if a1 ⊕· · ·⊕an

exists.
We say that a sequence (an) of L is orthogonal if the set {a1, . . . an} is orthogonal, for

every n ∈ N.
A function µ on a D-lattice with values in R is called a measure if for every a, b ∈ L,

with a ⊥ b,

µ(a ⊕ b) = µ(a) + µ(b).

A modular measure is a measure which also satisfies the modular law, that is for all a, b ∈ L

µ(a ∨ b) + µ(a ∧ b) = µ(a) + µ(b).

In the whole paper, we denote by µ a real-valued modular measure on L.

Definition 2.2 [4, 3.2] The total variation |µ| : L → [0, +∞] of µ is defined by

|µ|(a) := sup{

n∑

i=1

|µ(xi) − µ(xi−1)| : n ∈ N, 0 = x0 ≤ x1 ≤ · · · ≤ xn = a}

The total variation of a modular measure is a modular measure, too (cf. [4, 3.3]).

Notation 2.3 For a ∈ L, we put µ̃(a) := sup{|µ(b)| : b ∈ L, b ≤ a}.

Remark 2.4 Observe that, thanks to the representation of the total variation as

|µ|(a) = sup{

n∑

i=1

|µ(ai)| : n ∈ N ⊕n
i=1 ai = a}

(cf. [4, 3.3]) and the Hahn decomposition theorem (cf. [3, 2.5]), we get

µ̃(a) ≤ |µ|(a) ≤ 2µ̃(a).

For the rest of the paper let F ,G ⊆ L be two lattices closed under the sum and g⊖ f ∈ G
for each f ∈ F and g ∈ G.
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3 Exhaustivity

Definition 3.1 A modular measure µ is called G-exhaustive if for every orthogonal se-
quence (gn)n∈N in G we have limn µ(gn) = 0. A sequence (µi)i∈N is called uniformly G-
exhaustive if for every orthogonal sequence (gn)n∈N in G we have limn µi(gn) = 0 uniformly
with respect to i ∈ N. If G = L we use the terms exhaustive and uniform exhaustive.

Remark 3.2 [1, 2.2] A measure on L is exhaustive if and only if every monotone sequence
is a Cauchy sequence.

Remark 3.3 A real-valued modular function is exhaustive if and ony if so is its total
variation.

Proof. Apply [11, 3.6] and [13, 1.3.11].QED

4 Regularity and exhaustivity

Definition 4.1 A modular measure µ is regular if it satisfies the following properties:
(i) For every a ∈ L there exists a couple of sequences gn ↓ in G and fn ↑ in F with

fn < fn+1 < a < gn+1 < gn (1)

for every n ∈ N and

lim
n

µ̃(gn ⊖ fn) = 0 (2)

(ii) For every b ∈ F , there exists a couple of sequences gn ↓ in G and fn ↓ in F with

b < fn+1 < gn < fn (3)

for every n ∈ N and

lim
n

µ̃(gn ⊖ b) = 0 (4).

Let (µi) be a sequence of real-valued modular measures. Then it is uniformly regular if
it satisfies the following properties:

(i) For every a ∈ L there exists a couple of sequences gn ↓ in G and fn ↑ in F with

fn < fn+1 < a < gn+1 < gn

for each n ∈ N and
lim
n

sup
i

µ̃i(gn ⊖ fn) = 0 (5)

(ii) For every b ∈ F , there exists a couple of sequences gn ↓ in G and fn ↓ in F with

b < fn+1 < gn < fn

for each n ∈ N and

lim
n

sup
i

µ̃i(gn ⊖ b) = 0 (6)
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Theorem 4.2 Suppose that G is closed under countable sums. Let (µi) be a sequence of
pointwise convergent G-exhaustive real-valued modular measures. Then (µi) is uniformly
G-exhaustive.

Proof. By way of contradiction there exists ε > 0, a strictly increasing sequence in ∈ N

and an orthogonal sequence (gn) ⊆ G such that |µin
(gn)| ≥ ε for each n ∈ N. Define

νn(A) = µin
(⊕h∈Agh). With the aid of [2, 2.5], one can check that they form a sequence of

finitely additive measures on the power set of N.
We can apply the classical Vitali-Hahn-Saks theorem. So these restrictions form a

uniformly exhaustive sequence. This contradicts the assumptions and completes the proof.
QED

Lemma 4.3 Suppose that (µi) is a sequence of regular uniformly G-exhaustive real-valued
modular measures. Let b ∈ F such that (3) and (4) hold for µi (i ∈ N). Then (6) holds.

Proof. Let a ∈ L with a ≤ gn ⊖ b.
Then |µi|(a) = limm |µi|(a ⊖ ((fm ⊖ b) ∧ a)). Indeed: For every m > n

|µi|(a) − |µi|(a ⊖ ((fm ⊖ b) ∧ a)) = |µi|((fm ⊖ b) ∧ a) ≤ |µi|(gm−1 ⊖ b) ≤ 2µ̃i(gm−1 ⊖ b).

It suffices to show that limn supi λ̃i(gn ⊖ b) = 0, where λi is the restriction of µi to G.
By way of contradiction, there exists ε > 0 such that:
For every p, there exists n > p, i ∈ N and a ∈ G such that a ≤ gn ⊖ b, |µi|(a) > ε

and so |µi|(a ⊖ ((fm ⊖ b) ∧ a)) > ε for a sufficiently large m. So, we can construct by
induction four sequences (nk), (ik), (mk) and (ak) ∈ G with ak ≤ gnk

⊖ b ≤ gnk−1
⊖ b and

|µi|(ak ⊖ ((fmk
⊖ b) ∧ ak)) > ε. Since

gnk−1
⊖ gmk

= (gnk−1
⊖ b) ⊖ (gmk

⊖ b) ≥ ((fmk
⊖ b) ∨ ak) ⊖ (fmk

⊖ b),

we have |µik
|(gnk−1

)− |µik
|(gmk

) ≥ |µik
|(ak ⊖ ((fmk

⊖ b)∨ ak))− |µik
|(fmk

⊖ b) = |µi|(ak ⊖
((fmk

⊖ b)∧ ak)) > ε, with nk−1 < nk < mk. Being gk a monotone sequence which is not a
Cauchy sequence, this contradicts the uniform G-exhaustivity of the sequence (µi).QED

Applying Lemma 4.3 for F = G = L and b = 0 we get:

Corollary 4.4 Let (µi) be a sequence of uniformly exhaustive real-valued modular measures
and let (an)n∈N be a decreasing sequence of elements of L such that limn µ̃i(an) = 0 for each
i ∈ N. Then the limit is 0 uniformly with respect to i ∈ N.

Theorem 4.5 Let µi be a sequence of regular uniformly G-exhaustive real-valued modular
measures. Then it is uniformly exhaustive and uniformly regular.

Proof. We have to show that µi is uniformly regular. The last item defining the uniform
regularity is fulfilled by Lemma 4.3. For the first: Let a ∈ L and fn, gn satisfying (1) and
(2). To prove (5), apply Corollary 4.4 to an := gn ⊖ fn.

We continue proving that (µi)i∈N is uniformly exhaustive.
By way of contradiction: Let ε > 0. Then there exists a sequence (an)n∈N of orthogonal

elements of L, a sequence (in)n∈N of positive integers such that

|µin
(an)| > ε for every n ∈ N (∗).
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Thanks to the regularity we may suppose that an ∈ F . Put

bn := a1 ⊕ · · · ⊕ an.

We claim that there exists a couple of sequences gn ↑ in G, fn ↑ in F such that

bn ≤ gn ≤ fn ≤ gn+1, sup
i∈N

µ̃i(fn ⊖ bn) ≤
ε

2
−

ε

2n+1

Proceed by induction:
(a) By uniformly regularity, pick

g1 ∈ G, f1 ∈ F , b1 ≤ g1 ≤ f1, sup
i∈N

µ̃i(f1 ⊖ b1) ≤
ε

2
−

ε

4

(b) Again by uniformly regularity, we can construct the (n + 1)-th step in such a way

gn+1 ∈ G, fn+1 ∈ F , bn+1 ∨ fn ≤ gn+1 ≤ fn+1; sup
i∈N

µ̃i(fn+1 ⊖ (bn+1 ∨ fn)) ≤
ε

2n+2

Hence, for each i ∈ N, as fn+1 ⊖ bn+1 ≤ (fn+1 ⊖ (bn+1 ∨ fn))⊕ ((bn+1 ∨ fn)⊖ bn+1) and
µ̃i((bn+1 ∨ fn) ⊖ bn+1) ≤ µ̃i(fn ⊖ bn), we get

µ̃i(fn+1⊖bn+1) ≤ µ̃i(fn+1⊖ (bn+1∨fn))+ µ̃i(fn⊖bn) ≤
ε

2n+2
+

ε

2
−

ε

2n+1
=

ε

2
−

ε

2n+2
<

ε

2

Then, we get

µ̃i(an+1) = µ̃i(bn+1 ⊖ bn) ≤ µ̃i(gn+1 ⊖ fn) + µ̃i(fn ⊖ bn)

as bn+1⊖bn ≤ (gn+1⊖fn)⊕(fn⊖bn). Since limn λ̃i(gn+1⊖fn) = 0 (where λi is the restriction
of µi to G) as gn+1⊖fn are orthogonal elements of G, and by regularity limn µ̃i(gn+1⊖fn) =
0. Therefore, µ̃i(an+1) ≤

ε
2

+ ε
2

= ε, which contradicts (*).
We have proved that the sequence is uniformly exhaustive. QED

5 The theorem

Theorem 5.1 Let G be closed under countable sums. Let (µi) be a sequence of G-exhaustive
regular real-valued modular measures converging on every element of G. Then the sequence
is converging on every element of L and it is uniformly exhaustive. Therefore its limit is
exhaustive and regular.

Proof. Thanks to Theorem 4.2, the sequence is uniformly G-exhaustive.
We shall show that for each element a ∈ L, the sequence (µi(a))i∈N is a Cauchy sequence;

that’s enough: apply Theorem 4.5 for completing the proof.
For, let ε > 0. Let f ∈ F and g ∈ G satisfying f ≤ a ≤ g and with supi µ̃i(g ⊖ f) < ε

3
.

Since (µi(g))i∈N is a Cauchy sequence, there exists k ∈ N such that |µi(g) − µj(g)| < ε
3

for
every i, j ≥ k. Then for such integers

|µi(a) − µj(a)| = |µi(g) − µj(g) + µj(g ⊖ a) − µi(g ⊖ a)| < ε
3

+ ε
3

+ ε
3

= ε. This proves
that (µi(a))i∈N is a Cauchy sequence. QED
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[8] J.Dieudonné , Sur la convergence des suites de mesures de Radon. (French) Anais Acad.

Brasil. Ci. 23 (1951), 21窶-38
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